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Abstract

In this paper, we propose a novel and specially designed
method for piecewise dense monocular depth estimation in
dynamic scenes. We utilize spatial relations between neigh-
boring superpixels to solve the inherent relative scale ambi-
guity (RSA) problem and smooth the depth map. However,
directly estimating spatial relations is an ill-posed prob-
lem. Our core idea is to predict spatial relations based
on the corresponding motion relations. Given two or more
consecutive frames, we first compute semi-dense (CPM)
or dense (optical flow) point matches between temporally
neighboring images. Then we develop our method in four
main stages: superpixel relations analysis, motion selec-
tion, reconstruction, and refinement. The final refinement
process helps to improve the quality of the reconstruction
at pixel level. Our method does not require per-object seg-
mentation, template priors or training sets, which ensures
flexibility in various applications. Extensive experiments
on both synthetic and real datasets demonstrate that our
method robustly handles different dynamic situations and
presents competitive results to the state-of-the-art methods
while running much faster than them.

1. Introduction

Dense monocular depth estimation in complex dynamic
scenes has been a popular but challenging topic in computer
vision for many years. It is widely adopted as an important
step in many practical applications such as robot navigation
[6], scene understanding [8], saliency detection [22], etc.
However, real-world scenes usually consist of complex mo-
tion models, including rigid background, moving vehicles,
non-rigid pedestrians and so on. Traditional structure-from-
motion (SFM) methods [9, 23] fail to reconstruct moving
objects due to the inherent RSA problem [16], as explained

Figure 1. Results of our method for two-frame reconstruction. (a)
is the input image pair. (b) is the ground truth depth map. (c)
demonstrates the predicted spatial relations between neighboring
superpixels. Green lines represent coplanar, blue lines represent
hinge, black lines represent crack. (d) demonstrates the motion
selection process. Reliable static superpixels (labelled blue) are
used to identify camera motion. Furthermore, their scales are fixed
and they are used as references to estimate the scales of remaining
superpixels. (e) demonstrates the result of MVG [9]. (f) is the final
result of our method.

in Figure 2. Therefore, efficient and effective frameworks
that can handle dynamic scenes are of great need.
Recently, two methods called DMDE [25] and S.Soup
[16] achieved state-of-the-art performance on depth estima-
tion on MPI Sintel [2] and KITTI datasets [6]. DMDE
first applies motion segmentation to the optical flow field
and then solves the RSA problem with an ordering con-
straint which captures the assumption that dynamic objects
occlude the static environment. However, accurately and
densely segmenting moving objects or parts is not easy
in many cases (e.g. traffic scenes in KITTI). And low-
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MVG | DT | DMDE | S.Soup | Ours
o1 | [15] [25] [16]

Input frames 2 1 2 2 >2
. OF - OF OF PM/OF
Requirements -
- Train Seg - -
Robust to outliers X — Vv V4 v
Dynamic scenes X N 4 v N
Speed 600s | 100s 60s 660s 5s

Table 1. Main features of our method compared to some baseline
methods. DT is a single-frame method, so we don’t evaluate its
robustness to outliers. Abbreviation of requirements: OF - optical
flow, Train - training set, Seg - motion segmentation, PM - semi-
dense point matches. Our method is fast, robust and flexible in
dynamic depth estimation.

quality motion segmentation directly leads to low-quality
reconstruction, which deteriorates the robustness of DMDE.
S.Soup [16] goes further by incorporating an ARAP (as
rigid as possible) term in its energy function under the as-
sumption that the transformation between two frames is lo-
cally piecewise-rigid and globally as rigid as possible. This
term avoids motion segmentation and helps to solve the
inherent RSA problem. However, the optimization of the
non-convex ARAP term is time-consuming, which limits
its practical applications.

