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Abstract

Deep learning methods have shown promise in unsuper-

vised domain adaptation, which aims to leverage a labeled

source domain to learn a classifier for the unlabeled target

domain with a different distribution. However, such meth-

ods typically learn a domain-invariant representation space

to match the marginal distributions of the source and target

domains, while ignoring their fine-level structures. In this

paper, we propose Cluster Alignment with a Teacher (CAT)

for unsupervised domain adaptation, which can effectively

incorporate the discriminative clustering structures in both

domains for better adaptation. Technically, CAT leverages

an implicit ensembling teacher model to reliably discover

the class-conditional structure in the feature space for the

unlabeled target domain. Then CAT forces the features of

both the source and the target domains to form discrimina-

tive class-conditional clusters and aligns the correspond-

ing clusters across domains. Empirical results demonstrate

that CAT achieves state-of-the-art results in several unsu-

pervised domain adaptation scenarios.

1. Introduction

Deep learning has achieved remarkable performance in a

wide variety of computer vision tasks, such as image recog-

nition [15] and object detection [33]. However, classifiers

trained on specific datasets cannot always generalize ef-

fectively to new datasets owing to the well-known domain

shift problem [5, 43]. Enabling models to generalize from

a source domain to a target domain is usually referred to

as domain adaptation (DA) [1]. In many cases, it is ex-

pensive or difficult to collect annotations on the target do-

main. Learning algorithms attempting to tackle the transfer-

ring problem from a fully labeled source domain to an unla-

beled target domain is called unsupervised domain adapta-

tion (UDA) [10]. UDA is particularly challenging because

the target domain cannot provide explicit information to fa-

cilitate the adaptation of classifiers.
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Figure 1: (Best viewed in color.) Left: The two domains

have diverse modes. Right: The two domains have differ-

ent class imbalance ratios. Existing methods aligning the

marginal distributions while ignoring the class-conditional

structures cannot perform well in these cases. However,

CAT incorporates the discriminative clustering structures

in both domains for better adaptation, thus delivers a more

reasonable domain-invariant cluster-structure feature space

with enhanced discriminative power. See Fig. 3 and Ap-

pendix. A for the learned feature space of real data.

Recently, deep models have been developed with

promise in unsupervised domain adaptation to learn expres-

sive features [45, 7, 22, 20, 44, 23, 37, 39, 36]. These deep

UDA methods mainly focus on matching the source and tar-

get domains via adversarial training [7, 44, 2, 20, 23, 49, 37,

13] or kernelized training [22, 23, 24]. The main hypothe-

sis behind them is that the marginal distributions of the two

domains can be aligned in some feature space learned by

optimizing a deep network, and thus the classifier trained

with source data tends to perform well on the target domain.

Theoretical analysis [1] also shows that minimizing the di-

vergence between the marginal distributions in the learned

feature space is beneficial to reduce the classifier’s error.

However, these methods are not problemless. In clas-

sification, as the classes correspond to different semantics

and different characteristics, the marginal distribution of the

data naturally has a class-conditional multi-modal structure.

Moreover, the modes corresponding to the same class in dif-

ferent domains are not always geometrically similar. Thus,

it is not sufficient for existing deep UDA methods to only

minimize the discrepancy between the marginal distribu-

tions while neglecting their structures, and such methods

tend to fail in challenging cases, such as those in Fig. 1.
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Properly incorporating this fine-grained class-conditional

structure has been shown beneficial in various tasks. For

example, Shi and Sha [40] make the discriminative cluster-

ing assumption which helps to adapt the decision bound-

aries for the source domain to the target domain discrimi-

natively.1 However, one limitation of [40] is that it adopts

a simple linear transformation to learn the feature space,

which cannot effectively extract high-order features from

raw data (e.g., images) as the deep UDA methods. Another

limitation is that [40] builds a nearest neighbor based pre-

diction model, which outputs the prediction of one sample

based on all the source data. Then, the training is not com-

patible with the stochastic training of deep network and has

a high complexity.

