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Abstract

Face Alignment is an active computer vision domain, that

consists in localizing a number of facial landmarks that vary

across datasets. State-of-the-art face alignment methods

either consist in end-to-end regression, or in refining the

shape in a cascaded manner, starting from an initial guess.

In this paper, we introduce DeCaFA, an end-to-end deep con-

volutional cascade architecture for face alignment. DeCaFA

uses fully-convolutional stages to keep full spatial resolu-

tion throughout the cascade. Between each cascade stage,

DeCaFA uses multiple chained transfer layers with spatial

softmax to produce landmark-wise attention maps for each

of several landmark alignment tasks. Weighted intermediate

supervision, as well as efficient feature fusion between the

stages allow to learn to progressively refine the attention

maps in an end-to-end manner. We show experimentally that

DeCaFA significantly outperforms existing approaches on

300W, CelebA and WFLW databases. In addition, we show

that DeCaFA can learn fine alignment with reasonable ac-

curacy from very few images using coarsely annotated data.

1. Introduction

Face alignment consists in localizing landmarks (e.g. lips

and eyes corners, pupils, nose tip). It is an important com-

puter vision field, as it is essential for expression analysis

[28], face recognition [19], tracking [2], and synthesis [20].

Recent face alignment approaches either belongs to cas-

caded regression or deep end-to-end regression methods. On

the one’s hand, cascaded regression consists in learning a

sequence of updates, starting from an initial guess, to refine

the landmark localization in a coarse-to-fine manner. This

allows to robustly learn rigid transformations, such as trans-

lation and rotation, in the first cascade stages, then learning

non-rigid deformation (e.g. due to facial expression).

Figure 1. DeCaFA estimates landmark-wise attention maps at sev-

eral stages of its architecture (horizontally: stages 1 to 4). By

chaining transfer layers, it can integrate heterogeneous data (Verti-

cally: attention maps and predictions for 98, 68 and 5-landmarks.

On the other hand, many deep approaches aim at aligning

the landmarks from the image directly. However, because an-

notating landmarks is tedious, data is scarce and the nature of

the annotations vary a lot. Thus, end-to-end approaches usu-

ally rely on learning intermediate representation (e.g. edges)

to drive the alignment process. However, these representa-

tions are ad hoc and sub-optimal for localizing landmarks.

In this paper, we introduce a Deep convolutional Cascade

for Face Alignment (DeCaFA). It contains several stages

producing attention maps, relatively to heterogeneous land-

mark annotation markups. Figure 1 shows attention maps

extracted by the subsequent stages (horizontally) and for

three markups (vertically). These attention maps are refined

through the successive stages for each of these markups. The

contributions of this paper are thus three-fold:

• We introduce a fully-convolutional Deep Cascade for

Face Alignment (DeCaFA) that unifies cascaded re-

gression and end-to-end deep approaches, by using

landmark-wise attention maps fused to extract local

information around a current landmark estimate.
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• We show that intermediate supervision with increas-

ing weights helps DeCaFA learn coarse attention maps

in its early stages, that are refined later on. Through

chaining multiple transfer layers, DeCaFA integrates

heterogeneous data and model inter-task relationships.

• We show experimentally that DeCaFA significantly out-

performs existing approaches on multiple datasets, in-

luding the recent WFLW database. Additionally, we

highlight how coarsely annotated data helps learn fine

landmark alignment even with few annotated images.

2. Related work

Popular examples of cascaded regression methods include

SDM [25]. In their pioneering work, Xiong et al. show that

using simple linear regressors upon SIFT features in a cas-

caded manner provides precise alignment. LBF [16] is a

refinement that employs randomized decision trees to dra-

matically speed up feature extraction. DAN [8] uses deep

networks to learn each cascade stage. However, one down-

side of these approaches is that the update regressors are not

learned jointly in a end-to-end fashion, thus there is no guar-

antee that the learned feature point alignment sequences is

optimal. MDM [21] improves the feature extraction process

by sharing the convolutional layer among all steps of the cas-

cade that are performed through a recurrent neural network.

This results in memory footprint reduction as well as a more

optimized landmark trajectory throughout the cascade.

