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Abstract

Capturing document images with hand-held devices in

unstructured environments is a common practice nowadays.

However, “casual” photos of documents are usually unsuit-

able for automatic information extraction, mainly due to

physical distortion of the document paper, as well as var-

ious camera positions and illumination conditions. In this

work, we propose DewarpNet, a deep-learning approach

for document image unwarping from a single image. Our

insight is that the 3D geometry of the document not only

determines the warping of its texture but also causes the il-

lumination effects. Therefore, our novelty resides on the ex-

plicit modeling of 3D shape for document paper in an end-

to-end pipeline. Also, we contribute the largest and most

comprehensive dataset for document image unwarping to

date – Doc3D. This dataset features multiple ground-truth

annotations, including 3D shape, surface normals, UV map,

albedo image, etc. Training with Doc3D, we demonstrate

state-of-the-art performance for DewarpNet with extensive

qualitative and quantitative evaluations. Our network also

significantly improves OCR performance on captured doc-

ument images, decreasing character error rate by 42% on

average. Both the code and the dataset are released 1.

1. Introduction

Paper documents carry valuable information and serve

an essential role in our daily work and life. Digitized doc-

uments can be archived, retrieved, and shared in a conve-

nient, safe, and efficient manner. With the increasing popu-

larity of portable cameras and smartphones, document dig-

itization becomes more accessible to users through picture

taking. Once captured, the document images can be con-

verted into electronic formats, for example, a PDF file, for

further processing, exchange, information extraction, and

content analysis. While capturing images, it is desirable to

∗indicates equal contribution.
1https://www.cs.stonybrook.edu/∼cvl/dewarpnet.html

Figure 1. Document image unwarping. Top row: input images.

Middle row: predicted 3D coordinate maps. Bottom row: pre-

dicted unwarped images. Columns from left to right: 1) curled,

2) one-fold, 3) two-fold, 4) multiple-fold with OCR confidence

highlights in Red (low) to Blue (high).

preserve the information on the document with the best pos-

sible accuracy – with a minimal difference from a flatbed-

scanned version. However, casual photos captured with mo-

bile devices often suffer from different levels of distortions

due to uncontrollable factors such as physical deformation

of the paper, varying camera positions, and unconstrained

illumination conditions. As a result, these raw images are

often unsuitable for automatic information extraction and

content analysis.

Previous literature has studied the document-unwarping

problem using various approaches. Traditional approaches

[26, 46] usually rely on the geometric properties of the pa-

per to recover the unwarping. These methods first estimate

the 3D shape of the paper, represented by either some para-

metric shape representations [9, 47] or some non-parametric

shape representations [35, 45]. After that, they compute the
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Figure 2. Comparison of different datasets. (a) shows the im-

ages from our Doc3D dataset. We show 6 images rendered from

2 meshes here. Each mesh can be rendered with various textures

and illumination conditions. (b) are the synthetic training images

copied from [23]. (c) are the real world test images in [45] .

flattened image from the warped image and the estimated

shape using optimization techniques. A common drawback

of these methods is that they are usually computationally

expensive and slow due to the optimization process. Re-

cent work by Ma et al. [23] proposed a deep learning sys-

tem that directly regresses the unwarping operation from the

deformed document image. Their method significantly im-

proved the speed of document unwarping system. However,

their method did not follow the 3D geometric properties of

the paper warping – training data was created with a set of

2D deformations – and therefore often generate unrealistic

results in testing.

Paper folds happen in 3D: papers with different textures

but the same 3D shape can be unwarped with the same

deformation field. Hence, 3D shape is arguably the most

critical cue for recovering the unwarped paper. Based on

this idea, we propose DewarpNet, a novel data-driven un-

warping framework that utilizes an explicit 3D shape repre-

sentation for learning the unwarping operation. DewarpNet

works in two-stages with two sub-networks: i) The “shape

network” consumes an image of a deformed document and

outputs a 3D-coordinate map which has shown to be suffi-

cient for the unwarping task[45]. ii) The “texture mapping

network” backward maps the deformed document image to

a flattened document image. We train both sub-networks

jointly with regression losses on the intermediate 3D shape

and final unwarping result (Fig. 1). After that, we provide a

“refinement network” that removes the shading effect from

the rectified image, further improving the perceptual quality

of the result.