In this paper, we present Cluster Alignment with a

Teacher (CAT), a new deep UDA model that incorporates

the class-conditional structures for more effective adapta-

tion. CAT conjoins the complimentary advantages of deep

learning methods and discriminative clustering methods for

UDA. Technically, there are three learning objectives in

CAT. At first, CAT minimizes the supervised classification

loss on the labeled source data and builds a teacher clas-

sifier, i.e. an implicit ensemble of the source classifier, to

provide pseudo labels for unlabeled target data. The under-

lying notion is that the golden classifier trained on source

domain can perform well on a majority of target samples

because of the similarity between the two domains and the

teacher-student paradigm is not sensitive to the false pseudo

labels [16]. To exploit the fine-grained class-conditional

structures in the feature space and address the aforemen-

tioned issues suffered by existing deep UDA methods, CAT

also includes two objectives which depend on the pseudo

labels provided by the teacher classifier. On one hand, for

discriminative learning in both domains, CAT deploys a

class-conditional clustering loss to force the features from

the same class to concentrate together and the features from

different classes to be separated. On the other hand, for

the class-conditional alignment between the two domains,

CAT aligns the clusters which correspond to the same class

but come from different domains via a conditional feature

matching loss. The prediction models used in CAT are a

student deep network and its implicit ensemble (i.e., the

teacher classifier), thus CAT can address the training issues

of [40] and also enjoy the more flexible ability of feature

learning. Furthermore, it is obvious that CAT is compati-

ble to the marginal distribution alignment methods on the

tasks where the source data is similarly distributed as the

target data. The former can provide a fine-grained class-

conditional alignment of domains and the latter can provide

a global alignment of them.

1Besides UDA tasks, previous work [30] has also shown an interesting

exploration of the class-conditional structures for learning deep models

that are robust against adversarial attacks.

We evaluate the proposed CAT through extensive exper-

iments on both synthetic and real-world datasets. Empirical

results show that CAT presents striking performance across

various tasks. In addition, we further combine CAT with the

existing deep UDA methods, and CAT can bias them suc-

cessfully to achieve the discriminative alignment between

domains, establishing new state-of-the-art baselines on pop-

ular benchmarks. In the combined methods, we also pro-

pose a confidence-thresholding technique to filter out low-

confidence target samples (which are likely to be mapped

into incorrect clusters by the marginal distribution align-

ment methods) to enhance the stability of the training.

To summarize, our contributions are three-folds:

• We exploit the discriminative class-conditional struc-

tures of distributions in deep UDA and propose CAT

to achieve better alignment between the source domain

and the target domain.

• CAT is compatible and applicable to the existing UDA

methods which rely on marginal distribution align-

ment.

• Empirically, CAT is not sensitive to hyper-parameters

and can boost the marginal distribution alignment ap-

proaches significantly, achieving new state-of-the-art

across various settings.

2. Related work

Unsupervised domain adaptation has drawn increasing

interests, and has been developed mainly in two directions:

Maximum Mean Discrepancy (MMD) based approaches

and adversarial training based approaches. Tzeng et al. [45]

and Long et al. [22] minimize MMD to match the two do-

mains while [23] proposes to align the joint distributions

of them using Joint MMD criterion. Since the develop-

ment of Generative Adversarial Networks (GANs) [9, 4],

adversarial training has been applied into domain adapta-

tion and fruitful works emerge. Ganin et al. [7] develop

the framework of domain adversarial training and plenty of

works are proposed to improve it by aligning source domain

and target domain better in the feature space [44, 49, 14]

or image space [20]. Zhang et al. [50] successfully ex-

tend RevGrad [7] to consider each domain’s characteristics

using collaborative games. Image to image translation ap-

proaches [8, 2, 13, 34, 28, 39] also play an important role in

the advancement of domain adaptation and demonstrate im-

pressive performance, especially on semantic segmentation

tasks. In addition, Saito et al. [37] propose to align the two

domains using decision boundaries of task-specific classi-

fier. Associative DA [11] proposes an associative loss to

reduce discrepancy between domains and SimNet [31] pro-

poses to use a similarity-based classifier in UDA. Though

the existing methods match the two domains in different

ways, most of them ignore the class-conditional information
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in the alignment procedure, thus hard to attain the objec-

tive of discriminative learning. Conversely, CAT explicitly

discovers classes in the feature space via a teacher model

and hence constructs a more reasonable matching proce-

dure. Concurrently, several works [51, 48] analyze the con-

ditional distribution shift and label distribution shift issues

in UDA theoretically, but only propose limited solutions. In

contrast, we provide a more practical and more powerful

way to solve them.

Using a teacher model for labeling data is inspired by the

impressive consistency-based methods in semi-supervised

learning (SSL) [16, 42]. Recent attempts to apply SSL

techniques in UDA include [6, 41, 46]. CAT differs from

these previous works in that CAT exploits the discrimina-

tive class-conditional structures in both the alignment and

classification procedures while they focus on improving the

classifier for the target domain by implementing the cluster

assumption [3]. CAT imposes a much stronger regulariza-

tion and assists in a better alignment.

3. Methodology

In this section, we first introduce the setting and frame-

work of deep UDA and then present the Cluster Alignment

with a Teacher (CAT). Finally, we discuss about CAT.