TCDCN [29] was perhaps the first end-to-end framework

that could compete with cascaded regression approaches.

It relies on supervised pretraining on a wide database of

facial attributes. More recently, PCD-CNN [9] uses head

pose to drive training. CPM+SBR [5] employs landmark

registration to regularize training. SAN [4] uses adversar-

ial networks to convert images from different styles to an

aggregated style, upon which regression is performed. In

[22] the authors propose to use edge map estimation as an

intermediate representation to drive the landmark prediction

task. Finally, DSRN [15] relies on Fourier embedding and

low-rank learning to produce such representation. However,

the use of such representation is usually ad hoc and it is

hard to know which one would be all-around better for face

alignment. Recently, AAN [26] proposes to use intermediate

feature maps as attentional masks to select relevant regions.

It also uses intermediate supervision to constrain those maps

to correspond to landmark-wise attention maps. However,

there is no guarantee that the network will learn to align

landmarks in a cascaded, coarse-to-fine manner.

Furthermore, annotating images in term of several face

landmarks is a time-consuming task. As a result, data is

rather scarce and annotated in terms of varying number of

landmarks. For instance, 300W database [17] contains ap-

proximately 3000 images labelled with 68 landmarks for

train, whereas WFLW database [22] contains 7500 images

with 98 landmarks. Thus, one can wonder if we can use

all those images within the same framework to learn more

robust landmark predictions, and if coarsely annotated data

(e.g. in terms of 5 landmarks [11]) would be of any help

to address finer tasks. In [23] the authors address this prob-

lem by using a classical multi-task formulation. However,

this essentially ignores the intrinsic relationship between the

structure of different landmark alignment tasks. Likewise, if

we can predict the position of 68 landmarks, we can also eas-

ily deduce the position of landmarks for a coarser markup,

such as eye/mouth corners and nose tip [11]. Authors of

[27] propose to predict the union of all landmarks, with a

sparse shape regression pipeline for inferring the missing

landmarks for one markup. However, this method requires

the numbers of landmarks to be roughly equivalent since a

fine-grained (e.g. 98 landmarks) can hardly be converted

into a very coarse markup (e.g. 5 points). DeFA [10] pro-

poses to unify all the sparse landmark alignment task into a

dense model fitting, however such models usually struggle

with large face deformations, e.g. due to facial expressions.

3. DeCaFA overview

In this Section, we introduce our Deep convolutional Cas-

cade for Face Alignment (DeCaFA), as illustrated on Figure

2. DeCaFA consists of S stages, each of which contains a

fully-convolutional U-net backbone that preserves the full

spatial resolution, as well as an attention map generation sub-

network. Section 3.1 shows how we derive landmark-wise

attention maps for one landmark prediction task. Section

3.2 explains how several transfer layers can be chained to

produce such attention maps, relatively to K landmark pre-

diction tasks. The input of the next stage is obtained by

applying a fusion algorithm that involves the attention maps,

as explained in Section 3.3. In Section 3.4 we describe how

DeCaFA is trained in an end-to-end manner with weighted

intermediate supervision. Finally, in Section 3.5 we provide

implementation details to facilitate reproducibility.

3.1. Landmark-wise attention maps

The U-net at stage i takes an input Ii and gives rise to

an embedding Hi and parameters θi. In order to produce

a suitable embedding from Hi for predicting L landmarks,

we apply a 1 × 1 convolutional layer with L filters with

parameters θ′i. We denote the embeddings outputted by this

transfer layer as TL
i . In order to highlight its dominant mode

we apply a spatial softmax operator. Formally, for a pixel

with coordinates (x, y) and a landmark l:

ΦL
i (x, y, l) =

exp(TL
i (x, y, l))

X
∑

x=1

Y
∑

y=1
exp(TL

i (x, y, l))

(1)
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ẑS
L
1

Φ
1

L
1

ẑ
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Figure 2. DeCaFA architecture overview. Several stages with fully-convolutional U-nets are stacked, multiple transfer layers are chained and

intermediate supervision with increasing weights is applied to produce landmark estimates for heterogeneous alignment tasks. Landmark-wise

attention maps are fused with the input image and the embeddings of the previous stage U-net to enable end-to-end cascaded alignment.

