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Abstract

We address the problem of grounding free-form textual

phrases by using weak supervision from image-caption pairs.

We propose a novel end-to-end model that uses caption-to-

image retrieval as a “downstream” task to guide the process

of phrase localization. Our method, as a first step, infers the

latent correspondences between regions-of-interest (RoIs)

and phrases in the caption and creates a discriminative

image representation using these matched RoIs. In the sub-

sequent step, this learned representation is aligned with the

caption. Our key contribution lies in building this “caption-

conditioned” image encoding which tightly couples both the

tasks and allows the weak supervision to effectively guide

visual grounding. We provide extensive empirical and qual-

itative analysis to investigate the different components of

our proposed model and compare it with competitive base-

lines. For phrase localization, we report improvements of

4.9% and 1.3% (absolute) over prior state-of-the-art on the

VisualGenome and Flickr30k Entities datasets. We also re-

port results that are at par with the state-of-the-art on the

downstream caption-to-image retrieval task on COCO and

Flickr30k datasets.

1. Introduction

We focus on the problem of visual grounding which in-

volves connecting natural language descriptions with image

regions. Supervised learning approaches for this task en-

tail significant manual efforts in collecting annotations for

region-phrase correspondence [29, 39]. Therefore, in this

work, we address the problem of grounding free-form textual

phrases under weak supervision from only image-caption

pairs [20, 37, 40, 45].

A key requirement in such a weakly supervised paradigm

is a tight coupling between the task for which supervision is

⋆A major part of this work was done by S. Datta when he was an intern

at SRI International, Princeton, NJ

Figure 1: This figure⋆⋆ shows a high-level overview of the proposed

Align2Ground model which learns to ground phrases by using weak

supervision from image-caption pairs. It first matches the phrases

with local image region, aggregates these matched RoIs to generate

a caption-conditioned image representation. It uses this encoding

to perform image–caption matching.

available (image-caption matching) and the task for which

we do not have explicit labels (region-phrase matching).

This joint reasoning ensures that the supervised loss from

the former is able to effectively guide the learning of the

latter.

Recent works [20, 21] have shown evidence that operating

under such a paradigm helps boost performance for image-

caption matching. Generally, these models consist of two

stages: (1) a local matching module that infers the latent

region-phrase correspondences to generate local matching

information, and (2) a global matching module that uses

this information to perform image-caption matching. This

setup allows phrase grounding to act as an intermediate and a

prerequisite task for image-caption matching. It is important

to note that the primary objective of such works has been on

image-caption matching and not phrase grounding.

An artifact of training under such a paradigm is the ampli-

fication of correlations between selective regions and phrases.

⋆⋆“Young girl holding a kitten” by Gennadiy Kolodkin is licensed under

CC BY-NC-ND 2.0.
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For example, a strong match for even a small subset of

phrases in the first stage would translate to a high overall

matching score for the image and the entire caption in the

second stage. As a consequence, the model is able to get

away with not learning to accurately ground all phrases in

an image. Hence, such a strategy is not an effective solution

if the primary aim is visual grounding. Such “cheating” ten-

dencies, wherein models learn to do well at the downstream

task without necessarily getting better at the intermediate

task, has also been seen in prior works such as [11, 23, 31].

We argue that this “selective amplification” behavior is

a result of how the local matching information from the

first stage is transferred to the second stage – via average

pooling of the RoI–phrase matching scores. We address

this limitation by proposing a novel mechanism to relay this

information about the latent, inferred correspondences in a

manner that enables a much tighter coupling between the

two stages. Our primary contribution is the introduction of

a Local Aggregation Module that takes the subset of region

proposals that match with phrases and encodes them to get a

caption-conditioned image representation that is then used

directly by the second stage for image-caption matching

(Figure 1). We encode the matched proposal features using a

permutation-invariant set encoder to get the image represen-

tation. Our novelty lies in designing this effective transfer of

information between the supervised and unsupervised parts

of the model such that the quality of image representations

for the supervised matching task is a direct consequence of

the correct localization of all phrases.

