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Abstract

We present a method that tackles the challenge of pre-

dicting color and depth behind the visible content of an im-

age. Our approach aims at building up a Layered Depth

Image (LDI) from a single RGB input, which is an effi-

cient representation that arranges the scene in layers, in-

cluding originally occluded regions. Unlike previous work,

we enable an adaptive scheme for the number of layers

and incorporate semantic encoding for better hallucination

of partly occluded objects. Additionally, our approach is

object-driven, which especially boosts the accuracy for the

occluded intermediate objects. The framework consists of

two steps. First, we individually complete each object in

terms of color and depth, while estimating the scene lay-

out. Second, we rebuild the scene based on the regressed

layers and enforce the recomposed image to resemble the

structure of the original input. The learned representation

enables various applications, such as 3D photography and

diminished reality, all from a single RGB image.

1. Introduction

Completing a scene beyond the partial occlusion of its

components is a strongly desired property for many com-

puter vision applications. For instance, in robotic manip-

ulation, the ability to see the full target object despite the

presence of occluding elements can lead to a more success-

ful and precise grasping. In the autonomous driving context

the estimation of the full profile and location of potential

obstacles occluded by the car in front of us would prove

useful to increase the robustness of the trajectory planning

and safety control.

Scene completion beyond occlusion is important not just

to improve higher-level perception systems, but also to en-

hance the fruition of captured visual data. 3D photography

uses image content behind occlusion to enhance the user

experience while looking at a photo by synthesizing novel

unseen views. When changing the vantage point the picture

was originally taken from, the visual content around object

"remove the sofas"novel view

input image
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object-wise layers layout layer

a) b)

Figure 1. Overview of our method and its applications. (Top):

Given a single color image, we infer a layered representation that

consists of a set of RGB and depth images for every object in the

scene, as well as the scene layout. (Bottom): Illustration of two

applications, a) view synthesis and b) object removal.

borders gets dis-occluded, thus enabling the image fruition

to become more immersive. The combination of 3D pho-

tography with a virtual reality (VR) display, such as a Head

Mounted Display (HMD), holds the potential to generate a

visually effective application.

Layered Depth Image (LDI), pioneered by Shade et al.

[35], is a data representation distinctively suitable for the

aforementioned applications. To augment a single view into

a 3D photo, a single depth image is not enough, since it is

not designed to store visual and geometric information be-

yond that of the visible object parts in the scene. On the

other hand, having a fully completed 3D model of the scene

is often an unnecessary complication, since most of the in-

formation present in such model would never be used if

the novel vantage points are either nearby the original one

and/or small in number. It is worth noting that generating

such completed 3D scenes typically comes with high com-

putational and memory cost [51, 11, 37, 44].

Therefore, a layered structure of the original view rep-

resents an interesting trade-off between simplicity in the

representation and capacity of storing all necessary infor-
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mation for these application. Recent works generate such

a data representation either from multi-view [14], or stereo

[50] input, with some variations in the representation. More

adventurous approaches [6, 41] aim to learn an LDI from a

single color image. The motivation is providing a method

that does not rely on the availability of appropriate photo

pairs/sets, so that consumers can reconstruct a 3D photo out

of any image, casually at hand. Both Dhamo et al. [6] and

Tulsiani et al. [41] report results with LDIs having two lay-

ers only (background and foreground).

Intuitively, we are able to guess the complete appearance

of the partially occluded objects we see, using the color in-

formation from the visible parts, together with some object

specific characteristics. Here, we motivate a similar feature

learning process in our proposed framework. Given the ac-

cessibility of state-of-the-art object detectors e.g. Mask R-

CNN [12], we assume that predicted instance masks (partial

visibility map) and class categories are available. The pro-

posed approach is based on object-wise RGB-D completion

followed by a re-composition branch which we call mini-

mum depth pooling, that inspects the reconstruction of the

original image from the layered representation. This im-

proves the depth prediction accuracy, in that it aligns the

visible parts to obtain a global consistency. The proposed

method uses the predicted mask probabilities as an atten-

tion guiding for the appearance of every object, while the

class category predictions aim to induce priors for the ob-

ject completion.