An estimation ẑLi of the landmark coordinates can be

obtained by computing the first order moments of ΦL
i :

{

ẑLi,x(l)=Ex,y[xΦ
L
i (x, y, l)]

ẑLi,y(l)=Ex,y[yΦ
L
i (x, y, l)]

(2)

Where ẑLi,x and ẑLi,y are two vectors of size L containing

the x and y landmark coordinates ẑLi . The soft-argmax

operator is inspired by the work in [13] in the frame of

human pose estimation and provides differentiable landmark

coordinates estimate from the attention map ΦL
i .

3.2. Chaining landmark localization tasks

As it will be explained in Section 4.1, existing datasets

for face alignment usually have heterogeneous annotations

and varying numbers of annotated landmarks. In order to

deal with these heterogeneous annotations, we integrate K
tasks that consist in predicting various numbers of landmarks

L1, ...LK with ∀k1, k2, k1 ≤ k2 =⇒ Lk1
> Lk2

(i.e. we

chain the landmark-wise attention maps in an decreasing

order of the number of landmarks to predict). To do so,

we apply K transfer layers TL1

i , ..., TLK

i with parameters

θ
(1)
i , ..., θ

(K)
i , at it is depicted on Figure 3 (a). We have:

{

ẑLk

i,x(l)=Ex,y[xΦ
Lk

i (x, y, l)] ∀1 ≤ k ≤ K

ẑLk

i,y (l)=Ex,y[yΦ
Lk

i (x, y, l)] ∀1 ≤ k ≤ K
(3)

The advantages of stacking the landmarks prediction

pipelines in a descending order of the number of landmarks

Φ
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(a) Chained tasks (b) Independant tasks

Figure 3. Chained (left) vs independant (right) task order.

to be localized are two-fold: First, from a semantic perspec-

tive, who can do more can do less, meaning that it shall be

easier for the network to learn the sequence of transfer layers

in that order (i.e. if we can precisely localize a 68-points

markup it will be easy to also localize the nose tip, as well

as mouth/eyes corners). Second, labelling images with large

amounts of landmarks is a tedious task, thus generally the

more annotated landmarks in a database, the less images

we have at our disposal. Using such architecture ensures

that the former (harder) tasks benefits from all the images

annotated with the latter (easier) task. This can be seen as

weakly supervised learning, where images labelled in terms

of coarse markups can help to learn finer alignment tasks.

Also note that as these 1× 1 convolutional layers have very

few parameters, thus a lot of gradient can be backpropagated

down to the U-net backbone and benefit the K prediction

tasks. Finally, as illustrated on Figure 3, we use attention

maps Φ
Lk0

i from markup k0 to provide richer embeddings

for the subsequent stages by applying feature fusion.
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3.3. Feature fusion

In a standard feedforward deep network with S stacked

stages, the i + 1th stage takes an input Ii = F1 that cor-

responds to the embeddings Hi outputted by the previous

stage (with the convention I0 = I the original image). By

contrast, in cascade-based approaches, each stage shall learn

an update to bring the feature points closer to the ground

truth localizations, by using information sampled around

current feature point localizations. Within an end-to-end

fully-convolutional deep network, an analogous statement

would be that the i+ 1th stage shall use a local embedding

F2 that is calculated using information from the original

image I highlighted by landmark-wise attention maps Φ
Lk0

i .

In our method, we aggregate these maps by summing all

the landmark-wise attention maps Mi =
⊕L

l=1 Φ
Lk0

i . Thus,

we can write the feature fusion model for the basic deep

approach as:

F1(I,Hi,Mi) = Hi (4)

and the cascade-like approach as:

F2(I,Hi,Mi) = I ⊙Mi (5)

Where ⊙ denotes the Hadamard product. This fusion

scheme between the input image and the mask only pre-

serves local information, for which the values of Mi are

high. Alternatively, we can reinject the original image I
inside each stage so that it can use global information in

case where the mask Mi is not precise enough or contains

localizations errors (as it is the case early in the cascade):

F3(I,Hi,Mi) = I||(I ⊙Mi) (6)