Considering the drawbacks of DMDE and S.Soup, we
propose a new framework that is efficient and robust in
monocular depth estimation in dynamic scenes. By apply-
ing superpixel over-segmentation to the image, we model
each superpixel as a small plane (parameterized with a
plane parameter and a scale parameter) in 3D space. We
exploit two kinds of relations between neighboring super-
pixels: motion relations and spatial relations, each having
three subcategories {coplanar, hinge, crack}. Spatial re-
lations provide constraints on the spatial position of each
superpixel and thus can be used to solve the RSA prob-
lem. However, spatial relations cannot be estimated directly
since the plane parameter of each superpixel is also un-
known. We instead predict spatial relations between neigh-
boring superpixels based on their motion relations which
can be jointly estimated with homographies according to in-
put point matches. We observe that in most dynamic cases,
motion and spatial relations correspond one-to-one. Based
on this observation and the widely-used piecewise planar
assumption, we design a unified framework that consists
of four main stages: superpixel relations analysis, motion
selection, reconstruction, and refinement. We demonstrate
that our method achieves state-of-the-art performance on
several popular datasets [2, 5, 7]. The main features of our
method compared to the baseline methods [9, 15, 16, 25]
are summarized in Table 1, and the result of each stage is
demonstrated in Figure 1.

Our contributions are summarized as follows: 1) We
propose a unified framework for monocular piecewise re-

Motion relations Criterion

Coplanar > pesus, [HiP —H;P|~0
Hinge > peny, [HiP — H;P|~0
Crack Otherwise

Spatial relations Criterion

Coplanar >pesius, |0 — 0P| =0
Hinge > peny, 0iP —0;P| =0
Crack Otherwise

Table 2. Criteria of motion and spatial relations. P is the homoge-
neous form of pixel p. B;; denotes pixels on the shared boundary
of S; and S;. H; and 6; denote homography and plane parameter
of S; respectively.

construction in complex dynamic scenes, which achieves
state-of-the-art performance on various benchmarks. 2) We
demonstrate how to solve the RSA problem in dynamic
reconstruction based on the assumption that motion and
spatial relations between neighboring superpixels generally
correspond one-to-one. 3) We further introduce an approach
to improve the depth estimation quality by tracking su-
perpixel relations between temporally neighboring frames.
Experiments show that this approach successfully leverage
multiple frames to output more accurate results without a
noticeable reduction in speed.

2. Related works

Non-rigid structure from motion. Many methods have
been proposed to deal with non-rigid reconstruction. Our
approach is most related to piecewise reconstruction meth-
ods [29, 30, 32]. They typically formulate the reconstruc-
tion problem as a multiple model fitting problem where
point matches belong to an unknown number of models.
The point matches are divided into overlapping groups and
the matches covered by multiple groups are used to align
these groups. The assignment of point matches to multiple
local models and the fitting of models to points are esti-
mated simultaneously by minimizing an elaborate energy
function with geometric terms and other optional terms like
appearance term, minimum description length (MDL) term
and so on. Russell ef al. [30] go one step further by in-
troducing multi-level segmentation to improve the perfor-
mance. However, [29, 32] are not able to reconstruct the
entire scene and [30] performs poorly when applied to com-
plex scenes (e.g. on the MPI Sintel dataset [2]).

Optical flow-based methods. DMDE [25] and S.Soup
[16] are two typical methods of this kind. DMDE seg-
ments the optical flow field into a set of motion models and
then optimizes an energy function to reconstruct the scale-
ambiguous foreground together with the surrounding envi-
ronment. S.Soup goes further by incorporating an ARAP
(as rigid as possible) term to avoid object-level motion seg-
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mentation. Both methods provide favorable results on chal-
lenging datasets. However, their execution time is still far
from practical requirements.

Learning-based methods. We focus on unsupervised
learning methods [19, 38, 39, 40], since they demonstrate
great potential in practical use, especially in complex scenes
without sufficient ground truth data. They apply view syn-
thesis as the only supervision and usually process multiple
tasks simultaneously. Zhou et al. [40] adopt a depth net
and a pose net to estimate depth and camera motion respec-
tively, and a differentiable depth-image-based renderer to
associate the depth and pose nets. Mahjourian et al. [19]
exploit 3D geometric constraints on the basis of [40] and
achieve significant improvement over [40] on challenging
datasets. Yin et al. [39] jointly estimate depth, optical flow
and ego-motion. However, unsupervised learning methods
are usually ineffective at handling complex dynamic scenes,
especially on MPI Sintel dataset.

Other methods. Scene flow methods [18, 20, 31, 33]
characterize the 3D motion of points in the scene. They
estimate a disparity map for the dynamic scene regardless
of the RSA problem. Our method can be considered as a
special kind of scene flow method. MRFlow [34] also an-
alyzes the structure of the scene in its Plane+Parallax pro-
cess. However, it depends on physical constraints as well as
advanced learning-based techniques to segment foreground
objects. Meanwhile, it only reconstructs the background.
Yamaguchi et al. [35, 36] introduce superpixel relations as
a powerful aid in epipolar flow estimation. They derive a
slanted-plane MRF model which explicitly reasons about
four kinds of superpixel relations to smooth the optical flow.
In this paper, we expand their idea to reconstruct dynamic
scenes.