Our empirical results indicate that such an enforcement of

the proper grounding of all phrases via caption-conditioned

image representations (Figure 2) does indeed lead to a bet-

ter phrase localization performance (Table 3, 4). Moreover,

we also show that the proposed discriminative representa-

tion allows us to achieve results that are comparable to the

state-of-the-art on the downstream image-caption matching

task on both COCO and Flickr30k datasets (Table 2). This

demonstrates that the proposed caption-conditioned repre-

sentation not only serves as a mechanism for the supervised

loss to be an effective learning signal for phrase ground-

ing, but also does not compromise on the downstream task

performance.

The contributions of our paper are summarized as follows.

• We propose a novel method to do phrase grounding by

using weak supervision from the image-caption match-

ing task. Specifically, we design a novel Local Aggrega-

tion Module that computes a caption-conditioned image

representation, thus allowing a tight coupling between

both the tasks.

• We achieve state-of-the-art performance for phrase lo-

calization. Our model reports absolute improvements

of 4.9% and 1.3% over prior state-of-the-art on Visual

Figure 2: For a given image, we show the regions that match

with phrases from three different query captions, as predicted by

our model. Our proposed Local Aggregator module computes a

caption-conditioned image representation by encoding the features

of only the matched image regions. It is evident that in order for this

representation to do well at image-caption matching, the grounding

of caption-phrases should be proper.

Genome and Flickr30k Entities respectively.

• We also report state-of-the-art results on the (down-

stream) task of caption-to-image retrieval on the

Flickr30k dataset and obtain performance which is com-

parable to the state-of-the-art on COCO.

2. Related Work

Visual-Semantic Embeddings [1, 4, 14, 16, 22, 38, 39]

have been successfully applied to multimodal tasks such as

image-caption retrieval. These methods embed an (entire)

image and a caption in a shared semantic space, and employ

triplet-ranking loss based objectives to fine-tune the metric

space for image-caption matching. [14] further improves this

learned, joint embedding space by using techniques such as

hard negative sampling, data augmentation, and fine-tuning

of the visual features. In addition to these joint embedding

spaces, [39] also proposes a similarity network to directly

fuse and compute a similarity score for an image-caption pair.

In contrast to our proposed model, none of these approaches

reason about local structures in the multimodal inputs i.e.

words/phrases in sentences and regions in images.

The Phrase Localization task involves learning the cor-

respondences between text phrases and image regions from

a given training set of region–phrase mappings [29, 34]. A

major challenge in these tasks is the requirement of ground-

truth annotations which are expensive to collect and prone to

human error. Thus, a specific focus of recent work [6, 37, 40]

for phrase localization has been on learning with limited or

no supervision. For example, [37] learns to leverage the

bidirectional correspondence between regions and phrases

by reconstructing the phrases from the predicted region pro-

posals. However, their learning signal is only guided by the

reconstruction loss in the text domain. [6] improves upon

their work by adding consistency in both the visual and the

text domains, while also adding external knowledge in the

form of distribution of object labels predicted from a pre-

trained CNN. As opposed to using hand-annotated phrases

(as in the above methods), our model directly makes use of
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the readily available, aligned image-caption pairs for visual

grounding.

Some prior works also use supervision from image-

caption training pairs to perform phrase localization [9,

13, 20, 21, 40]. They either rely on using image–caption

matching as a downstream task [13, 20, 21] or use the sen-

tence parse-tree structure to guide phrase localization. [13]

achieves phrase localization by first learning a joint em-

bedding space, and then generating and aggregating top-k

feature maps from the visual encoders (conditioned on the

text encoding) to find the best matching spatial region for a

query phrase. [9, 40] propose to use the parse tree structure

of sentences to provide additional cues to guide the model for

phrase localization. Among this family of approaches, our

proposed model is conceptually most similar to Karpathy et

al. [20]. These methods aggregate local region-phrase align-

ment scores to compute a global image-caption matching

score. As noted in Section 1, such a strategy is able to cor-

rectly match an image-caption pair without actually learning

to ground all phrases inside the caption leading to a subopti-

mal visual grounding. Our proposed model tackles this issue

by by directly using the matched RoIs to build a discrimi-

native image representation which is able to tightly couple

the phrase localization task with the supervised downstream

task.