To enable the training of this unwarping network with

explicit intermediate 3D representation, we create the

Doc3D dataset – the largest and most comprehensive

dataset for document image unwarping to date. We col-

lect Doc3D in a hybrid manner, combining (1) captured 3D

shapes (meshes) from naturally warped papers with (2) pho-

torealistic rendering of an extensive collection of document

content. Each data point comes with rich annotations, in-

cluding 3D coordinate maps, surface normals, UV texture

maps, and albedo maps. In total, Doc3D contains approxi-

mately 100,000 richly annotated photorealistic images.

We summarize our contributions as follows:

First, we contribute the Doc3D dataset. To the best of

our knowledge, this is the first and largest document image

dataset with multiple ground-truth annotations in both 3D

and 2D domain.

Second, we propose DewarpNet, a novel end-to-end

deep learning architecture for document unwarping. This

network enables high-quality document image unwarping

in real-time.

Third, trained with the rich annotations in the Doc3D

dataset, DewarpNet shows superior performance compared

to recent state-of-the-art [23]. Evaluating with perceptual

similarity to real document scans, we improve the Multi-

Scale Structural Similarity (MS-SSIM) by 15% and reduce

the Local Distortion by 36%. Furthermore, we demonstrate

the practical significance of our method by a 42% decrease

in OCR character error rate.

2. Previous Work

Based on how deformation is modeled, the two groups of

prior work on document unwarping are: parametric shape-

based models and non-parametric shape-based models:

Parametric shape-based methods assume that docu-

ment deformation is represented by low dimensional para-

metric models and the parameters of these models can be

inferred using visual cues. Cylindrical surfaces are the

most prevalent parametric models [8, 16, 19, 26, 41, 46].

Other models include Non-Uniform Rational B-Splines

(NURBS) [10, 44], piece-wise Natural Cubic Splines

(NCS) [36], Coon patches [9], etc. Visual cues used for esti-

mating model parameters include text lines [25], document

boundaries [5], or laser beams from an external device [27].

Shafait and Breuel [33] reported several parametric shape

based methods on a small dataset with only perspective and

curl distortions. However, it is difficult for such low dimen-

sional models to model complex surface deformations.

Non-parametric shape-based methods, in contrast, do

not rely on low-dimensional parametric models. Such

methods usually assume a mesh representation for the de-
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Figure 3. Data collection pipeline. I. Workstation. A leveled depth camera mounted on a gantry captures the deformed document. A pin

relief system precisely controls the warping. II. Data processing. We turned the depth map into a point cloud to reconstructed a mesh. With

multiple rendering configurations, we rendered (a) images, (b) albedo maps, (c) UV maps, (d) 3D coordinate maps, (e) Surface normals,

(f) depth maps

formed document paper, and directly estimate the posi-

tion of each vertex on the mesh. Approaches used to es-

timate the vertex positions, include reference images [29],

text lines [21, 35, 39], and Convolutional Neural Networks

(CNNs) [30]. Many approaches reconstruct the mesh from

estimated or captured 3D paper shape information. Notable

examples are point clouds estimated from stereo vision [38],

multi-view images [45], structured light [4], laser range

scanners [47], etc. There is also work on directly using

texture information for this task [11, 24, 43]. However, re-

sorting to external devices or multi-view images makes the

methods less practical. Local text line features cannot han-

dle documents that mix text with figures. Moreover, these

methods often involve complicated and time-consuming op-

timization. Recently, Ma et al. [23] proposed “DocUNet”,

which is the first data-driven method to tackle document un-

warping with deep learning. Compared to prior approaches,

DocUNet is faster during inference but does not always per-

form well on real-world images, mainly because the syn-

thetic training dataset only used 2D deformations.

3. The Doc3D Dataset

We created the Doc3D dataset in a hybrid manner, using

both real document data and rendering software. We first

captured the 3D shape (mesh) of naturally deformed real

document paper. After that, we rendered the images with

real document texture in Blender [1] using path tracing [40].

We used diverse camera positions and varying illumination

conditions in rendering.

A significant benefit of our approach is that the dataset is

created in large scale with photorealistic rendering. Mean-

while, our method generates multiple types of pixel-wise

document image ground truth, including 3D coordinate

maps, albedo maps, normals, depth maps, and UV maps.

Such image formation variations are useful for our task, but

usually harder to obtain in real-world acquisition scenarios.