3.1. Deep unsupervised domain adaptation

In an UDA task, we are given a set of source sam-

ples Xs = {xi
s}

N
i=1 with labels Ys = {yis}

N
i=1, yis ∈

{1, 2, ...,K} and a set of unlabeled target samples Xt =
{xi

t}
M
i=1. Notably, the two sets of samples are drawn from

different distributions which lead to the domain shift chal-

lenge. Therefore, the UDA algorithms should learn to adapt

the classifier trained on the source domain to the unlabeled

target domain. Deep learning techniques have been intro-

duced into UDA [7, 44, 2, 20, 23, 37, 22, 24] and they

demonstrate remarkable performance across tasks. Gener-

ally, in these methods, the classifier h (parameterized by θ)

is constructed as h = g ◦ f where f maps samples into

features in the space F and g outputs the predictions based

on the extracted features. The learning includes simultane-

ously optimizing the classifier h w.r.t. the labeled source

data and minimizing the distance between the marginal dis-

tributions of the two domains in the feature space F , result-

ing in a domain-invariant feature space. Technically, in the

source domain, we minimize the supervised loss as:

min
θ

Ly(Xs,Ys) =
1

N

N
∑

i=1

ℓ(h(xi
s; θ), y

i
s), (1)

where ℓ is a pre-defined loss, e.g., cross-entropy loss. Mean-

while, we minimize the discrepancy loss as:

min
θ

Ld(Xs,Xt) = D(f(Xs, θ), f(Xt, θ)), (2)

where D is a distance and usually correlated with the H∆H
distance in the error bound theory of DA [1]. The theory re-

veals that the expected error on target samples of any clas-

sifier h drawn from a hypothesis set H has the following

bound [1, 49]:

ǫt(h) ≤ ǫs(h) +
1

2
dH∆H(s, t)

+ min
ĥ∈H

(ǫs(ĥ, ls) + ǫt(ĥ, lt))

≤ ǫs(h) +
1

2
dH∆H(s, t) + ǫt(ls, lt)

+ min
ĥ∈H

(ǫs(ĥ, ls) + ǫt(ĥ, ls)),

(3)

where ǫs(h) denotes the expected error on source samples

of h, and ls and lt represent the labelling functions [1] for

the source and target domains, respectively. ǫt(ls, lt) de-

notes the disagreement between the labelling functions in

the target domain. Notably, min
ĥ∈H(ǫs(ĥ, ls) + ǫt(ĥ, ls))

can be small enough by optimizing ĥ w.r.t. the labeled

source data. The supervised loss and discrepancy loss focus

on minimizing ǫs(h) and dH∆H(s, t) respectively to obtain

small target domain classification error.

However, the methods working in the above framework

are not problemless. Theoretically, they ignore minimizing

ǫt(ls, lt) which may lead to a large upper bound of ǫt(h)
and result in unsatisfying target domain performance [49].

Empirically, the data in classification naturally has a class-

conditional multi-modal structure, thus aligning marginal

distributions while ignoring the fine-level discriminative

structures of domains may hurt the target classification per-

formance (Fig. 1-left). Moreover, these methods may fail

in more practical and challenging problems, e.g. the source

and target domains have obviously different class imbalance

ratios (Fig. 1-right).

3.2. Cluster Alignment with a Teacher

To overcome these issues, we expect to exploit the fine-

level structures in the feature space for discriminative learn-

ing and match the class-conditional distributions of source

and target domains to reduce of the mismatching between

ls and lt. Therefore, in the deep UDA scenario, we propose

Cluster Alignment with a Teacher (CAT), a new deep UDA

model for more effective adaptation. Specifically, for the

objectives of discriminative learning and class-conditional

alignment between domains, we propose a discriminative

clustering loss Lc to force the features of both the source

and the target domains to form discriminative clusters, and

a cluster-based alignment loss La to align the clusters cor-

responding to the same class in different domains. Given

them, we propose to train CAT by solving the following op-

timization problem:

min
θ

Ly + α(Lc + La), (4)
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Figure 2: The framework of CAT (The source supervised

loss Ly is omitted for clarity).

where the hyper-parameter α sets a relative trade-off. The

whole framework is shown in Fig. 2. We build a teacher

classifier, i.e. an implicit ensemble of the classifier to be op-

timized, to provide pseudo labels for the unlabeled target

data. These pseudo labels will be used in Lc and La. We

use stochastically sampled mini-batches in the two objec-

tives and the two classifiers make predictions in a forward-

propagation way, thus CAT can be trained more efficiently

than [40]. Furthermore, Lc and La optimize the feature

space directly and will be more effective than the nearest

neighbor based clustering loss in [40]. We elaborate Lc and

La in the following sections.

3.2.1 Discriminative clustering with a teacher

For better classification and alignment, we propose to dis-

cover the class-conditional structures in the feature space

in both the source and the target domains, and then shape

them to be discriminative clusters. In the source domain,

the class-conditional structure is obvious because the data is

fully labeled. Nevertheless, in the target domain, we cannot

obtain the class-conditional structure easily due to the lack

of labels. The semantic similarity between the two domains

implies that the classifier h trained on the source domain can

predict most of target samples correctly. Consequently, us-

ing pseudo labels [18] as the annotations for target data and

conducting self-training is a direct approach, but it suffers

from the error amplification issue which can be detrimental

to the learning procedure. To discover the class-conditional

structure of the target features in a reliable way, we intro-

duce a teacher classifier h̃ defined as an implicit ensemble

of the previous student classifier h [16] to provide pseudo

labels for target data.