Our work is also closely related to [33] where they not

only map images and captions, but also phrases and regions

in the same dense visual-semantic embeddings space. In

contrast, our model provides a clean disentanglement be-

tween the region-phrase and the image-caption matching

tasks, where the first stage of our model localizes the phrases

and the second stage matches images and captions during

training.

3. Approach

We work in a setting where we are provided with a dataset

of image-caption pairs for training. We denote an image and

a caption from a paired sample as I and c respectively. For

each image, we extract a set of R region proposals, also

referred to as Regions-of-Interest (RoIs), using a pre-trained

object detector. We use a pre-trained deep CNN to compute

features for these RoIs and denote them as {xj}
R
j=1, where

xj ∈ R
dv . We perform a shallow parsing (or chunking) of

the caption by using an off-the-shelf parser [10] to obtain P

phrases. We encode each phrase using a Recurrent Neural

Network (RNN) based encoder, denoted as ΦRNN . We

denote the encoded phrases as a sequence (pk)
P
k=1

, where

pk ∈ R
ds and k is a positional index for the phrase in

the caption. Note that we operate in a weakly supervised

regime i.e. during training, we do not assume ground-truth

correspondences between image regions and phrases in the

caption.

During inference, our primary aim is to perform visual

grounding. Given a query phrase p and an image I , the

learned model identifies the RoI that best matches with the

query. We now describe our proposed approach along with

the loss function and the training procedure.

3.1. Align2Ground

We follow the general idea behind prior works that learn

to match images and captions by inferring latent align-

ments between image regions and words/phrases in the cap-

tion [20, 21]. These methods operate under the assumption

that optimizing for the downstream task of ranking images

with respect to captions requires learning to accurately in-

fer the latent alignment of phrases with regions i.e. phrase

grounding. Specifically, these methods [20, 21] match

image-caption pairs by first associating words in the caption

to relevant image regions based on a scoring function. There-

after, they average these local matching scores to compute

the image-caption similarity score, which is used to optimize

the loss. We shall refer to these methods as Pooling-based

approaches due to their use of the average pooling operation.

As discussed earlier, averaging can result in a model that

performs well on the image–caption matching task without

actually learning to accurately ground all phrases.

In contrast to such methods, our proposed model uses a

novel technique that builds a discriminative image represen-

tation from the matched RoIs and uses this representation

for the image-caption matching. Specifically, the image rep-

resentation that is used to match an image with a caption is

conditioned only on the subset of image regions that align se-

mantically with all the phrases in that caption. We argue that

such an architectural design primes the supervision available

from image-caption pairs to be a stronger learning signal for

visual grounding as compared to the standard Pooling-based

methods. This is a consequence of the explicit aggregation of

matched RoIs in our model which strongly couples both the

local and global tasks leading to better phrase localization.

Conceptually, our model relies on three components (see

Figure 3) to perform the phrase grounding and the match-

ing tasks: (1) The Local Matching Module infers the latent

RoI–phrase correspondences for all the phrases in the query

caption, (2) The Local Aggregator Module takes the matched

RoIs (as per the alignments inferred by the previous mod-

ule) and computes a caption-conditioned representation for

the image, and (3) The Global Matching Module takes the

caption-conditioned representation of the image and learns

to align it with the caption using a ranking loss. We now

describe these modules in detail.

The Local Matching module is responsible for inferring

the latent correspondences between regions in an image

and phrases from a caption. We first embed both RoIs and

phrases in a joint embedding space to measure their semantic
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Figure 3: This figure gives a detailed overview of our proposed architecture. The outputs from a Region Proposal Network (RoIs) and the

shallow parser (phrases) are fed into the Local Matching module which infers the latent phrase-RoI correspondences. The Local Aggregator

module then digests these matched RoIs to create a discriminative, caption-conditioned visual representation – which is then used to align

the image-caption pairs in the Global Matching module.

similarity. To do so, we project the RoI xj in the same space

as the phrase embeddings, pk, via a linear projection. We

then measure the semantic similarity, sjk, between region

xj and phrase pk using cosine similarity.

x̂j = W T
l
xj (1)

sjk =
x̂j

T
pk

‖x̂j‖2‖pk‖2
(2)

where Wl ∈ R
dv×ds is the projection matrix.