3. Two-frame method

We propose a unified monocular dense depth estima-
tion framework for dynamic scenes. We first introduce our
method under a two-frame setting and then extend it to han-
dle multiple frames.

We build our method upon the widely-used piecewise
planar model. As in [16, 37], we model a generic dynamic
scene with a set of non-overlapping rigid regions. We ap-
proximate the motion of a small region with an 8-dof ho-
mography model, which induces a 3D plane undergoing
rigid motion.

Given two consecutive frames I; and I;; as the current
and next frame, we aim to identify camera motion parame-
ters { Ro, to } and estimate a dense depth map D, for I;.

In the preprocessing stage, we first compute semi-dense
(CPM [11]) or dense (optical flow methods like [12])
point matches between I; and I;,;. We denote M =
{(pi,p;)lpi € Ii,p; € I;11} as the set of point matches.
p; € R? and p; € R? are coordinates of matched pixels.

sitn?
Hi =K (Ri +L,‘> K™t
di

Superpixel S;

Figure 2. For each superpixel .S;, by decomposing H;, we obtain
its corresponding camera rotation R;, translation ¢;, plane norm
n; and depth d;, up to a scale s; [9]. K denotes camera intrinsic
matrix. The scene is split into several rigid structures, each repre-
sented by a different color. Using SFM techniques (decomposing
homographies) to solve the relative scale relations among different
parts is ill-posed. This is defined as the RSA problem in dynamic
reconstruction. Our method exploits relations between neighbor-
ing superpixels to solve the problem.

P; is the homogeneous form of p;. Then we over-segment
1I; into n non-overlapping superpixels S = {S1, S, ..., Sn }
with SLIC [1]. We construct a superpixel-level undirected
graph G, = (S, E,w,), where E = {(1,7)|S5;,S; are
neighboring superpixels } and ws denotes the weight of
each edge in E. As in [10, 27], we use structure edge de-
tection (SED [4]) to generate a cost map, and w;(.5;, S;) is
the geodesic distance from the center of .S; to the center of
S; on the cost map.

After preprocessing, we develop our method in four
main stages: superpixel relations analysis, motion selec-
tion, reconstruction, and refinement. In the first stage, we
estimate an 8-dof homography model H; for each super-
pixel S; and determine motion relations R = {(i, j, r)|r €
{coplanar, hinge, crack}, (i,j) € E} between neighbor-
ing superpixels. For convenience, we use {co, hi,cr} to
denote the three kinds of relations respectively. We predict
the spatial relations Rs based on R.. In the motion selec-
tion stage, we simultaneously select a set of reliable static
superpixels S; that belong to the background and identify
the camera motion {Ry,to}. In reconstruction stage, we
estimate a three-dimensional plane parameter §; € R? and
a scale parameter s; for each superpixel S;. For pixel p;
in S;, 0;P; = d(p;), where d(p;) is the inverse depth of
p;. Then we obtain the reconstructed depth map D. In the
final refinement process, we improve the quality of depth
map D at pixel level and output the refined result Dg. In
this paper, A, are weighting parameters of different energy
terms. 7, are thresholds. The flow diagram of our method
is demonstrated in Figure 3.
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Figure 3. The pipeline of the proposed method for two-frame reconstruction. In this diagram, H, 6, s denote homography models, plane

parameters and scale parameters for superpixels in S respectively.

Algorithm 1 Optimization of Eq. 1
Input:
Input image I; and I 1;
Superpixels S;
Matches M;
Output:
H, R,
: iter=0.
: Minimize Eq.2 for H with fast propagation [10].
: while iter < 3 do
Fix H, minimize Eq.4+Eq.5 for R..
Fix R., minimize Eq.2+Eq.4 for H with a variant of
fast propagation [10].
. iter=iter+1.
7: end while
8: return H, R,..