Our work aims to bridge current limitations in LDI pre-

diction from a single image, and relies on four main contri-

butions. First, we propose a flexible extension for a mul-

tiple layer representation, where unlike [41], the number

of layers is not pre-defined in the form of CNN architec-

ture branches. Second, we leverage predictions of seman-

tic identities to perform object-oriented completions, which

are not considered in the generation procedure of previous

methods [6, 41]. Third, we propose a re-composition loss

that is specific to our task. As a fourth contribution, we gen-

erate two datasets suitable for learning layered representa-

tions, which we will publicly release for further research.

We show that our results outperform state-of-the-art

methods in LDI prediction and view synthesis. In addi-

tion, along with view synthesis, our object-level separation

enables a new application, the removal of particular target

objects, in a diminished reality scenario, Fig. 1.

2. Related Work

Recent developments in computer vision, extensively

target the inference of 3D content from monocular 2D im-

ages, either in 2.5D (depth map, normal), object/scene 3D

models and layered representations.

Depth prediction from single view is widely tackled

with CNNs, excluding the first few works that consisted of

hand-engineered features [33, 34] and data-driven methods

[22, 20]. Eigen et al. [8] propose a multi-scale CNN archi-

tecture. Roy and Todorovic [32] propose regression forests

with a shallow CNN on each node. Deeper fully convolu-

tional architectures [23, 21] were later proposed based on

ResNet [13] and DenseNet [15] respectively. Commonly,

Conditional Random Fields (CRFs) [24, 30, 43, 47, 29] are

used to enforce geometrical constraints. Other works ex-

ploit semantics to further boost depth performance [26, 18].

CNNs have been also applied to 3D inference from a sin-

gle color image. A family of methods restrict the output to

a single object 3D model [4, 9, 46, 45]. In contrast, Tulsiani

et al. [40] infer a factored 3D scene model composed of a

layout and a set of object shapes. None of these methods

predicts texture behind occlusion, which is subject of our

approach. Other methods exploit more extended inputs to

predict 3D scene representations, such as a panorama im-

age [51], RGB-D [11] or a depth map [37, 44].

Layered scene representations come in a diversity of

contexts, such as depth ordering of semantic maps [48, 39,

16] and color images [7], motion analysis and optical flow

[42, 38], stereo reconstruction [3], scene decomposition in

depth surfaces [28] and planes [27]. Our focus is on the

Layered Depth Images (LDI) introduced by Shade et al.

[35], which refer to a single view representation of a scene

that contains multiple layers of RGB-D information. This

can be used for efficient image-based rendering on view per-

turbations, to deal with information holes on dis-occlusion.

Hedman et al. [14] use such a representation for 3D photo

capturing from multi-view inputs. Zhou et al. [50] infer a

similar representation from stereo input, that decomposes

an image into sweep planes with fixed depth. Very recent

works, [6, 41] propose LDI prediction from a single RGB

image, which has the practical advantage of enabling the

3D enhancement of any photo, even if additional views or

depth maps are not available. Dhamo et al. [6] automat-

ically generate ground truth data from large-scale datasets

that contain trajectory poses, by warping multiple frames to

a target view, to populate the second layer of the target LDI.

Then, LDIs are learned in a supervised way, formulated as

depth prediction and RGB-D inpainting. Tulsiani et al. [41]

instead, overpass the data limitations by proposing a view

synthesis supervision, where the LDIs are learned in a self-

supervised way.

3. Method

In this Section we detail the proposed multi-layer scene

decomposition method. Section 3.1 presents the rendering

procedure we employ to generate ground truth data. Then,

the following Sections describe the learning model, which

consists of three components: object completion, layout

prediction, and image re-composition. These three stages

are reported in Fig 2, that sketches the overall architec-
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Figure 2. Proposed scene layering framework. Left: While Network A (top) completes the occluded parts for each detected object

instance, to a RGBA-D representation, Network B (bottom) predicts RGBA and depth images for the empty scene. Right: The outputs

are concatenated and fed to the Minimum Depth Pooling (MDP) layer, that recomposes the scene. Instance-wise, the displacement of the

recomposed first layer depth from the ground truth depth is used in the re-composition loss to supervise Network C and give the final result.

ture of our model. Since scenes come with varying levels

of complexity, assuming a fixed, pre-determined number of

layers to represent them tends to limit the flexibility and, as

such, the performance of image decomposition approaches.

We introduce an adaptive model where the number of layers

is dependent on the number of the detected object instances

in the current scene.