A straightforward approach to infer the matched RoI for a

phrase is to the select the top scoring box i.e. for a phrase pk
the matched RoI is xj∗ , where j∗ = argmaxj sjk. However,

it has been shown that such a strategy is prone to overfitting

since the model often keeps on choosing the same erroneous

boxes [5]. We also take inspiration from the recent advances

in neural attention, and compute attention weights αjk for

each RoI based on a given phrase. We then generate an

attended region vector as a linear combination of the RoI

embeddings, weighted by the attention weights.

αjk = softmax(sjk)
R
j=1 xc

k =
∑

j

αjkxj (3)

Despite the success of this strategy for other multimodal

tasks, we found that it is not an effective solution for the

given problem. This is because the discriminativeness of

the matched RoI seems to get compromised by the weighted

averaging of multiple matched RoIs during training. We

instead propose to add diversity to the training procedure

by first selecting top-k (k = 3) scoring RoI candidates and

then randomly selecting one of them as the matched RoI for

the query phrase. We observe that this strategy adds more

robustness to our model by allowing it to explore diverse

options during training.

This module returns a list of caption-conditioned RoIs

Icrois = (xc
k)

P
k=1

, where xc
k is the feature vector for the

aligned RoI for phrase pk in caption c.

The Local Aggregator module uses the RoIs matched in

the previous step to generate a caption-conditioned represen-

tation of the image. In contrast to Pooling-based methods,

we explicitly aggregate these RoIs to build a more discrimina-

tive encoding for the image. This idea takes inspiration from

adaptive distance metric learning based approaches [41]

where the learned distance metric (and equivalently, the

embedding space) for computing similarities is conditioned

on the input query. In our case, the image representation

is conditioned on the query caption that we are trying to

measure its similarity with.

We propose to use an order-invariant deep encoder to

aggregate the RoIs [35, 43]. Our choice is motivated by the

assumption of modeling a caption as an orderless collec-

tion of phrases. Such an assumption is justified because a

match between a set of phrases and image regions should

be invariant to the order in which those phrases appear in

the caption. These different orders might be generated by

say, swapping two noun phrases that are separated by a con-

junction such as “and”. We implement this encoder, denoted

as fenc, by using a two-layer Multilayer Perceptron (MLP)

with a mean operation [43]. During experiments, we also

compare our model with a order-dependent encoding by

using a GRU encoder. The caption-conditioned image repre-
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sentation, which encodes of the set of matched RoIs, is then

passed onto the next module. The primary contribution of

this work is this module that build this caption-conditioned

image representation and thus ensures a strong coupling

between the (unsupervised) RoI-phrase matching and the

supervised image-caption matching task.

The Global Matching module uses the caption-conditioned

image encoding obtained from the Local Aggregator module

and aligns it with the query caption. We measure simi-

larity between the proposed image representation and the

query caption by first embeddings the caption c, encoded

by ΦRNN , in the same output space as the image represen-

tation by using a two-layer MLP. We then compute cosine

similarity between the two multimodal representations.

ĉ = MLP (ΦRNN (c)) r̂c = fenc(I
c
rois) (4)

SIc =
ĉT r̂c

‖ĉ‖2‖r̂c‖2
(5)

SIC is the similarity between image I and caption c.

Loss Function: We train our model with max-margin rank-

ing loss that enforces the score between a caption and a

paired image to be higher than a non-paired image and vice-

versa. Similar to Faghri et al. [14], we sample the hardest

negatives in the mini-batch while generating triplets for the

ranking loss.