BRI

3.1. Superpixel relations analysis

The concept of superpixel relations is successfully used
in [35, 36] to smooth optical flow, while we follow and
develop this idea to solve the RSA problem. We subdi-
vide superpixel relations into two categories: motion rela-
tions and spatial relations, each having three subcategories
{coplanar, hinge, crack}. Motion relations R, are deter-
mined by homographies H, and spatial relations R are de-
termined by plane parameters 8. We summarize the criteria
of motion relations and spatial relations in Table 2. If two
superpixels .S; and S; are coplanar, they agree in all pixels
in them. If they form a hinge, they agree only in the shared
boundary between them. Otherwise, they form a crack.

R. — R,. The RSA problem is a major challenge
in dynamic reconstruction since traditional SFM theory [9]
provides no constraints on the scale of each superpixel. As
shown in Figure 2, after over-segmentation, each superpixel
S; corresponds to a virtual camera that undergoes rotation
R; and translation ¢; in 3D space. And the scale s; of each
superpixel is unconstrained. We observe that spatial rela-
tions R4 can be used to solve the RSA problem since Ry
provides constraints on the depth of neighboring superpix-
els. However, R is hard to be estimated directly, because
plane parameters 6 are also unknown.

In this paper, we predict spatial relations R4 based on
motion relations R.. R, is determined by homographies,
which can be easily estimated with point matches or opti-
cal flow. Although the real relationship between R, and
R is hard to describe exactly, we observe that R, and R
correspond one-to-one in most dynamic scenes. In other
words, we assume R; = R,. Notice that a superpixel usu-
ally has multiple neighbors that may provide conflicting or
wrong spatial constraints to the reference superpixel. It is
not straightforward to decide how to leverage the informa-
tion provided by all neighboring superpixels and obtain a
reasonable reconstruction. Our unified framework selects
reliable relations to reconstruct each superpixel by optimiz-
ing an energy function, which ensures accuracy and robust-
ness in dynamic reconstruction.

Joint Estimation. We jointly estimate homography
models H and determine motion relations R, with point
matches M. The energy function is defined as follows,

Esra(H,Re) = Z Edata(Hi)
S;€S

A D Bo(Re(in)) M
(i,j)eE

+)\52 Z EpaiT(Hi7H7'7R€(i7j))7
(i,J)€EE

where R,(i,j) is the motion relation of neighboring su-

perpixels S; and S;. FEgq, is applied as the data term to
estimate homography models H. To define Ey,¢,, we first
initialize the local neighboring matches of each superpixel
as its support matches as in [10]. The support matches of
the superpixels labelled with blue dots are demonstrated in
Figure 4 (d) and (e). We denote S, (S;) to represent the
support matches of .S;. Then Eg,4, is defined as follows,

1
1Zi]

> we(Si,p)-min(|Hi- P— Pi|,74), (2)
PIE€Su(S;)

Eaata =

where |Z;| is the adaptive normalization parameter, Z; =

2omesa(ss) We(Sispr), (1, pe) € M. The weight w, is de-
fined as,

wc(Sivpl) = e'rp(_ws(sh STTL)/’VLpl S Sm (3)

where -y is a constant.
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The pairwise term F,,;, encapsulates homography mod-
els H and motion relations R,

Epair(Hy, Hj, Re(i, j)) =
0 R.(i,j) =cr
B pen,, [Hi- P— Hy - Pl Re.(i,§) = hi
15051 Lpes,us,; Hi - P —Hj - Pl Re(i,j) = co.

“

where |B;;| denotes the number of pixels on the shared
boundary between superpixel S; and S;.
FE, is the Occam’s Razor [35, 36], which prefers simpler
explanations of the scene, i.e., coplanar over hinge, hinge
over crack. F, is defined as follows,

Acrack  Re (Z,j) =cr
>\hinge Re(ia‘j) =hi 3 (5)
Ao Re(i,5) = co

Eo(Re(i, 7)) =

where Aorack > Aninge > Ao = 0.

Optimization. The minimization of Eq. 1 is not triv-
ial. We follow [36] to design an efficient block coordinate
descent inference method. We alternate to estimate the ho-
mography models and determine motion relations between
neighboring superpixels. Firstly, we estimate H only with
the Egq:q term. We adopt the fast propagation algorithm
proposed in [10] to optimize Eg44¢,. Then we fix the ho-
mography model of each superpixel and determine the rela-
tions by minimizing F,q;» + E, in a closed form. Next, we
fix the relations between neighboring superpixels and mini-
mize Fgq¢q + Epqir to refine the homographies by applying
an improved variant of the fast propagation method [10].
We introduce the method in detail in Sup.Mat. Then we
repeat the last two steps to iteratively refine the motion rela-
tions and homographies. At the end, we use our assumption
R, = R, to predict spatial relations Rs. We summarize
the optimization process in Algorithm 1.