Compared with the dataset in [23] where 3D deformation

was modeled in 2D only [28], our dataset simulates docu-

ment deformation in a physically-grounded manner. Thus,

it is reasonable to expect that deep-learning models trained

on our dataset will generalize better when testing on real-

world images, compared to models trained on the dataset

of [23]. We visually compare dataset samples in Fig. 2.

3.1. Capturing Deformed Document 3D Shape

3D point cloud capture. Our workstation (Fig. 3 (I)) for

deformed document shape capture consists of a tabletop, a

gantry, a depth camera, and a relief stand. The gantry holds

the depth camera level, facing towards the tabletop, at the

height of 58 cm. At this height, the depth camera captures

the whole document while still preserving deformation de-

tails. The relief stand has 64 individually controlled pins,

raising the height of the document to isolate it from the

tabletop. The height differences make it easier to extract

the document from the background in the depth map. The

stand simulates complex resting surfaces for the document

and also supports the deformed document to maintain curls

or creases.

We used a calibrated Intel RealSense D415 depth cam-

era to capture the depth map. Assuming no occlusion, the

point cloud of the document was obtained via X(3D) =
K−1[i, j, dij ]

T , where dij is the depth value at the pixel

position i, j in the depth map. The intrinsic matrix K was

read from the camera. We averaged 6 frames to reduce zero-

mean noise, and applied Moving Least Squares (MLS) [32]

with a Gaussian kernel to smooth the point cloud.

Mesh creation. We extracted a mesh from the captured

point cloud using the ball pivoting algorithm [3]. The mesh

has ∼130,000 vertices and 270,000 faces covering all ver-

tices. We then subsampled each mesh to a 100 × 100 uni-

form mesh grid to facilitate mesh augmentation, alignment,

and rendering. Due to the accuracy limits of our inexpen-

sive sensor, even a higher resolution mesh grid cannot pro-

vide finer details like subtle creases. Each vertex has a

UV position, to indicate texture coordinates, used for tex-

ture mapping in the rendering step. Assigning (u, v) =
{(0, 0), (0, 1), (1, 0), (1, 1)} to the 4 corner vertices of the
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Figure 4. DewarpNet Framework. I is the input deformed document image. Ic is the I in checkerboard pattern texture. Training Flow is

in black lines. The two black dashed lines refer to the predicted (D̂) and ground-truth (D) unwarped reconstruction patterns. Testing flow

is in red dashed lines. Triangles denote the losses (see Sec. 4.2 for details). C and B are the ground-truth for the 3D coordinates and the

backward mapping respectively.

mesh, we interpolated UV values for all vertices [37].

Mesh augmentation and alignment. To further exploit

each mesh, we first flipped the mesh along the x, y, z
axes respectively resulting in 8 meshes, as well as ran-

domly cropped out 4 small meshes ranging from 65× 65 to

95 × 95 vertices in different aspect ratios. We interpolated

all meshes to the same resolution of 100 × 100. These ad-

ditional meshes significantly increased the diversity of the

dataset. All meshes were aligned to a template mesh by

solving an absolute orientation problem [13] to unify scale,

rotation, and translation. This step ensured that one unique

deformation had one unique 3D coordinate representation.

In total, we generated 40,000 different meshes.

3.2. Document Image Rendering

Configuration. To increase the diversity of the dataset, we

altered the configurations of camera, lighting, and texture

in the rendering process. For each image, the camera was

randomly placed on a spherical cap, with an “up” direc-

tion in [−30◦, 30◦] range. The camera direction was con-

strained within a small area around the virtual world ori-

gin. We rendered 70% of the images using lighting en-

vironments randomly sampled from the 2100 environment

maps in the Laval Indoor HDR dataset [12]. We also ren-

dered 30% of the images under simple lighting conditions

using a randomly sampled point light. The textures on

the mesh were obtained from real-world document images.

We collected 7,200 images of academic papers, magazines,

posters, books, etc., containing a mix of text and figures in

multiple layouts.

Rich annotations. For each image, we generated the 3D

coordinate map, depth map, normals, UV map, and albedo

map. In Sec. 4, we show how we incorporate these ground

truth images into our network.

4. DewarpNet

4.1. Network Architecture

DewarpNet, as shown in Fig. 4, consists of two sub-

networks for learning unwarping: the shape network and

the texture mapping network. Additionally, we propose a

post-processing refinement module for illumination effect

adjustment that visually improves the unwarped images.