L = max
c′ /∈CI

(0,m− SIc + SIc′) + max
I′ /∈Ic

(0,m− SIc + SI′c)

(6)

where m is the margin, CI is the set of captions paired with

image I , and Ic is the set of images paired with caption c.

4. Experiments

In this section, we discuss the experimental setup used

to evaluate our model. We first outline the datasets and

the evaluation metrics used to measure performance. We

then provide implementation details for our method and a

couple of relevant prior works that our model is conceptually

related to. Next, we establish the benefits of our model

by reporting quantitative results for the phrase localization

and the caption-to-image retrieval tasks. We follow that

with qualitative results to provide useful insight into the

workings of our model. Finally, we compare our model with

several state-of-the-art methods on both the tasks of phrase

localization and caption-to-image retrieval

4.1. Dataset and Evaluation Metrics

COCO [27] dataset consists of 123, 287 images with 5 cap-

tions per image. The dataset is split into 82, 783 training,

5, 000 validation and 5, 000 test images. Following recent

works [14, 20, 33], we use the standard splits [20] and aug-

ment the training set with 30, 504 images from the validation

set, that were not included in the original 5, 000-image vali-

dation split.

Flick30k [34, 42] dataset consists of 31, 783 images with

5 captions per image. Additionally, the Flickr30k Entities

dataset contains over 275k bounding boxes corresponding

to phrases from the captions. Following prior work, we also

use 1, 000 images each for validation and test set, and use

the remaining images for training.

VisualGenome (VG) [24] dataset is used to evaluate phrase

localization. We use a subset of images from VG that have

bounding box annotations for textual phrases. This subset

contains images that are present in both the validation set of

COCO and VisualGenome and consists of 17, 359 images

with 860, 021 phrases.

Metrics: Since the design of our model uses weak supervi-

sion from image–caption pairs to perform phrase localization,

we evaluate our model on two tasks– (1) phrase localization,

and (2) caption-to-image retrieval (C2I).

For phrase localization, we report the percentage of

phrases that are correctly localized with respect to the

ground-truth bounding box across all images, where cor-

rect localization means IoU ≥ 0.5 [34]. We refer to this

metric as phrase localization/detection accuracy (Det.%).

Prior works on visual grounding have also demonstrated

localization using attention based heat maps [13, 40]. As

such, they use a pointing game based evaluation metric, pro-

posed in [44], which defines a hit if the center of the visual

attention map lies anywhere inside the ground-truth box and

reports the percentage accuracy of these hits. We compare

our model with these prior works by reporting the same

which we refer to as the PointIt% metric on the Visual

Genome and Flickr30k Entities datasets.

For the C2I task, we report results using standard metrics–

(i) Recall@K (R@K) for K = 1, 5 and 10 that measures the

percentage of captions for which the ground truth image

is among the top-K results retrieved by the model, and (ii)

median rank of the ground truth image in the ranked list of

images retrieved by the model. For C2I retrieval experiments,

we train and evaluate our models using both COCO and

Flickr30k datasets.

4.2. Implementation Details

Visual features: We extract region proposals for an image

by using Faster-RCNN [36] trained on both objects and

attributes from VG, as provided by Andreson et al.1 [3]. For

every image, we select the top 30 RoIs based on Faster-

RCNN’s class detection score (after non-maximal suppre-

1https://github.com/peteanderson80/

bottom-up-attention
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COCO Flickr30k

Caption-to-Image retrieval Phrase Caption-to-Image retrieval Phrase

R@1 R@5 R@10 Med r Det.% R@1 R@5 R@10 Med r Det.%

Global 39.3 74.8 86.3 2 12.2 27.1 56.0 68.4 4 8.0
Pooling-based (words) 47.9 81.7 91.0 2 10.7 40.7 71.2 80.9 2 8.4