With || the channel-wise concatenation operation. Fur-

thermore we can also fuse the relevant parts (as highlighted

by mask Mi) of the embedding Hi of the previous stage

U-net to provide the subsequent stages a richer, more se-

mantically abstract information to estimate the landmarks

coordinates:

F4(I,Hi,Mi) = I||(I ⊙Mi)||(Hi ⊙Mi) (7)

Finally, we can aso use global information from not only

the image I , but also from the embeddings Hi:

F5(I,Hi,Mi) = I||(I ⊙Mi)||Hi||(Hi ⊙Mi) (8)

This fusion model is more efficient and is used in De-

CaFA (Figure 2), as it allows using both global and local

information around the estimated landmarks so as to learn

cascade-like alignment in an end-to-end fashion.

3.4. Learning DeCaFA model

DeCaFA models can be trained end-to-end by optimizing

the following loss function w.r.t. parameters of the U-nets

θi and θ
(1)
i , ..., θ

(K)
i for the transfer layers TL1

i , ..., TLK

i re-

spectively, ∀1 ≤ k ≤ K:

L(θ1, θ
(1)
1 , ..., θ

(K)
1 , ..., θS , θ

(1)
S , ..., θ

(K)
S ) =

K
∑

k=1

1

Lk

|ẑLk

S − zLk∗|
(9)

With zLk∗ the ground truth landmark position for a Lk-

landmarks markup. In practice, the summation in equation

(9) have less terms since usually each example is annotated

with only one markup. With this configuration, however, if

the whole network is deep enough, few gradient will ever

pass through the firsts attention maps. Even worse, there

is no guarantee that these feature maps will correspond to

landmark-wise attention maps in the early stages, which is

key to ensure cascade-like behavior of DeCaFA. To ensure

this, we add a differentiable soft-argmax layer after each

spatial softmax and a supervised cost at stage i:

L(θ1, θ
(1)
1 , ..., θ

(K)
1 , ..., θS , θ

(1)
S , ..., θ

(K)
S ) =

S
∑

i=1

λi

K
∑

k=1

1

Lk

|ẑLk

i − zLk∗|
(10)

In practice, we use a L1 loss function, as it has been

shown to overfit less on very bad examples and lead to more

precise results for face alignment. However, we need to

make sure that the (relatively) shallow sub-networks does

not overfit on these losses, which would result in very narrow

heat maps with very localized dominant modes early in the

cascade, and thus an overall lower accuracy. This is ensured

by applying increasing λi weights in (10).

3.5. Implementation details

The DeCaFA models that will be investigated below use

1 to 4 stages that each contains 12 3× 3 convolutional layers

with 64 → 64 → 128 → 128 → 256 → 256 channels for

the downsampling portion, and vice-versa for the upsam-

pling portion. The input images are resized to 128 × 128
grayscale images prior to being processed by the network.

Each convolution is followed by a batch normalization layer

with ReLU activation. In order to generate smooth feature

maps we do not use transposed convolution but bilinear im-

age upsampling followed with 3 × 3 convolutional layers.

The whole architecture is trained using ADAM optimizer

with a 5e−4 learning rate with momentum 0.9 and learning

rate annealing with power 0.9. We apply 400000 updates

with batch size 8 for each database, with alternating updates

between the databases.
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Figure 4. Comparison in terms of Cumulative error distribution (CED) curves on 300W of models with S = 1,2,3 and 4 stages. As we stack

cascade stages, the accuracy increases and saturates after the third/fourth stage.

Figure 5. CED curves for models with K = 1,2 and 3 landmark prediction tasks. Models trained with multiple alignment tasks are

significantly better.

Table 1. NME (%, (lower is better) averaged among 300W-Full,

300W-Challenging, WFLW-All, WFLW-Pose and CelebA datasets.

Fusion task order weights λi avg. NME(%)

F1 chained ↑ 4.83

F2 chained ↑ 5.04

F3 chained ↑ 4.81

F4 chained ↑ 4.80

F5 independant ↓ 5.11

F5 independant = 5.01

F5 independant ↑ 4.75

F5 chained ↓ 5.05

F5 chained = 4.91

F5 chained ↑ 4.69

4. Experiments

In this section, we introduce the face alignment datasets

(Section 4.1). Then, in Section 4.2 we validate hyper-

parameters through ablation study. In Section 4.3 and 4.4

we compare DeCaFA with state-of-the-art approaches for

alignment on still images and video, respectively. Finally,

In Section 4.5 we show that DeCaFA is suitable for weakly-

supervised learning with few finely-annotated examples.