DewarpNet takes as input an image of a deformed docu-

ment I ∈ R
h×w×3 and predicts a backward mapping B ∈

R
h×w×2 (h and w are height and width). The mapping B is

a flow field representing an image deformation: each pixel

(x, y) in B represents a pixel position in the input image I.

We use bilinear sampling to sample the pixel value in I to

generate the final unwarped document image D ∈ R
h×w×3.

Shape Network. DewarpNet first regresses the 3D shape

of the input document image. We formulate this regres-

sion task as an image-to-image translation problem: given

an input image I, the shape network translates each pixel of

I into the 3D coordinate map, C ∈ R
h×w×3, where each

pixel value (X,Y, Z) corresponds to 3D coordinates of the

document shape, as shown in Fig. 4. We use a U-Net [31]

style encoder-decoder architecture with skip connections in

the shape network.

Texture Mapping Network. The texture mapping net-

work takes the 3D coordinate map C as input and out-

puts the backward mapping B. In the texture mapping net-

work, we use an encoder-decoder architecture with multiple

DenseNet [14] blocks. This task is a coordinate transforma-

tion from 3D coordinates in C to texture coordinates in B.

We apply Coordinate Convolution (CoordConv) in the tex-

ture mapping network since it was shown to improve the

generalization ability of the network for coordinate trans-

formation tasks [18, 22]. Our experiment shows the effec-

tiveness of this technique in Sec. 5.5.
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Refinement Network. The refinement network serves as

a post-processing component of our system to adjust for

illumination effects in the rectified image. This network

not only enhances perceptual quality of the results, but also

improves OCR performance (Sec. 5.4). We leverage addi-

tional ground-truth information (i.e., surface normals and

albedo maps) in the Doc3D dataset to train the refinement

network. The refinement network has two U-Net [31] style

encoder-decoders as shown in Fig. 5: one is used to predict

the surface normals N ∈ R
h×w×3 given the input image

I; the other takes I and the corresponding N as input and

estimates a shading map S ∈ R
h×w×3. S describes shad-

ing intensity and color. Then we recover the shading free

image A based on an intrinsic image decomposition [2]:

I = A ⊙ S, where ⊙ is the Hadamard product operator.

More details are discussed in the supplementary material.

4.2. Training Loss Functions

The training process has two phases. In the first phase,

the shape network and the texture mapping network are

trained separately for initialization. In the second phase, the

two sub-networks are trained jointly to improve the unwarp-

ing result. For convenience, we denote a predicted variable

as X̂, and its ground-truth as X. The shape network opti-

mizes the loss function (LC) in Eq. 1 on the 3D coordinate

map C defined in Sec. 4.1:

LC = ‖Ĉ−C‖1 + λ‖∇Ĉ−∇C‖1 (1)

where ∇C = ‖(∇xC,∇yC)‖2, ∇xC and ∇yC are the

horizontal and vertical image gradients of C, and λ con-

trols the gradient term’s influence. The image gradient helps

learn high-frequency details such as ridges and valleys of C.

The texture mapping network is trained to minimize LT

in Eq. 2. This loss is defined as a linear combination of the

loss term LB on the predicted backward mapping B̂ and the

loss term LD on the predicted unwarped image D̂:

LT = γ ‖B− B̂‖1
︸ ︷︷ ︸

LB

+δ ‖D− D̂‖2
︸ ︷︷ ︸

LD

(2)

where γ and δ are weights associated to LB and LD.

LD is the reconstruction loss for the unwarped image.

LB is the regression loss of the absolute pixel coordinates.

We optimize both LB and LD to improve unwarping results

(see Sec. 5.5 for ablations).

During training, for each input image I, we apply the cor-

responding ground truth deformation to a regular checker-

board pattern image D, obtaining a checkerboard image Ic.

We use the predicted backward mapping B̂ to unwarp I
c,

obtaining the unwarped checkerboard image D̂ to calculate

LD. The goal of checkerboard texture is to encourage the

consistency of LD across various input images regardless

of the document texture. In other words, two images with

identical deformations should unwarp in the same way irre-

spective of their content, which implies the same LD. Note

that Ic is only used in training.

In the second phase, the shape and texture mapping net-

works are trained simultaneously in an end-to-end manner.