Based on the pseudo labels given by the teacher, we can

explicitly force the target class-conditional structure to be

more discriminative using a clustering loss. For the source

domain, a similar one can be applied. Formally, resembling

the effective SNTG loss in [25], we employ the following

discriminative clustering loss (we omit the dependence of f

on θ for clarity, unless stated otherwise):

Lc(Xs,Xt) = Lc(Xs) + Lc(Xt), (5)

Lc(X ) =
1

|X |2

|X |
∑

i=1

|X |
∑

j=1

[

δijd
(

f(xi), f(xj)
)

+

(1− δij)max
(

0,m− d
(

f(xi), f(xj)
))]

,

(6)

where d is the distance (e.g., squared Euclidean distance)

between two features, m is a pre-defined margin, and δij is

an indicator function which outputs 1 only if xi and xj have

the same ground truth label (source domain) or teacher-

annotated label (target domain). Lc encourages the fea-

tures from the same class to concentrate together and pushes

the features from different classes far away from each other

with a distance m at least. This loss modifies the structures

in the representation space gradually, and consequently, it

demonstrates a class-conditional cluster structure (as shown

in Sec. 4.4). Note that minimizing Lc is consistent with the

cluster assumption [25] of classifier and benefits the perfor-

mance of classification.

It’s a common doubt whether the incorrect predictions

of the teacher classifier would destroy the training dynam-

ics. However, previous works on semi-supervised learn-

ing [16, 42] have validated that this kind of training al-

ways leads to good convergence and demonstrates robust-

ness against incorrect labels. Intuitively, the teacher in-

structs the training of one instance through a bundle of oth-

ers’ predictions which alleviates the negative influence of

incorrect predictions notably and aids the student to give

better predictions.

3.2.2 Cluster alignment via conditional feature match-

ing

Once the feature space presents discriminative cluster struc-

ture, the classifier is expected to make more accurate predic-

tions. However, the label predictor g trained on source do-

main features may fail due to the geometrical mismatching

between the clusters which correspond to the same class in

different domains. This kind of mismatching is brought by

the individual characteristics of each domain. As a result,

it is necessary to impose a class-conditional alignment of

two domains to learn better domain-invariant features and

adjust the target feature space to be more suitable for clas-

sification. Naturally, we expect to minimize the divergence

between the corresponding clusters in source domain and

the teacher-annotated target domain:

min
θ

D(Fs,k||Ft,k), (7)

where Fs,k (Ft,k) denotes the set consisting of all the fea-

tures belonging to class k of domain s (domain t). Exten-

sive previous works [9, 19] have been proposed to minimize
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the distance between two sets of samples but we expect to

achieve this in a more simple and efficient way by exploiting

the separable and tight clusters in the feature space. Draw-

ing inspiration from feature matching GANs [38] which op-

timizes the distance between the first-order statistics of dis-

tributions and demonstrates striking results on SSL tasks,

we choose to extend it to work in a conditional way. For-

mally, we introduce the following cluster alignment loss:

La(Xs,Xt) =
1

K

K
∑

k=1

‖ λs,k − λt,k ‖22, (8)

where λs,k and λt,k are calculated by

λs,k =
1

|Xs,k|

∑

xi
s∈Xs,k

f(xi
s), λt,k =

1

|Xt,k|

∑

xi
t∈Xt,k

f(xi
t)

(9)

where Xs,k is the subset of Xs containing all the source

samples whose ground-truth labels are k and Xt,k is the

subset of Xt including all the target samples annotated as

class k by the teacher classifier h̃. This loss is slightly dif-

ferent from the original feature matching loss: it matches

the statistics of the representation space F which totally

determine the predictions instead of those produced by an

extra critic network. Arguably, the objective has a local op-

tima where class-conditional distributions are matched thor-

oughly. The cluster alignment loss and the discriminative

clustering loss work together to align the class-conditional

structures of the two domains in a discriminative way.

3.2.3 Improved marginal distribution alignment

In fact, the source domain and target domain in the existing

popular UDA tasks (e.g., digits adaptation and Office-31)

have analogous marginal distributions. Therefore, in these

experiments, we combine CAT with the marginal distribu-

tion alignment methods, and CAT contributes to bias them

to match the cluster-based marginal distributions. The nega-

tive effects of these methods of ignoring the discriminability

may hurt the stability of training and the capability of con-

verged models. For example, several target circle samples

in Fig. 1-left will be misclassified by them.