3.1. Data generation

LDI prediction from a single image is quite a novel task,

therefore large-scale datasets suitable for deep learning are

not available. To overpass this limitation, one could either

formulate an indirect supervision [41], or investigate ways

to generate ground truth layered image representations [6].

In this work we explore the latter, to investigate the potential

advantage of a rich supervision. Our goal of object-oriented

layer inference implies the need for additional ground truth,

such as RGBA-D representations of every object and layout

of the scene, which we acquire automatically from existing

datasets. Unlike Dhamo et al. [6], we employ a mesh-based

rendering approach. The advantage is that the 3D mesh cap-

tures all the available information in the scene, while an

image-based approach [6] only captures information which

is present in the set of consecutive image frames to be

warped. For every frame, we render the visible instances

separately, similarly to [7]. In addition to the color images

and the visibility masks, we extract depth maps and object

categories for every instance. For this purpose, we utilize

instance annotations, which are available in the 3D meshes,

to separately extract the vertices that belong to each visible

object in every view frame. Structural elements, identified

by their semantic category (floor, walls, ceiling, window)

are grouped together in the layout layer. We make sure that

instances that were not originally visible in a certain view,

are not included in its layered representation. For exam-

ple, we do not want the object from another room (behind

the enclosing wall of the currently visible room) to form

part in the compositional layers of that view. The advantage

of the proposed semantic-aware rendering with respect to

[41, 6] is that it enables learning of class specific features,

which might turn helpful in regressing plausible objects in

the novel LDI layers.

Here, we work with two different datasets, namely

SunCG [37] and Stanford 2D-3D [1]. Both datasets contain

scene meshes together with 2D modalities (color, depth, in-

stances, semantics). The latter suffers from a typical real-

world mesh nuisance, namely the presence of holes and

missing surface parts, which is critical in our task as it leads

to incomplete object renderings behind occlusion. How-

ever, we observed in Stanford 2D-3D [1] fewer such holes

compared to other state-of-the-art large-scale real datasets.

Through a post-processing step, we select a subset of the

rendered layered images, i.e. all those where the amount of

overlap between layers is beyond a threshold, to ensure that

there is enough novel information on dis-occlusion. We use

SunCG [37] for a fair comparison and ablation, given pixel-

perfect ground truth, while Standford 2D-3D [1] demon-

strates applicability in a real world setup.

The generated object and layout layers can be easily ar-

ranged in an LDI representation, using the depth maps to

sort the layers at every pixel location.

3.2. Object Completion

The goal of the object completion branch (Network A,

Fig. 2) is to learn a mapping from an occluded object xc

to the RGB-D representation of it in full visibility y. We
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use a helping mask for each object, as an intuitive prior for

ambiguous problems [9, 7, 6]. In addition, we incorporate

semantic classes so to encourage the model to learn class

specific properties. Therefore, Network A receives the input

RGB image, the predicted mask and class scores of an ob-

ject, and predicts a five-channel output – i.e., the completed

RGBA-D representation of that object. The algorithm is

applied instance-wise, for each available mask. The archi-

tecture details are provided in Section 4. For this task, we

found it more adequate to feed full images in Network A in-

stead of object-focused regions of interest (RoIs). Although

RoI cropping is more efficient, it limits the generation to

a fixed resolution, which mostly affects the texture details

of big objects. In addition, it weakens depth perception, as

it reduces global context and hinders the understanding for

object scaling and extent.

During training, for each ground truth instance mask

we determine the respective prediction from Mask R-CNN

[12]. The match is defined as the highest intersection-over-

union (IoU) between the predicted and ground truth masks.

To avoid wrong correspondences, we discard matches that

have an IoU < 0.3. Utilizing these valid ground truth - pre-

diction pairs, we learn how to complete the occluded part of

the objects in the image. We use an L1 loss on the RGBA-D

predictions ŷ, which is weighted by a relevance map γ

Lcompletion = ||γ(y − ŷ)||1. (1)

The need of γ arises from the fact that the different regions

in the image have different relevance for the object comple-

tion problem. We want to set a higher influence of the loss in

pixels close to the object appearance. First, we set γ = 0.7
in the visible area of the object in the original image includ-

ing a close neighbourhood (by applying a 31 × 31 dilation

in the ground truth mask), γ = 1.5 in the occluded regions

of that object, and γ = 0.2 otherwise. During inference,

each mask and category prediction provided by Mask R-

CNN [12] is fed to the object-completion network together

with the input color image.