Such joint optimization enables the backward mapping loss

to compensate for imperfections in the shape network. The

objective function L for end-to-end training (Eq. 3) is a

weighted linear combination of LC (3D coordinates) and

LT (texture map).

L = αLC + βLT (3)

For the shading removal refinement task we use ℓ1 loss on

S and Ŝ: LS = ‖S− Ŝ‖1.

4.3. Training Details

We train our models on the Doc3D dataset of 100,000

images, splitting into training and validation sets such that

they have no meshes in common. In the first phase of ini-

tilization training, the texture mapping network takes the

ground truth 3D coordinate map C as input. Later, in the

second phase of joint training, each sub-network is initial-

ized with the best separately trained models. The input to

the texture mapping network is the predicted 3D coordi-

nate map Ĉ from the shape network. B̂ ranges in [−1, 1]
whereas Ĉ ranges in [0, 1].

We apply multiple ways of data augmentation: We re-

place the background of our training data with images from

the Describable Texture Dataset (DTD) [7] and the KTH2b-

tips dataset [6] actively during training. The intensity and

color of each training image are also randomly jittered.

Hyperparameters. Initially, we set λ = 0.2 (Eq. 1)

then increase by 0.2 after every 50 epochs up to 1.0. We

found that γ = 10.0 and δ = 0.5 (Eq. 2) provide adequate

135



Class Deformation Type

(a) Perspective Flat, with perspective warping.

(b) Curled Curved, without creases.

(c) One-Fold One significant crease is visible.

(d) Multi-Fold Multiple creases on the page.

(e) Random-Easy Random folds and some crumples.

(f) Random-Hard Hard crumples, irregular folding.

Table 1. Classification of samples in Doc3D.

reconstruction quality. For joint training we used α = β =
0.5 (Eq. 3). We use the Adam solver [15] with a batch size

of 40, and weight decay of 5 × 10−4. The learning rate is

initially set at 1 × 10−4, and reduced by a factor of 0.5 if

the loss does not reduce for 5 epochs.

5. Experiments

We evaluate our method with multiple experiments on

the 130-image benchmark from [23], and also show qualita-

tive results on real images from [45]. As a baseline, we train

the DocUNet [23] unwarping method on our new Doc3D

dataset. Furthermore, we evaluate OCR performance of our

method from a document analysis perspective. Finally, we

provide a detailed ablation study to show how the use of the

Coordinate Convolutions [22], and the loss LD affect un-

warping performance. Qualitative evaluations are shown in

Fig. 7.

5.1. Experimental Setup

Benchmark. For quantitative evaluation, we classify the

130-image benchmark [23] into six classes indicating six

different levels of deformation complexity (see Table 1).

The benchmark dataset contains various kinds of docu-

ments, including images, graphics, and multi-lingual text.

Evaluation Metrics. We use two different evaluation

schemes based on (a) Image similarity and (b) Optical Char-

acter Recognition (OCR) performance.

We use two image similarity metrics: Multi-Scale Struc-

tural Similarity (MS-SSIM) [42] and Local Distortion (LD)

[45], as quantitative evaluation criteria, following [23].

SSIM computes the similarity of the mean pixel value and

variance within each image patch and averages over all the

patches in an image. MS-SSIM applies SSIM at multiple

scales using a Gaussian pyramid, better suited for the eval-

uation of global similarity between the result and ground-

truth. LD computes a dense SIFT flow [20] from the un-

warped document to the corresponding document scan, thus

focusing on the rectification of local details. The parame-

ters of LD are set to the default values of the implementation

provided by [23]. For a fair comparison, all the unwarped

output and target flatbed-scanned images are resized to a

598400 pixel area, as recommended in [23].

OCR accuracy is calculated in terms of Character Error

Rate (CER). CER is evaluated by calculating the Edit Dis-

tance (ED) [17] between the reference and recognized text.

ED is the total number of substitutions (s), insertions (i)
and deletions (d) to obtain the reference text, given the rec-

ognized text. CER = (s+i+d)/N , where N is the number

of characters in the reference text, which is obtained from

the flatbed scanned document images.

5.2. DocUNet on Doc3D

We present a baseline validation of the proposed

Doc3D dataset by training the network architecture in Do-

cUNet [23] on our dataset – Doc3D. DocUNet is a 3D-

agnostic model. The architecture consists of two stacked

UNets. DocUNet takes a 2D image as input and outputs a

forward mapping (each pixel represents the coordinates in

the texture image). The supervisory signal is solely based

on the ground truth forward mapping. Unlike the proposed

DewarpNet which can directly output the unwarped image,

DocUNet needs several post-processing steps to convert the

forward mapping to the backward mapping (each pixel rep-

resents the coordinates in the warped input image) and

then sample the input image to get the unwarped result.