Pooling-based (phrases) 48.4 81.7 91.2 2 10.8 41.4 71.4 81.2 2 8.9

Align2Ground

P
ro

p
o

se
d

m
o

d
el



















permInv

max 40.3 76.3 87.8 2 14.5 29.1 60.8 72.7 3 11.5
topk 56.6 84.9 92.8 1 14.7 49.7 74.8 83.3 2 11.2
attention 42.8 78.1 89.1 2 10.2 37.9 67.0 77.8 2 6.2

sequence

max 39.4 75.0 87.1 2 14.5 29.9 60.9 72.7 3 11.5
topk 58.4 86.1 93.5 1 14.5 47.9 75.6 83.5 2 11.3
attention 41.9 77.1 88.4 2 9.8 38.2 68.4 78.2 2 5.6

Table 1: Phrase localization and Caption-to-Image retrieval results for models trained on COCO and Flickr30k datasets. Note that we report

phrase localization numbers on VisualGenome in all the cases. We compare our proposed model (permInv-topk) with two prior methods

and with different choices for the Local Matching module (max/topk/attention) and the Local Aggregator module (permInv/sequence) as

discussed in Section 3.

sion and thresholding). 2 We then use RoIAlign [17] to

extract features (dv = 2048-d) for each of these RoIs using

a ResNet-152 model pre-trained on ImageNet [18].

Text features: We perform shallow parsing (also known as

chunking) using the SENNA parser [10] to parse a caption

into its constituent phrases. Shallow parsing of sentences

first identifies the constituent parts (such as nouns, verbs)

of a sentence and then combines them into higher-order

structures (such as noun-phrases and verb-phrases). In our

current work, a phrase generally comprises noun(s)/verb(s)

with modifiers such as adjective(s) and/or preposition(s).

Additionally, we perform post-processing steps based on

some handcrafted heuristics (refer to supplementary for more

details) to get the final set of phrases from the captions.

Both phrases and sentences are encoded by using a 2-

layer, bidirectional GRU [7] with a hidden layer of size 1024
and using inputs from a 300 dimensional word embeddings.

We train the word-embeddings from scratch to allow for a fair

comparison with prior work [10, 22]. We also experimented

with a variant that uses pre-trained GloVe embeddings and

found that the performance is worse than the former.

Prior Works and Align2Ground: We compare our model

with two competing works. The first method, refered to

as Global, embeds both the image and caption in a joint

embedding space and computes their matching score us-

ing cosine similarity [14]. We also implement the Pooling-

based method [20], that computes similarity between image–

caption pairs by summarizing the local region-phrase match-

ing scores. We use our Local Matching module to in-

2We also experimented with other region proposal methods such as

EdgeBoxes and Faster-RCNN trained on COCO, but found this to be much

better.

COCO Flickr30k

R@ R@5 R@10 R@1 R@5 R@10

DVSA [20] 27.4 60.2 74.8 15.2 37.7 50.5
UVS [22] 31.0 66.7 79.9 22.0 47.9 59.3
m-RNN [30] 29.0 42.2 77.0 22.8 50.7 63.1
m-CNN [28] 32.6 68.6 82.8 26.2 56.3 69.6
HM-LSTM [33] 36.1 – 86.7 27.7 – 68.8
Order [38] 37.9 – 85.9 – – –

EmbeddingNet [39] 39.8 75.3 86.6 29.2 59.6 71.7
sm-LSTM [19] 40.7 75.8 87.4 30.2 60.4 72.3
Beans [13] 55.9 86.9 94.0 34.9 62.4 73.5
2WayNet [12] 39.7 63.3 – 36.0 55.6 –

DAN [32] – – – 39.4 69.2 79.1
VSE++ [14] 52.0 – 92 39.6 – 79.5
SCAN [25] 58.8 88.4 94.8 48.6 77.7 85.2

Ours 56.6 84.9 92.8 49.7 74.8 83.3

Table 2: Comparison with the state-of-the-art on the downstream

caption-to-image retrieval task.

fer phrase–region correspondences and then average these

scores. Following the original implementation by Karpathy

et al. [20], we first encode the entire caption using a GRU

and then compute the embeddings for each word by using

the hidden state at the corresponding word index (within that

caption). We refer to this approach as Pooling-based (words).

We also implement a variant that uses phrases, as used in our

method, instead of words (Pooling-based (phrases)). For a

fair comparison we use the same image and text encoders

for the baselines as well as our model.