Object completion from a single image is a challenging

problem, in that predicting the visible part only might rep-

resent already a relatively good solution and the occluded

parts are not properly learned. The guiding masks are not

pixel perfect, therefore the model has to learn to differenti-

ate between the different object instances along the edges,

concurrently with the original goal of learning plausible ob-

ject completions. Therefore, as additional pre-training stage

to our learning strategy, we aim to encode common object

properties to help our object completion network generate

plausible outputs. In this pre-training stage, we train Net-

work A as an auto-encoder (i.e., in an unsupervised way) on

single RGBA-D object representations

Lauto = ||x− x̂||1, (2)

mask16classes
1
1 4

3 12

64

...

96064

12x16x1024 class and color features

ResNet 50
backbone

RGBA

decoder

Figure 3. Overview of the proposed object completion encoder

architecture. Class probabilities branch (left) and image branch

(right) are concatenated along channels in the bottleneck layer.

where x is the ground truth RGBA-D map and x̂ the auto-

encoded output. For this unsupervised learning part, we use

those object instances that do not touch the image borders to

guarantee visibility on the whole object appearance. Then,

we freeze the decoder (including the bottleneck layer) and

train the encoder for object completion using the supervised

strategy described in eq. (1). Intuitively, this encourages

the occluded objects to share the same latent space as their

respective RGBA-D representation, in full visibility.

3.3. Layout Prediction

The layout branch (Network B in Fig. 2) is designed to

find a mapping between the input RGB image xc and the

corresponding RGB-D scene layout y, i.e. the object-free

representation of the scene.

We employ a fully-convolutional network with skip con-

nections as in [31], whose details are provided in Section 4.

We observed considerable improvement on the depth layout

prediction, when a standard depth map is regressed before-

hand and provided as prior to the layout network. In con-

trast, such input hindered the optimization performance on

the object branch, which we relate with the blurred and inac-

curate object edges on such depth maps. Hence, our model

receives an RGBA image xc, a depth map x̂d predicted via a

CNN (in our experiments we use [23]), as well as the union

of all the predicted instance masks used in Section 3.2. The

mask union is used to give the model a hint on where the

instance-free regions are located, so that it could exploit

them to extrapolate layout features. Unlike the background

inpainting in [6], we do not mask out the non-structural re-

gions of the image. We wish to point out that, since the

masks are simply predictions and not ground truth annota-

tions, they are noisy and can mask out useful content from

the image.

With the goal of predicting visually appealing layouts,

we propose to carry out this task by means of an adversarial

approach [10]. In addition, we want to encourage edge con-

sistency in our generations, as the room contour is an inter-

esting property of the layout. A similar motivation has been

explored in [49], where occlusion boundaries are predicted

as an intermediate step to improve a depth completion task.

Unlike [49], instead of explicitly generating and supervis-

ing edges, we incorporate the perceptual loss Lp from [19].

Both the generated and ground truth layouts are fed in a
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VGG-16 [36] network, pre-trained on ImageNet [5]. Then,

in addition to the standard reconstruction loss Lr, we want

to exploit the L1 distance between the respective feature

maps at a certain layer of the VGG-16 network. We choose

to extract the features from the first VGG block, as we ob-

served that it captures edges as desired. Then, the complete

optimization problem becomes

Llayout = λrLr + λpLp +min
G

max
D

(La) (3)

Lr = ||yc − ŷc||1 + ||yd − ŷd||1 (4)

Lp = ||φ(yc)− φ(ŷc)||1 (5)

La = Exc,yc
[logD(xc, yc)] +Exc

[log(1−D(xc, G(xc)))],
(6)

where yc, yd denote output color and depth respectively, and

φ is the output feature map of the first VGG-16 block. Our

layout prediction shares the definition and motivations of

the one proposed in [40], however they differ in two aspects.

First, we provide a background mask for attention guiding,

and second, we regress an additional texture component.

A full ablation on the improvement of our design choices

is provided as supplementary material.