4.1. Datasets

The 300W database [17] contains moderate variations in

head pose, facial expressions and illuminations. It consists in

four databases: LFPW (811 train images / 224 test images),

HELEN (2000 train images / 330 test images), AFW (337

train images) and IBUG (135 test images), for a total of

3148 images annotated with 68 landmarks for training the

models. For comparison with state-of-the art methods, we

refer to LFPW and HELEN test sets as the common subset

and I-BUG as the challenging subset of 300W.

CelebA [11] is a large-scale face attribute database con-

taining 202k images from 10k identities, each annotated

with 5 landmarks (nose, left and right pupils, mouth corners).

In our experiments, we train our models using the train par-

tition that contains 16k images from 8k ids. The test set

contains 20k instances from 1k ids.

The Wider Facial Landmarks in the Wild or WFLW

database [22] contains 10000 faces (7500 for training and

2500 for testing) with 98 annotated landmarks. This database

also features rich attribute annotations in terms of occlusion,

head pose, make-up, illumination, blur and expressions.

The 300VW database [18] is a video alignment database

containing 114 videos making a total of 218,595 frames,

which are divided into three subsets of various difficulty

(categories A, B and C, C being the most challenging).

In what follows, and unless stated otherwise, we train

our models using a concatenation of the train partitions of

300W, WFLW and CelebA, and evaluate on the test partition

of these datasets. As in [25, 16, 30, 29, 15, 14, 24, 7] we

measure the average point-to-point euclidean distance be-

tween feature points (NME), normalized by the inter-ocular

distance (distance between outer eye corners). We also re-

port AUC and failure rates for a maximum error of 0.1, as

well as cumulative error distribution (CED) curves.
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4.2. Ablation study

In this section, we validate the architecture and hyperpa-

rameters of our model: the number of stages S, the number

of landmark prediction tasks K, the fusion and task order-

ing scheme as well as the intermediate supervision weights.

Figure 4 shows CED curves for models with S = 1, 2, 3 and

4 cascade stages. The accuracy steadily increases as we add

more stages, and saturates after the third on LFPW and HE-

LEN, which is a well-known behavior of cascaded models

[25, 16], showing that DeCaFA with weighted intermediate

supervision indeed works as a cascade, by first providing

coarse estimates and refining in the later stages. On IBUG,

this difference is more conspicuous, thus there is room for

improvement by stacking more cascade stages.

Figure 5 shows the interest of chaining multiple tasks,

most notably on LFPW, that contains low-resolution images,

and IBUG, which contains strong head pose variations as

well as occlusions. Coarsely annotated data (5 landmarks)

significantly helps the fine-grained landmark localization, as

it is integrated a kind of weakly supervised scheme. This

will be discussed more thoroughly in Section 4.5.

Table 1 shows a comparison between multiple fusion, task

ordering and intermediate supervision weighting schemes.

We test our model on 300W (full and challenging), WFLW

(All and challenging, i.e. pose subset) as well as CelebA

and report the average accuracy on those 5 subsets. First,

reinjecting the whole input image (F3 - Eq. (6) vs F2 -

Eq. (5)) significantly improves the accuracy, most notably

on challenging data such as 300W-challenging or WFLW-

pose, where the first cascade stages may commit errors. F4 -

Eq. (7) and F3 fusion (cascaded models) using local+global

information rivals the basic deep approach F1 - Eq. (4).

Furthermore, F5 - Eq. (8) fusion, which uses local and

global cues is the best by a wide margin.

Furthermore, chaining the transfer layers (Figure 3-a)

is better than using independant transfer layers (Figure 3-

b): likewise, in such a case, the first transfer layer benefits

from the gradients from the subsequents layer at train time.