We are dedicated to delivering a technique to improve

these models given the observation that in the early stages of

training, a portion of target samples lie around the decision

boundaries of the adapted classifier, i.e., they have low clas-

sification confidence (the largest output probability) and are

likely to be misclassified. Therefore, these samples are pos-

sible to be mapped into the incorrect clusters in the marginal

alignment process and the training falls into local optima.

To solve this, we propose to use confidence-thresholding

method to hold out uncertain data points with confidence

less than p, while aligning the confident instances which

are more geometrically close to the source domain with the

source data. Formally, we instantiate this technique in the

typical and brief RevGrad [7] and propose robust RevGrad

(rRevGrad) which optimizes the following loss:

min
θ

max
φ

Ld(Xs,Xt) =
1

N

N
∑

i=1

[

log c
(

f(xi
s; θ);φ

)]

+

1

M̃

M̃
∑

i=1

[

log
(

1− c
(

f(xi
t; θ);φ

))

γi
]

, (10)

where c is the critic model parameterized by φ and γi is an

indicator function which outputs 1 only if teacher’s confi-

dence of xi
t is greater than p. With the divergence between

the two domains decreasing, more and more target samples

are selected into the domain adversarial training. Gradually,

almost all the target samples are included in the training

which avoids the lost of target information. We empirically

observed that rRevGrad improves the classification perfor-

mance on the target domain and enhances the stability of

training (see Sec.4).

3.3. Discussion

Comparison with SSL based deep UDA methods [41,

36, 6]. CAT not only implements of cluster assumption

for better classification but also imposes a class-conditional

alignment between domains which is more principal in

UDA. However, [41, 36, 6] focus on improving classifier

to make it more consistent and robust for the target domain

based on cluster assumption. Thus CAT is compatible to

these methods (see Sec. 4).

Comparison with MSTN [49]. The cluster alignment

loss using conditional feature matching technique is similar

to the semantic loss in MSTN [49]. However, in MSTN,

minimizing distance between centers is necessary but not

sufficient to achieve semantic alignment. In CAT, we reg-

ularize the features to form separable and tight clusters, so

the feature matching based loss can match the clusters nat-

urally. They are also different in implementation.

Mini-batch stochastic training of CAT. We implement

the two objectives in CAT using stochastically sampled

mini-batches as Xs and Xt. Specifically, Lc is an instance-

wise loss and can work well. The class-conditional expecta-

tion λs,k or λt,k in Lc could be none when these is no points

belonging to class k. At this time, we remove the term cor-

responding to class k in Eq. 8 and calculate the mean of the

other terms. We empirically find CAT needs only 0.05×
more training time on a GTX 1080Ti when combining with

existing methods.

Teacher-student paradigm. First, using teacher as la-

beling function on target domain avoids the error amplifica-

tion issue. Furthermore, once the classifier becomes more

accurate on the target domain, the teacher classifier per-
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forms better as well. Then the pseudo labels used in Lc

and La are more likely to be correct which in turn enhances

the classifier. Consequently, a boosting cycle between them

is formed.

4. Experiments

To demonstrate the effectiveness of CAT, we evaluate

it through various experiments on synthetic imbalanced

dataset and three challenging UDA tasks: SVHN-MNIST-

USPS, Office-31 [35] and ImageCLEF-DA2. We show that

CAT considers and exploits the fine-level class-conditional

structures of the source and target domains, and makes the

learned feature space discriminative and aligned, thus yield-

ing improved performance on the target domain.

Datasets and configurations. SVHN-MNIST-USPS is a

challenging adaptation task of digits between three datasets

SVHN [29], MNIST [17] and USPS. We conduct experi-

ments in three directions: SVHN→MNIST, MNIST→USPS

and USPS→MNIST. We follow the protocol in [44]: we

use the whole training sets for the adaptation from SVHN

to MNIST and randomly sample 2000 images from MNIST

and 1800 images from USPS for the adaptation between the

two datasets. Following MSTN [49], the images are cast

to 28 × 28 × 1 when using LeNet [17] as classifier. When

combining with MCD [37] and VADA [41], We take the

identical settings as the original methods.

Imbalanced SVHN-MNIST-USPS. We randomly sample

1000 instances from class 0 and 100 instances from class 1

from the original source domain and construct a new one.

Then we sample 100 instances from class 0 and 1000 in-

stances from class 1 from the target domain to form a new

target. Therefore, the synthetic adaptation dataset contains

several imbalanced two-class adaptation tasks. The experi-

ment settings are the same as those of SVHN-MNIST-USPS.

Office-31 and ImageCLEF-DA are two real-world

datasets which are widely used in domain adaptation re-

search. Office-31 is composed of three domains: Amazon

(A), DSLR (D) and Webcam (W), containing 2817, 498 and

795 images from 31 categories, respectively. ImageCLEF-

DA includes three domains: Caltech-256 (C), ImageNet

ILSVRC 2012 (I) and Pascal VOC 2012 (P), containing 600

images from 12 classes, respectively. We use data augmen-

tation such as random flipping and cropping in training for

fair comparison with the baselines.