To highlight the effectiveness of using the proposed topk

scheme for the Local Matching module, we compare it

against both attention and max based methods as discussed
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Table 3: Phrase Localization on Visual Genome

Random Center Linguistic Beans In Ours
(baseline) (baseline) Structure [40] Burgers [13]

17.1 19.5 24.4 33.8 38.7

in Section 3. We also compare the orderless pooling scheme

proposed for the Local Aggregator module with an order-

dependent pooling scheme based on a bidirectional GRU

(2-layer, hidden layer of size 256 units). For the orderless

pooling scheme we use a 2-layer MLP with a hidden layer

of size 256.

We train all models for 60 epochs with a batch size of

32 using the Adam optimizer and a learning rate of 0.0002.

We use a margin of 0.1 for the triplet-ranking loss in all our

experiments. We select the final checkpoints on the basis of

the model’s best performance on a small validation set for

both localization and C2I tasks. We warm-start our model

by initializing it with a model variant that is in spirit simi-

lar to the Pooling-based methods (during our experiments,

we observed that it otherwise takes a long time for it to

converge).

4.3. Quantitative Results

We now report the quantitative performance of prior meth-

ods as well as different design choices within the proposed

model in Table 1. We start by comparing Pooling-based

methods with the Global method. We then discuss the impact

of using the proposed matching and aggregating strategies

against other choices in our model on the phrase localiza-

tion and the C2I tasks. We report all results in absolute

percentage points.

We observe that the Pooling-based (phrases) model

(R@1 = 48.4) performs better on the C2I task than the

Global baseline (R@1 = 39.3) on COCO (with the dif-

ference being even higher for Flickr30k). We also note

that the Pooling-based (phrases) outperforms its counterpart–

Pooling-based (words) that uses words for matching. This

shows that for the C2I task, it is better to represent a caption

as phrases instead of individual words, as used in this work.

We also notice improvements with the use of phrases on the

phrase localization task (Det% +0.1 for COCO and +0.5
Flickr30k)

An interesting observation is that although the Pooling-

based (phrases) method outperforms the Global baseline on

the C2I task, its performance on phrase localization is not

always better than the latter (Det% 10.8 vs. 12.2 for COCO

and 8.9 vs. 8.0 for Flickr30k). As stated in Section 1, this

trend could be explained by the fact that on account of aver-

aging the local matching scores, the Pooling-based methods

are able to achieve good results by selectively amplifying

correspondences between phrases and image regions (e.g. by

assigning high matching scores to visual noun-phrases e.g.

“person”) without learning to accurately ground all phrases

Table 4: Phrase Localization on Flicr30K Entities

Akbari et al. [2] Fang et al. [15] Pooling-based Ours
(prior SoTA) (phrases)

69.7 29.0 65.7 71.0

(and ignoring less visual phrases e.g. “sitting”) in the caption.

Recall that this was one of the motivations that inspired the

design of our proposed Align2Ground model.

The Align2Ground model outperforms Global and

Pooling-based baselines on both the datasets. Specifically,

we see an improvement on the phrase localization perfor-

mance, where our model yields better results than both the

Global (by +2.5 on COCO and +3.3 on Flickr30k) and

the Pooling-based (phrases) (+3.9 on COCO and +2.8 on

Flickr30k) method. We believe that the superior performance

of our model is due to the fact that our architectural design

primes the supervised loss to be a stronger learning signal for

the phrase grounding task as compared to the Pooling-based

methods. We also observe improvements on the C2I task

of 8.2 and 17.3 on COCO compared to the Pooling-based

(phrases) and the Global methods respectively.

From our ablation studies on Align2Ground, we notice

that the performance of our model is significantly influenced

by the choice of our Local Matching module. The topk

scheme consistently outperforms max and attention schemes

for both the datasets. For example, when using topk for

matching phrases with regions (i.e. permInv-topk), we see

an increase (w.r.t. using permInv-max) of 16.3 and 20.6 on

R@1 for COCO and Flickr30k respectively. We also observe

similar trends when using the sequence encoder for encod-

ing the matched RoIs. These results support our intuition

that the introduction of randomness in the RoI selection step

adds diversity to the model and prevents overfitting by pre-

maturely selecting a specific subset of RoIs – a key issue in

MIL [8, 26].