Last but not least, using increasing intermediate supervi-

sion weights in Equation (10) (i.e. λ1 = 1/8, λ2 = 1/4,

λ3 = 1/2, λ4 = 1) is better than both using constant weights

( λ1 = λ2 = λ3 = λ4 = 1) and decreasing weights (λ1 = 1,

λ2 = 1/2, λ3 = 1/4, λ4 = 1/8), as it enables proper

cascade-like training, the first stages of the network out-

putting coarse attention maps that are refined later on.

4.3. Comparisons with state-of-the-art methods

Table 3 shows a comparison between DeCaFA and recent

state-of-the-art approaches on 300W database. Our approach

performs better than most existing approaches on the com-

mon subset, and performs very close to its best contenders

on the challenging subset. Note that DeCaFA trained only

on 300W trainset has a NME of 3.69% and is already very

competitive with recent approaches [9, 5, 4, 8], thanks to

its end-to-end cascade architecture. DeCaFA is competitive

with the best approaches, LAB [22] and DAN-MENPO [8]

as well as JMFA-MENPO [3], which also use external data.

Table 2 shows a comparison between our method and

LAB [22] on WFLW database. As in [22] we report the aver-

age point-to-point error on WFLW test partition, normalized

by the outer eye corners. We also report the error on multiple

test subsets containing variations in head pose, facial expres-

sions, illumination, make-up as well as partial occlusions

and occasional blur. DeCaFA performs better than LAB [22]

and Wing [6] by a significant margin on every subset. Also,

note that DeCaFA trained solely on WFLW already has a

NME of 5.01 on the whole test set, which is still better that

these two methods. Lastly, there is room for improvement

on this benchmark as we do not excplicitely handle any of

the factors of variation such as pose or occlusions.

Finally, Table 5 shows a comparison of our method and

state-of-the-art approaches on CelebA. As in [25, 30, 15, 26]

we report the average point-to-point error on the test partition,

normalized by the distance between the two eye centers. Our

approach is the best by a significant margin. Noteworthy,

even though we use auxiliary data from 300W and WFLW,

we do not use data from the val partition of CelebA, contrary

to [15, 26], thus there is significant room for improvement.

Overall, DeCaFA sets a new state-of-the-art on three

databases with several evaluation metrics. Figure 7 pro-

vides qualitative assessment of the alignment quality, as well

as visualizations of the attention maps. In addition, DeCaFA

embraces few parameters (≈ 10M ) compared to state-of-

the-art approaches, and can be run at 32 fps on a GTX1060.

4.4. face alignment on video

Table 6. NME for video alignment on 300VW database.

Method cat. A cat. B cat. C

DSRN [15] 5.33 4.92 8.85

SA [12] 3.85 3.46 7.51

DeCaFA 3.82 3.63 6.67

In this section we evaluate DeCaFA on 300VW video

database. Similarly to the two-steps procedure described in

[6], we train a first 10-layers CNN to correct the bounding

box coordinates on WFLW. Then, for each video, we initial-

ize the bounding box for the first frame using the ground

truth landmarks. For each subsequent frame, we generate a

new bounding box using the landmarks for the last frame and

correct it using the bounding box correction CNN. We then

align the landmarks for this frame using DeCaFA. As shown

in Table 6, DeCaFA is able to outperform recent approaches

on this benchmark, particularly in difficult conditions (cat-

egory C) in terms of NME. It also obtains AUC/FR@0.1

0.633/1.35, outperforming state-of-the-art (0.594/4.57 [1]).
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Table 2. Comparison in terms of NME (lower is better), AUC (higher is better) as well as failure rate (lower is better), on WFLW.

metric method all head pose expression illumination make-up occlusion blur

NME(%) CFSS [30] 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLN [23] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB [22] 5.27 10.24 5.51 5.23 5.15 6.79 6.32

Wing [6] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

DeCaFA 4.62 8.11 4.65 4.41 4.63 5.74 5.38

AUC@0.1 CFSS [30] 0.366 0.063 0.316 0.385 0.369 0.269 0.303

DVLN [23] 0.456 0.147 0.389 0.474 0.449 0.379 0.397

LAB [22] 0.532 0.235 0.495 0.543 0.539 0.449 0.463

Wing [6] 0.554 0.310 0.496 0.541 0.558 0.489 0.492

DeCaFA 0.563 0.292 0.546 0.579 0.575 0.485 0.494

FR@0.1(%) CFSS [30] 20.56 66.26 23.25 17.34 21.84 32.88 23.67

DVLN [23] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB [22] 7.56 28.83 6.37 6.73 7.77 13.72 10,74

Wing [6] 6.00 22.70 4.78 4.30 7.77 12.50 7.76

DeCaFA 4.84 21.4 3.73 3.22 6.15 9.26 6.61

Table 3. NME (%) comparison on 300W.