3.4. Image Re­composition

An important requirement for our method is to regress

layers that are correctly sorted in depth. This means, e.g.

in the case of a scene with a foreground table in front of

a background wall, that the distance between the viewpoint

and the wall should not be smaller than the distance between

the same viewpoint and the table. To implicitly and glob-

ally enforce the depth consistency of all regressed scene

parts and layout, we propose an additional component in

our model that we dub minimum depth pooling (MDP). This

concatenates all the predicted layers (including objects and

layout) and, for every pixel, extracts the RGBA-D from the

layer with the lowest depth. The result of MDP is in the

best case identical to the original input and the correspond-

ing visible depth, together with an index map imap that is

the argmin of depth. This image re-composition strategy en-

forces the predicted multi-layer representation to coherently

encode the structure of the original input image.

Since depth predictors learn a global understanding for

depth, we use a standard predicted depth map x̂d as a prior

for our layer sorting problem. Foe each layer l, we only

keep the region in x̂d in which l is the front structure, using

a binary mask ml, which is one if imap = l, and zero other-

wise. We incorporate a re-composition block (Network C),

that receives the predicted instance depth ŷd,l, concatenated

with the masked x̂d from [22]. Then we learn a set of depth

displacements δl, as the distance between the mean ground

truth yd,l and the mean predicted ŷd,l layer depth (over ml)

δl =

∑
ml ⊙ yd,l∑

ml

−

∑
ml ⊙ ŷd,l∑

ml

, (7)

Lrecompose = ||yδ,l − ŷd,l||1 (8)

where ⊙ is the element-wise multiplication and yδ,l =
ŷd,l + δl is the displaced depth for instance l.

We show in experiments that the proposed MDP-driven

re-composition loss improves not only the visible region of

the objects, but also the occluded parts, given that it allows

the whole layer to shift towards the right direction.

4. Implementation details

In this section, we provide a more detailed description

regarding our architecture choices and implementation.

Network A The object completion network receives two

inputs, the first one being an RGBA image concatenated

with mask confidences, and the second a vector of class

scores, both predicted from Mask R-CNN [12], Fig. 3.

The images are fed into a ResNet-50 [13] backbone, with

the original fully connected layer removed. We append one

more convolution layer with outchannels = 960. The sec-

ond path consists of two deconvolution layers of 64 chan-

nels applied consecutively on the class probabilities, which

is a feature vector whose size equals the number of classes.

Both branch outputs are concatenated along the channels,

followed by layer normalization [2]. The network decoder

consists of five up-projection layers from [23]. The archi-

tectures of the auto-encoder and the object completion net-

work are identical, however, since the input modalities are

partially different, we learn the encoder from scratch instead

of fine-tuning the autoencoder weights.

Network B The layout generator has a U-Net [31] struc-

ture, similar to [17]. The generator G is an architecture with

skip connections consisting of seven convolutions and de-

convolutions, with a stride of two. The number of filters

starts at 64 and is doubled after each convolution. Simi-

larly, the deconvolutions halve the number of feature chan-

nels. Encoder and decoder outputs with the same resolution

are concatenated. The discriminator D consists of 6 con-

volutions followed by a fully connected layer. Here, the

output feature maps contain 64, 128, 256, 512, 512 and 512

channels. All layers in G and D are followed by batch nor-

malization and leaky ReLU. The loss weights are λr = 100
and λp = 25.

Network C The re-composition block is composed of

three 3× 3 convolutions, each followed by ReLU.

Zero-padding around borders LDI representations are

mostly intended for applications that involve a viewpoint

change. As a side effect, the novel image contains empty re-

gions on the borders, when the content was not visible in the

original view. Therefore, we add zero padding to our input

images before feeding them to the framework. Then, dur-

ing inference, the the original view is spanned by predicting

the originally padded surroundings. For the experiments of
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input image 1st layer 1st layer2nd layer 2nd layer

ours ground truth

Figure 4. LDI prediction results on SunCG. Left: The input color image. Center: Our predictions for the first two layers, obtained after

sorting the object-wise layers. Right: Ground truth, as extracted from the mesh-based rendering.

Method
1st layer depth 2nd layer depth 2nd layer RGB

MPE RMSE MPE RMSE MPE RMSE

Tulsiani et al. [41] 1.174 1.687 1.582 2.873 72.70 91.51

Dhamo et al. [6] 0.511 0.832 1.139 1.848 48.57 76.98

Ours, baseline (w/o class scores) 0.551 0.879 0.687 1.120 43.97 66.51

+ class scores 0.508 0.793 0.700 1.090 44.50 65.70

+ Lp 0.496 0.800 0.657 1.095 43.92 66.48

+ Lrecompose 0.473 0.767 0.641 1.071 43.12 65.66

Table 1. Evaluation of LDI prediction on SunCG for the first two layers of depth and the 2nd layer of RGB. We outperform the baselines.