Implementation. In synthetic and digits experiments

using LeNet, we set m = 30 according to the perfor-

mance of CAT on the synthetic dataset and we forward-

propagate a target sample twice under different perturba-

tions(i.e., dropout) and use the latter as the prediction of the

teacher for its simplicity (similar with the Π model of [16]).

In all the other experiments, we fix m = 3 and deploy a tem-

2Source coda is at https://github.com/thudzj/CAT.

Method SVHN to MNIST MNIST to USPS USPS to MNIST

RevGrad [7] 27.4± 6.3 26.7± 2.0 17.9± 1.4
MSTN [49] 25.8± 3.6 30.3± 1.0 29.4± 0.5
CAT 100.0± 0.05 100.0± 0.0 99.9± 0.2

Table 1: Summary of domain adaptation results on the im-

balanced digits datasets in terms of test accuracy (%).

poral ensemble [16] of previous predictions of h as teacher

(the accumulation decay constant is set to 0.6). We design

a ramp-up function similar with that of [16] to update α in

experiments using LeNet and set α = 2
1+exp(−10t) − 1 sug-

gested by RevGrad [7] in which t increases linearly from 0

to 1 in the others. We set p = 0.9 in all the experiments

without tuning. Refer to Appendix. E for more details of

the used architectures and optimization settings.

4.1. Experiments on imbalanced SVHN-MNIST-USPS

We first test CAT on the imbalanced SVHN-MNIST-

USPS dataset, a challenging task where the source domains

have 10 : 1 ratio of class imbalance while the target domains

have 1 : 10. We implement CAT and RevGrad [7] based on

the official codes of MSTN [49] using LeNet [17]. The re-

sults are shown in Table 1. We repeat each task 3 times and

report the averaged test accuracy and standard deviation.

It is notable that RevGrad [7] and MSTN [49] fail thor-

oughly owing to their obsession of matching the marginal

distributions. In contrast, CAT gives almost completely cor-

rect predictions for the target domains. This experiment ver-

ifies that existing methods through aligning marginal distri-

butions are restrictive and require the modes corresponding

to the same class but different domains to be geometrically

similar. They are sensitive and fragile in practical tasks.

4.2. SVHN-MNIST-USPS digits datasets

We apply CAT to the popular digits adaptation task

SVHN-MNIST-USPS and compare to the state-of-the-art ap-

proaches in Table 3 (all baseline results are taken from re-

lated literature). CAT, RevGrad+CAT and rRevGrad+CAT

follow the settings of MSTN [49] using the LeNet [17]. We

implement MCD+CAT and VADA+CAT based on the of-

ficial codes of MCD [37] and VADA [41] using their ar-

chitectures instead of LeNet for fair comparison. We only

integrate CAT with the first stage algorithm VADA in DIRT-

T [41] while discarding the fine-tuning stage for simpleness.

There are several conclusions we can make. First,

CAT reveals strikingly improved test accuracy on SVHN to

MNIST task without tuning the hyper-parameters, and CAT

even outperforms MCD [37] and VADA [41] which use

much wider and deeper neural networks thanks to the class-

conditional discriminative alignment between the source

and target domains. This task is the most challenging one

among the three because of the complex samples and the
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Method A to W D to W W to D A to D D to A W to A Avg

ResNet-50 [12] 68.4± 0.2 96.7± 0.1 99.3± 0.1 68.9± 0.2 62.5± 0.3 60.7± 0.3 76.1
DAN [22] 80.5± 0.4 97.1± 0.2 99.6± 0.1 78.6± 0.2 63.6± 0.3 62.8± 0.2 80.4

RevGrad [7] 82.0± 0.4 96.9± 0.2 99.1± 0.1 79.4± 0.4 68.2± 0.4 67.4± 0.5 82.2
JAN [23] 85.4± 0.3 97.4± 0.2 99.8± 0.2 84.7± 0.3 68.6± 0.3 70.0± 0.4 84.3
SimNet [32] 88.6± 0.5 98.2± 0.2 99.7± 0.2 85.3± 0.3 73.4± 0.8 71.8± 0.6 86.2
GenToAdapt [39] 89.5± 0.5 97.9± 0.3 99.8± 0.4 87.7± 0.5 72.8± 0.3 71.4± 0.4 86.5
CAT 91.1± 0.2 98.6± 0.6 99.6± 0.1 90.6± 1.0 70.4± 0.7 66.5± 0.4 86.1
JAN+CAT 94.0± 0.4 96.6± 0.6 100.0± 0.0 88.1± 1.0 68.9± 0.7 69.4± 0.5 86.2
rRevGrad+CAT 94.4± 0.1 98.0± 0.2 100.0± 0.0 90.8± 1.8 72.2± 0.6 70.2± 0.1 87.6