Method Com. Chall. full

PCD-CNN [9] 3.67 7.62 4.44

CPM+SBR [5] 3.28 7.58 4.10

SAN [4] 3.34 6.60 3.98

DAN [8] 3.19 5.24 3.59

LAB [22] 2.98 5.19 3.49

DAN-MENPO [8] 3.09 4.88 3.44

DeCaFA 2.93 5.26 3.39

Table 4. AUC and FR(%) @0.1 on 300w.

Method AUC FR

CFSS [30] 49.87 5.08

Densereg+MDM [1] 52.19 3.67

JMFA [3] 54.9 1.00

JMFA-MENPO [3] 60.7 0.33

LAB [22] 58.9 0.83

DeCaFA 66.1 0.15

Table 5. NME (%) on CelebA.

Method NME (%)

SDM [25] 4.35

CFSS [30] 3,95

DSRN [15] 3.08

AAN [26] 2.99

DeCaFA 2.10

4.5. Weakly supervised learning

We also study how DeCaFA learns in a weakly super-

vised (WSL) context using examples by using only a small

fraction of 300W (100/500 images, 3% and 15% of trainset)

and WFLW (100/500 images, 1% and 6% of trainset) and

the whole CelebA trainset, reporting results on 300W and

WFLW testsets on Figure 6. Using CelebA improves the

accuracy in both cases, most notably when the number of

training images is very low. For instance, DeCaFA trained

with 3% of 300W and 1% of WFLW already outputs decent

fine-grained landmark estimations, as it is better than CFSS

[30] and DVLN ([23], see Table 2) on WFLW. DeCaFA

trained with 15% of 300W and 6% of WFLW is on par with

SAN on 300W ([4], see Table 3), and is better than DVLN

on WFLW. This indicates that WSL involving CelebA sig-

nificantly improves the accuracy for predicting 68 and 98

landmarks. Thus, due to the chaining of multiple transfer

layers, DeCaFA is well suited for WSL and can be trained at

a lower cost with coarsely annotated examples.

5. Conclusion

In this paper, we introduced DeCaFA for face alignment.

DeCaFA unifies cascaded regression and an end-to-end train-

able deep approaches by using landmark-wise attention maps

to select the most relevant regions and intermediate super-

visions with increasing weights to ensure proper cascaded

alignment. By chaining multiple transfer layers to produce

attention maps corresponding to different alignment tasks,

DeCaFA benefits from heterogeneous data. We empirically

show that DeCaFA significantly outperforms state-of-the-art

approaches on 300W, CelebA and WFLW databases. In

addition, DeCaFA is very modular and is suited for weakly

supervised learning using coarsely annotated data.

Future work will consist in integrating other sources of

data, or possibly other representations and tasks, such as

head pose estimation, partial occlusion handling, as well as

facial expressions, Action Unit and/or attributes (such as

age or gender estimation) recognition within DeCaFA frame-

work. Furthemore, we will study the application of DeCaFA

to closely related fields, such as human pose estimation.
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Figure 6. % mean error comparison when training with small fraction of the training set and coarsely annotated examples from CelebA.

image Att. map 1 Att. map 4 Estimate ground truth

Ibug databaseWFLW database

image Att. map 1 Att. map 4 Estimate ground truth

Figure 7. From left to right: images, attention maps outputted by stages 1 and 4, alignment results, and ground truth for images from 300W

(I-bug, 68 landmarks) and WFLW (98 landmarks). Notice how the summed attention maps are iteratively refined, and how closely the

predicted landmarks usually matches the ground truth, even under difficult illumination, non-frontal head poses, make-up, or occlusions.
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