4.4. Qualitative Results

In Figure 4, we show qualitative results of visual ground-

ing of phrases performed by our learned Local Matching

module on a few test image–caption pairs (from COCO and

Flickr30k). From Figure 4, it is evident that our model is able

to localize noun phrases (e.g. “white wall”, “large pizza”) as

well as verb phrases (e.g. “holding”, “standing”) from the

query captions.

In Figure 5, we show qualitative examples of phrase lo-

calization from the VG dataset. We compare results of our

model with those from Pooling-based methods. We observe

that our model is able to correctly localize phrases even when

they appear in the midst of visual clutter. For example, in

image (f), our model is able to ground the phrase “a basket of

fries with tartar sauce”. Another interesting example is the

grounding of the phrase “white and pink flowers above the

desk” in (e) where the Pooling-based method gets confused
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(a) a fork next to

an apple, orange

and onion

(b) cat drinking wa-

ter from a sink in a

bathroom

(c) golden dog walking in snow with

a person cross country skiing the

background

a bath tub

sitting

a sink

a bathroom

(d) a bath tub sitting next to a sink

in a bathroom

(e) a person with a purple shirt

is painting an image of a woman

on a white wall

Figure 4: We show the image regions that are matched with the phrases in the query caption for five image-caption pairs. Our model is able

to effectively learn these correspondences without any phrase level ground-truth annotations during training. Figure best viewed in color.

Figure 5: We show outputs of our method Align2Ground (in orange)

and Pooling-based method (in blue) on the phrase localization

task for a few test images. The ground-truth is shown in red.

Align2Ground is able to clearly localize better than the Pooling-

based model in grounding noun only phrases e.g. (e), (f) as well as

phrases with verbs e.g. (d), (i). Figure best viewed in color.

and grounds the desk instead of the flowers. However, our

model is able to correctly localize the main subject of the

phrase.

4.5. Comparison with state­of­the­art

We compare Align2Ground with state-of-the-art methods

from literature for both the tasks of phrase localization (Table

3, 4) and caption-to-image retrieval (Table 2). For phrase lo-

calization, we outperform the previous state-of-the-art [13],

which uses a variant of the Global method with a novel spa-

tial pooling step, by 4.9% based on the PointIt% metric

on VG. On Flickr30k Entities, we out-perform prior state-

of-the-art [2] with much simpler encoders (ResNet+bi-GRU

v/s PNASNet+ElMo). For the caption-to-image retrieval

task, we also achieve state-of-the-art performance (R@1 of

49.7 vs. 48.6 by [25]) on Flickr30k dataset and get com-

petitive results relative to state-of-the-art (R@1 of 56.6 vs.

58.8 by [25]) on COCO dataset for the downstream C2I task.

These performance gains demonstrate that our model not

only effectively learns to ground phrases from the down-

stream C2I task, but the the tight coupling between these two

also ends up helping the downstream task (C2I retrieval).

5. Conclusion

In this work, we have proposed a novel method for phrase

grounding using weak supervision available from matching

image–caption pairs. Our key contribution lies in design-

ing the Local Aggregator module that is responsible for a

tight coupling between phrase grounding and image-caption

matching via caption–conditioned image representations.

We show that such an interaction between the two tasks

primes the loss to provide a stronger supervisory signal for

phrase localization. We report improvements of 4.9% and

1.3% (absolute) for phrase localization on VG and Flickr30k

Entities. We also show improvements of 3.9% and 2.8%
on COCO and Flickr30k respectively compared to prior

methods. This highlights the strength of the proposed rep-

resentation in not allowiing the model to get away without

learning to ground all phrases and also not compromising

on the downstream task performance. Qualitative visualiza-

tions of phrase grounding shows that our model is able to

effectively localize free-form phrases in images.
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