AlexNet [15] 61.6± 0.5 95.4± 0.3 99.0± 0.2 63.8± 0.5 51.1± 0.6 49.8± 0.4 70.1
DDC [45] 61.8± 0.4 95.0± 0.5 98.5± 0.4 64.4± 0.3 52.1± 0.6 52.2± 0.4 70.6
DRCN [8] 68.7± 0.3 96.4± 0.3 99.0± 0.2 66.8± 0.5 56.0± 0.5 54.9± 0.5 73.6
RevGrad [7] 73.0± 0.5 96.4± 0.3 99.2± 0.3 72.3± 0.3 53.4± 0.4 51.2± 0.5 74.3
JAN [23] 74.9± 0.3 96.6± 0.2 99.5± 0.2 71.8± 0.2 58.3± 0.3 55.0± 0.4 76.0
MSTN [49] 80.5± 0.4 96.9± 0.1 99.9± 0.1 74.5± 0.4 62.5± 0.4 60.0± 0.6 79.1
CAT 77.4± 0.1 97.4± 0.1 99.9± 0.1 74.7± 0.1 63.4± 0.2 60.8± 0.6 78.9

JAN+CAT 78.4± 0.5 97.2± 0.2 100.0± 0.0 74.5± 0.5 63.6± 0.4 61.2± 0.6 79.2
rRevGrad+CAT 80.7± 1.6 97.6± 0.1 100.0± 0.0 76.4± 0.6 63.7± 0.5 62.2± 0.4 80.1

Table 2: Accuracy on the Office-31 datasets in terms of test accuracy (%) (ResNet-50 and AlexNet).

Method SVHN to MNIST MNIST to USPS USPS to MNIST

Source Only 60.1± 1.1 75.2± 1.6 57.1± 1.7
DDC [45] 68.1± 0.3 79.1± 0.5 66.5± 3.3
CoGAN [20] - 91.2± 0.8 89.1± 0.8
DRCN [8] 82.0± 0.1 91.8± 0.09 73.7± 0.04
ADDA [44] 76.0± 1.8 89.4± 0.2 90.1± 0.8
LEL [26] 81.0± 0.3 - -

AssocDA [11] 97.6 - -

MSTN [49] 91.7± 1.5 92.9± 1.1 -

CAT 98.1± 1.3 90.6± 2.3 80.9± 3.1

RevGrad [7] 73.9 77.1± 1.8 73.0± 2.0
RevGrad+CAT 98.0± 0.8 93.7± 1.1 95.7± 1.3
rRevGrad+CAT 98.8± 0.02 94.0± 0.7 96.0± 0.9

MCD [37] 96.2± 0.4 94.2± 0.7 94.1± 0.3
MCD+CAT 97.1± 0.2 96.3± 0.5 95.2± 0.4

VADA [41] 94.5 - -

VADA+CAT 95.2 - -

Table 3: Summary of domain adaptation results on the dig-

its datasets in terms of test accuracy (%).

internal class imbalance of SVHN. Second, CAT does not

perform well enough on the other two tasks but when com-

bining with rRevGrad and MCD [37], CAT outperforms the

strong baselines MSTN [49] and MCD [37] with obvious

margins. Third, applying CAT into RevGrad [7], MCD [37]

and VADA [41] can enhance the base methods significantly,

especially on the typical and simple RevGrad [7]. Finally,

rRevGrad+CAT displays higher test accuracy and lower

variance than those of RevGrad+CAT and the advantage is

particularly obvious when the two domains have different

class-conditional structures (e.g., SVHN to MNIST), so we

utilize rRevGrad+CAT on more challenging tasks.

4.3. Experiments on Office-31 and ImageCLEF-DA

We evaluate CAT using two sets of extensive experi-

ments on the widely used Office-31 and ImageCLEF-DA.

They contain more realistic and high-dimensional images,

providing a good complement to the digits adaptation task.

The results are provided in Table 2 and Table 4, respec-

tively. We integrate CAT with rRevGrad and JAN [23] (us-

ing ResNet-50 [12] and AlexNet [15] as the classifiers),

which is sufficient to testify the effectiveness of discrimina-

tive cluster-based alignment and teacher-student paradigm.

We observe that CAT can boost rRevGrad and JAN [23]

significantly, especially on the difficult A to W, A to D

and D to A tasks in Office-31, and the combined mod-

els surpass the strong baselines RevGrad [7] and JAN [23]

by obvious margins. CAT based methods also outperform

MSTN [49] on various tasks substantially which proves the

class-conditional discriminative alignment is superior to the

semantic alignment used by MSTN [49]. The improvement

of test accuracy on most tasks of ImageCLEF-DA shows

that CAT can still work well when the domains are small

containing only 600 images. We further confirm that CAT

can deliver a discriminative and aligned feature space by

visualizing the learned features in the Appendix. A.