The errors are measured for color range 0− 255 and depth in meters.

this paper, we use padding bands of 16 pixels on the top and

bottom and 12 pixels on the left and right borders.

5. Experiments

In this section, we present qualitative and quantita-

tive evaluations of our method on two public benchmark

datasets: SunCG [37] and Stanford 2D-3D [1]. We merge

the output objects into a layered representation, in accor-

dance with the original LDI idea [35] used in related works

[6, 41]. In each pixel, the first layer represents the first vis-

ible point along the ray-line, the second layer relates to the

next visible surface point and so on. The merging is done

by an extended version of MDP, which sorts the depth of

the object-wise layers, instead of simply returning the min-

imum. In these experiments, we use Mask R-CNN [12]

predictions for the mask and class scores as input to our

framework. For Stanford 2D-3D, we employ a network

trained on the MS-COCO dataset [25]. For our experi-

ments on SunCG, we finetune the network pre-trained on

MS-COCO, using the NYU 40 class categories. As for the

input depth predictions, we use the model from Laina et al.

[23], respectively trained on SunCG and Stanford 2D-3D.

We chose [12] and [23] as common baselines with available

code. We also make this choice for fairness of compari-

son, since [6] also uses [23] to predict the first layer depth.

However, our method is expected to work with various such

models. We evaluate our results on two metrics, Mean Pixel

Error (MPE) and Root Mean Square Error (RMSE). The

measurements for each layer are done separately, since the

difficulty is expected to depend on the layer index.

5.1. Layered representation

SunCG We compare the proposed method against state-

of-the-art work in LDI prediction from a single image on

the SunCG dataset. The comparison with Dhamo et al. [6]

offers insights on the importance of assuming more than

one level of occlusion in the scene. In contrast to their hard

foreground/background separation, our representation sup-

ports more than one level of occlusion (Fig. 4, second row,

desk). On the other end, the comparison with Tulsiani et

al. [41] confirms the performance gain from a rich super-

vision. Since current work only evaluates on a two-layer

LDI, we utilize our first two layers for the purpose of this

experiment. Results on all layers are reported on the sup-

plement. We use the same train and test splits in all these

experiments, with 11k images on the training set and 2k on

the test set. We report results in Table 1. We clearly outper-
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input

ours ground truth

1st layer 1st layer2nd layer 2nd layer

Figure 5. LDI prediction results on Stanford 2D-3D. Left: The input color image. Center: Our predictions for the first two layers,

obtained after sorting the object-wise layers. Right: Ground truth, as extracted from the mesh-based rendering. Black in the color images

and dark blue in the depth maps indicates information holes.

Method
1st layer depth 2nd layer depth 2nd layer RGB

MPE RMSE MPE RMSE MPE RMSE

Tulsiani et al. [41] 0.805 1.088 0.954 1.230 57.42 72.65

Dhamo et al. [6] 0.456 0.676 0.830 1.193 42.92 55.87

Ours w/o Lrecompose 0.509 0.764 0.692 0.993 42.57 55.07

Ours 0.469 0.695 0.688 0.987 42.45 54.92

Table 2. Evaluation of LDI prediction on Stanford 2D-3D. LDI predictions for the first two layers of depth and 2nd layer of RGB. The

errors are measured for color range 0− 255 and depth in meters.

Method SSIM ↑ MPE ↓ RMSE ↓

Tulsiani et al. [41] 0.33 71.36 87.09

Dhamo et al. [6] 0.56 29.01 49.89

Ours 0.65 18.19 34.71

Table 3. View synthesis on SunCG. The synthesized color images

are evaluated in terms of SSIM, MPE and RMSE, in range 0-255.

form [41] and [6] in all metrics, both for color and depth.

Additionally, we wish to point out a qualitative differ-

ence between our depth predictions and [41, 6]. Our method

learns the depths instance-wise, therefore it overcomes the

common problem of many CNN depth predictors repre-

sented by smeared object boundaries (more on the supple-

ment). Sharp object edges are an attractive characteristic

in view synthesis, as opposed to smooth edges, which in

turn, lead to undesired loss of information during warping.