Results in Table 2 show significant improvement when

we train DocUNet on Doc3D instead of the 2D syn-

thetic dataset from [23]. The significant reduction of LD

(14.08 to 10.85) signals a better local detail rectification.

This improvement is the result of both (1) the Dewarp-

Net architecture and (2) training with a more physically

grounded Doc3D dataset, compared to the 2D synthetic

dataset in [23].

5.3. Test DewarpNet on the DocUNet Benchmark

We evaluate both DewarpNet and DewarpNet(ref ) (i.e.,

DewarpNet augmented with the post-processing refinement

network) on the DocUNet Benchmark dataset. We provide

comparisons on both (1) the overall benchmark dataset (Ta-

ble 2) and (2) each class in the benchmark (Fig. 6). The

latter provides detailed insight into the improvements of

our approach over previous methods. From class (a) to (e),

our model consistently improves MM-SSIM and LD over

the previous state-of-the-art. In the most challenging class

(f), where the images usually exhibit multiple crumples and

random deformations, our method achieves comparable and

slightly better results.

Time Efficiency of DewarpNet. Our model takes 32ms

on average to process a 4K resolution image. Compared to

DocUNet [23] this represents a 125x speed up. Dewarp-

Net directly outputs the unwarped image whereas DocUNet

requires an expensive separate post-processing step.
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Figure 6. Comparison of different methods on deformation classes. We evaluate the results on: i) MS-SSIM (higher is better) and ii)

LD (lower is better); Labels on x-axis correspond to the deformation classes (a)-(f) (as defined in Sec. 5.1).

Method MS-SSIM ↑ LD ↓

DocUNet 0.41 14.08

DocUNet on Doc3D 0.4389 10.90

DewarpNet 0.4692 8.98

DewarpNet (ref ) 0.4735 8.95

Table 2. Comparison of DewarpNet and DocUNet variants on the

DocUNet benchmark, DewarpNet (ref ) is DewarpNet combined

with the refinement network.

Method ED ↓ CER (std) ↓

Original Warped Image 2558.36 0.6178 (0.295)

DocUNet 1975.86 0.4656 (0.263)

DocUNet on Doc3D 1684.34 0.3955 (0.272)

DewarpNet 1288.60 0.3136 (0.248)

DewarpNet (ref ) 1114.40 0.2692 (0.234)

Table 3. OCR comparison between all methods.

Texture Mapping Net. ℓ2 on B̂ SSIM on D̂

w/o CoordConv 4.73× 10−5 0.9260
CoordConv 3.99× 10

−5
0.9281

LB 1.40× 10−4 0.8539
LB + LD 3.99× 10

−5
0.9281

Table 4. Effects of CoordConv and using the LD in the Texture

Mapping Net

5.4. OCR Evaluation

We use PyTesseract (v0.2.6) [34] as the OCR engine to

evaluate the utility of our work on text recognition from im-

ages. The text ground-truth (reference) is generated from

25 images from DocUNet [23]. In all these images, more

than 90% of the content is text. The supplementary mate-

rial contains some samples from our OCR test-set. OCR

performance comparison, presented in Table 3, shows our

method outperforms [23] with a large margin in all metrics.

In particular, DewarpNet reduces CER by 33% compared

to DocUNet, and the refinement network gives a reduction

of 42%.

5.5. Ablation Studies

Coordinate Convolution (CoordConv). We investigate

the effects of CoordConv on texture mapping network per-

formance. The experiment (Table 4) on Doc3D validation

set demonstrates that using CoordConv leads to a 16% ℓ2-

error reduction on B̂ and a slight improvement of SSIM on

D̂ from 0.9260 to 0.9281.

Loss LD. The texture mapping network benefits greatly

from using LD (unwarped visual quality loss). As shown

in Table 4 compared to using the absolute pixel coordinate

loss LB only, using LB + LD significantly reduces the ℓ2
error on B̂ by 71% and improve the SSIM on D̂ by 9%.