4.4. Analysis

Visualization of feature space. We visualize the

features of the two domains learned by the powerful
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Method I to P P to I I to C C to I C to P P to C Avg

ResNet-50 [12] 74.8± 0.3 83.9± 0.1 91.5±0.3 78.0± 0.2 65.5± 0.3 91.2± 0.3 80.7
DAN [22] 74.5± 0.4 82.2± 0.2 92.8± 0.2 86.3± 0.4 69.2± 0.4 89.8± 0.4 82.5

RevGrad [7] 75.0± 0.6 86.0± 0.3 96.2± 0.4 87.0± 0.5 74.3± 0.5 91.5± 0.6 85.0
JAN [23] 76.8± 0.4 88.0± 0.2 94.7± 0.2 89.5± 0.3 74.2± 0.3 91.7± 0.3 85.8
CAT 76.7± 0.2 89.0± 0.7 94.5± 0.4 89.8± 0.3 74.0± 0.2 93.7± 1.0 86.3
JAN+CAT 76.3± 0.8 89.2± 0.8 95.3± 0.7 89.3± 0.3 75.9± 1.1 92.2± 1.3 86.4
rRevGrad+CAT 77.2± 0.2 91.0± 0.3 95.5± 0.3 91.3± 0.3 75.3± 0.6 93.6± 0.5 87.3

AlexNet [15] 66.2± 0.2 70.0± 0.2 84.3± 0.2 71.3± 0.4 59.3± 0.5 84.5± 0.3 73.9
RTN [24] 67.4± 0.3 81.3± 0.3 89.5± 0.4 78.0± 0.2 62.0± 0.2 89.1± 0.1 77.9
RevGrad [7] 66.5± 0.5 81.8± 0.4 89.0± 0.5 79.8± 0.5 63.5± 0.4 88.7± 0.4 78.2
JAN [23] 67.2± 0.5 82.8± 0.4 91.3± 0.5 80.0± 0.5 63.5± 0.4 91.0± 0.4 79.3
MSTN [49] 67.3± 0.3 82.8± 0.2 91.5± 0.1 81.7± 0.3 65.3± 0.2 91.2± 0.2 80.0
CAT 68.3± 0.5 83.6± 0.7 91.3± 0.3 79.1± 0.5 64.0± 0.7 90.9± 0.3 79.5

JAN+CAT 67.8± 0.2 83.7± 0.4 92.3± 0.6 80.8± 0.3 65.8± 0.8 91.1± 0.2 80.3
rRevGrad+CAT 68.6± 0.1 84.6± 0.5 91.9± 0.4 80.8± 0.3 65.6± 0.6 92.5± 0.2 80.7

Table 4: Accuracy on the ImageCLEF-DA datasets in terms of test accuracy (%) (ResNet-50 and AlexNet).

(a) RevGrad (b) rRevGrad+CAT

Figure 3: (Best viewed in color.) (a) Feature space learned

by RevGrad. (b) Feature space learned by rRevGrad+CAT.

The features are projected to 2-D using t-SNE. Blue vio-

let denotes the source domain and the other colors denotes

classes of target domain. See Appendix. A for more results.
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Figure 4: Summary of clustering accuracy(%).

rRevGrad+CAT and RevGrad [7] on the SVHN to MNIST

task using t-SNE [27]. The results are shown in Fig. 3. As

expected, using CAT (Fig. 3b), the features are concentrated

and form tight clusters and those from different classes are

separated. In contrast, the features learned by RevGrad [7]

(Fig. 3a) are more overlapping and less discriminative.

Clustering in the feature space. We further examine

the feature space shaped by CAT and other baselines by

conducting K-means [21] clustering using the aligned fea-

tures. We utilize the trained models to infer the hidden fea-

tures of all the images from two domains. Then the fea-

tures are clustered into k components by K-means in scikit-

learn [47]. We set k as the number of categories. We

greedily set the label of a cluster as the most frequent la-

bel in it to calculate clustering accuracy as shown in Fig. 4.

As expected, the feature spaces learned by rRevGrad+CAT

demonstrate more discriminative cluster structure and this

is consistent with the classification results. Appendix. B, C

and D provide more analyses.

5. Conclusion

In this paper we address the challenges of making better

alignment between domains and advocate to exploit the dis-

criminative class-conditional structures for effective adap-

tation in deep UDA. We propose Cluster Alignment with a

Teacher (CAT) to achieve the objectives of discriminative

learning and class-conditional alignment via a discrimina-

tive clustering loss and a cluster-based alignment loss. CAT

produces a domain-invariant feature space with improved

discriminative power and enhances the performance signif-

icantly. CAT establishes new state-of-the-art baselines on

benchmarks and additional analyses testify its effectiveness.
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