Visual comparisons against these methods are provided in

the supplementary material. Still referring to the results of

Table 1, one can observe an improvement from adding the

class category component, the perceptual loss Lp as well as

our re-composition block, especially for depth.

Stanford 2D-3D Given the data limitations, we extracted

14k images with considerable ground truth coverage, from

which 13k constructs the train set and 1k is kept for the test

set. We follow one of the cross-validation splits suggested

in [1] (area 1,2,3,4,6 vs. area 5a,b). We used the networks

pre-trained on SunCG and fine tuned on the Stanford 2D-

3D dataset. For this transfer, we convert the MS-COCO

classes to NYU 40 to match the categories in our learned

SunCG models. We had to disable the GAN loss for the

Stanford 2D-3D training, since the network was predicting

sparse layouts, trying to mimic a property of the real data.

Table 2 reports the LDI prediction results. Also here, our

method outperforms the baselines for the second layer pre-

diction, which is the main focus of the works. On the first

layer, Dhamo et al. results slightly superior, as our problem

formulation is more sensitive to holes in the ground truth

data and missed detections. However, the results in the syn-

thetic domain encourage further improvement as more com-

plete real datasets become available. In this experiment, we

trained Tulsiani et al. on rendered images, as Stanford 2D-

3D does not provide raw sequential camera trajectories with

high overlap. To ensure that the rendering artifacts do not

hinder the consistency between the views (needed for learn-

ing through view synthesis), we use rendered images for

both the source and the target view (also on test time).

As shown in Fig. 5, the ground truth for the second layer
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"remove the TV"

"remove the lamp"

"remove the person"

input ours ground truth

Figure 6. Illustration of object removal results. The category labels of the left indicate which object should be removed from the original

image. We compare our predicted synthesized images (center) against the ground truth (right).

appears sparse, although as mentioned in Section 3.1 we au-

tomatically select images where information behind occlu-

sion is available. We only consider the subset of available

ground truth pixels for the error measurements.

5.2. View synthesis

Generating novel views is a direct application of a LDI

representation. Therefore, we perform comparisons in this

task. To generate data for this experiment, during the mesh-

based rendering, we perturb the camera poses to obtain tar-

get frames. For the comparison, we use the same data splits

as in the previous experiment. We utilize the layered rep-

resentation learned from [41, 6] and our proposed method,

and apply image-based rendering to synthesize the target

views. We employ a simple rendering approach - basically,

the first layer is warped first, while the following layers fill

the holes left by the first rendering in a sequential manner.

The resulting color images are then compared against the

ground truth target views. Quantitative results are shown in

Table 3. One can clearly observe a better performance of

our method, such as alignment with the target, as witnessed

by the more accurate color and depth in occluded regions.

Fig. 7 illustrates how our method preserves the shapes of

the front objects while rendering.

source target ours Dhamo et al. Tulsiani et al.

Figure 7. View synthesis examples. Left: Source image, i.e. the

input to the proposed method as well as the target image, to be

compared with the predictions. Right: Predicted novel views, us-

ing the LDIs from the proposed method, [6] and [41].

5.3. Object removal

Further, we illustrate the application of our method in

diminished reality, i.e. removal of specific objects from the

scene. We take the layered representation as regressed from

our framework, where each layer consist of an object or lay-

out. Then, we pass an object category, which we want to

be removed from the original image. In this case, we as-

sume fixed input commands of the form ”remove class”,

which satisfies the scope of this work. However, combina-

tions with more advanced natural language processing algo-

rithms would be interesting to explore. Fig. 6 shows a few

examples of this application. We observe that our method

predicts plausible shapes for partly occluded objects, even

when considerable fractions of them are missing.

6. Conclusions

We addressed the timely problem of inferring a layered

representation of a scene, where only a single image is

known. The proposed model enables a flexible number of

output layers, i.e. adapts to the scene complexity. We have

shown that the method outperforms previous works, espe-

cially targeting the occluded regions. Semantic information

was incorporated, which has shown to improve the object

completion performance. There is still a number of chal-

lenges that need to be addressed for further improvement,

such as making the textures crisp and realistic, combining

the advantages of global and local context with a view to

efficiency, or exploiting spatial relations between objects.
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