5.6. Qualitative Evaluation

For qualitative evaluation, we compare DewarpNet with

DocUNet in Fig. 7 and You et al. [45] in Fig. 8. The method

by [45] utilizes multi-view images to unwarp a deformed

document. Even with a single image, DewarpNet shows

competitive unwarping results.

Additionally, we show that the proposed method is ro-

bust to illumination variation and camera viewpoint changes

in Fig. 9. To evaluate the illumination robustness, we test on

multiple images with a fixed camera viewpoint but different

directional lighting from front, back, left, right of the doc-

ument, and environment lighting. We also test DewarpNet

robustness to multiple camera viewpoints, on a sequence

of multi-view images provided by [45]. Results show that

DewarpNet yields almost the same unwarped image in all

cases.

6. Conclusions and Future Work

In this work, we present DewarpNet, a novel deep

learning architecture for document paper unwarping. Our
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Figure 7. Qualitative comparison of DewarpNet results on Do-

cUNet [23]. Row 1: Original warped images, Row 2: Results of

[23], Row 3: Results of DewarpNet, Row 4: Results of Dewarp-

Net after Shading Removal, Row 5: Flatbed scanned images. Red

overlay markings show structural deformation.

method is robust to document content, lighting, shading,

or background. Through the explicit modeling of 3D

shape, DewarpNet shows superior performance over previ-

ous state-of-the-art. Additionally, we contribute the Doc3D

dataset – the largest and most comprehensive dataset for

document image unwarping, which comes with multiple 2D

and 3D ground truth annotations.

Some limitations exist in our work: First, the inexpen-

sive depth sensor cannot capture fine details of deforma-

tion like subtle creases on a paper crumple. Thus our data

lacks samples with highly complex paper crumple. In fu-

ture work, we plan to construct a dataset with better details

and more complex structures. Second, DewarpNet is rela-

Figure 8. Comparison with You et. al. [45]. Columns from left

to right: 1) Original warped images, 2) Results from [45], 3) De-

warpNet, 4) DewarpNet results after shading removal, 5) Flatbed

scanned images.

Figure 9. DewarpNet robustness. Top two rows : Robustness to

lighting (results shown are after refinement step): Columns 1-4:

Directional light on different sides of the document, i.e. right, left,

top, bottom. Column 5: Environment light. Although the refine-

ment network handles shading quite well, it is unable to remove

the hard shadows. Bottom two rows: Robustness to camera view-

point.

tively sensitive to occlusion: results degrade when parts of

the imaged document are occluded. In future work, we plan

to address this difficulty via data augmentation and adver-

sarial training.
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Cláudio Silva, and Gabriel Taubin. The ball-pivoting algo-

rithm for surface reconstruction. IEEE Transactions on Vi-

sualization and Computer Graphics, 5(4):349–359, 1999. 3
[4] Michael S Brown and W Brent Seales. Document restoration

using 3D shape: A general deskewing algorithm for arbitrar-

ily warped documents. In Proc. ICCV. IEEE, 2001. 3
[5] Huaigu Cao, Xiaoqing Ding, and Changsong Liu. A cylin-

drical surface model to rectify the bound document image.

In Proc. ICCV. IEEE, 2003. 2
[6] Barbara Caputo, Eric Hayman, and P Mallikarjuna. Class-

specific material categorisation. In Proc. ICCV. IEEE, 2005.

5
[7] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy

Mohamed, and Andrea Vedaldi. Describing textures in the

wild. In Proc. CVPR. IEEE, 2014. 5
[8] Frédéric Courteille, Alain Crouzil, Jean-Denis Durou, and

Pierre Gurdjos. Shape from shading for the digitization

of curved documents. Machine Vision and Applications,

18(5):301–316, 2007. 2
[9] Sagnik Das, Gaurav Mishra, Akshay Sudharshana, and Roy

Shilkrot. The Common Fold: Utilizing the Four-Fold to De-

warp Printed Documents from a Single Image. In Proceed-

ings of the 2017 ACM Symposium on Document Engineering,

DocEng ’17, pages 125–128. ACM, 2017. 1, 2
[10] Hironori Ezaki, Seiichi Uchida, Akira Asano, and Hiroaki

Sakoe. Dewarping of document image by global optimiza-

tion. In Proc. ICDAR. IEEE, 2005. 2
[11] David A Forsyth. Shape from texture and integrability. In

Proc. ICCV. IEEE, 2001. 3
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