3.2. Motion selection

The output of the superpixel relations analysis step is a
set of homographies H and spatial relations Rs. We follow
[9] to decompose each homography model and generate 2n
hypotheses of camera rotation R, translation £, plane norm
n and inverse depth d, up to scale. To handle pure rotation
cases, we follow [26] to compute the distance between the
identity matrix I and the matrix HH" with the metric ®4
proposed in [13]. We consider only the rotation component
for homographies whose ®4 distance lie below a threshold.

In this step, we follow [26] to jointly identify camera
motion { Rg, to} and select a set of static superpixels .St be-
longing to the background in a PEaRL framework [14]. For
fast running speed, we also design an intuitive method to
reduce the dimension of the label set. Details of the motion
selection procedure appear in the Sup. Mat.

Notice that our method does not require accurate object
segmentation in this step. Instead, we only select several

Figure 4. Processing flow of the superpixel relations analysis step.
(a) and (b) are current frame I; and next frame [;41. (c) is the
result of over-segmentation. (d) and (e) demonstrate the support
matches of the superpixels labeled with blue dots. (f) demonstrates
the flow field indicated by the homography models. (g) demon-
strates motion relations. The meanings of the color lines in (g) are
explained in Figure 1.

reliable superpixels that belong to the background. These
superpixels will serve as references to estimate the scales
of the remaining superpixels. For this purpose, we fix the
scales of superpixels in Sy in the reconstruction process and
adjust the scales of remaining ones based on spatial rela-
tions.

3.3. Reconstruction

After superpixel relations analysis and motion selection,
we obtain a set of floating superpixels in 3D space whose
scales are undetermined. In this step, we aim to solve the
RSA problem and provide an accurate and smooth depth
map for the dynamic scene.

Energy function. We model each superpixel S; with a
plane parameter 6; = [0;1,0;2,0;3]" and a scale parameter
s;. The reconstruction pipeline is formulated as an energy
optimization problem with the following energy function,

E.c(0,8) = A, Z Efit (05, 8:) + Z Erei(0;,6k)

S; €8 (4,k)EE

+ >\’V‘2 Z Eocc(si) + >\’V‘3 Z Epri(0j7 ek)y (6)
S;€S (4,k)EE:

s.t. s; = 1,VSZ~ [S St,

Let S, be the set of superpixels which are either in Sy or
connect to Sy. On graph G, we define that a superpixel .S;
(Si ¢ St) connects to Sy if there exists a path connecting
S; to a superpixel in S; such that all spatial relations along
the path are either coplanar or hinge. Then we define E. =
{(,4)|(4,j) € E,S; € 8,.,5; € S\ Sr}. The E,; term
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is defined as follows,

Erei(05,0r) =
0 R.(j, k) =cr N
S 105 P 00 P Ro(j, k) = hi
521 Spesuos, 0 P~ 0k Pl Ru(ik) = co,

where wp;, we, are weighting constants and wp; < Weo-

The E,,; term is adopted to ensure that the plane param-
eter of each superpixel is fully constrained. We force every
superpixel to be in S; or connect to .S; based on the assump-
tion that moving regions are supported by the surrounding
environment, which is similar to the ordering constraint in
[25]. Then the [,,; term is defined as follows,

Wer

| Bkl

Epri(6,0k) = > 16;-P—=6x-P|+5(6;- P > 6;-P),

PEBjik
_ ®)
where P = 1/|B,y]| Zpijk P, wer is a weighting con-

stant and §(-) is an indicator function defined as follows,
s = {}

The Ey;; term fits a plane for each superpixel,

c is false
c 1s true.

(©)]

Efit(ei,si) = Z mzn(|¢91 . Pi — Sidin?K_IPi‘,Tr) (10)

Pi€S;

and the F,.. term encourages simple explanations to the
scene and is defined as Fo..(s;) = d(s; # 1).

Optimization. Similar to the optimization of Eq. 1,
we use a block coordinate descent algorithm to minimize
Eq. 6. We first process superpixels in S, by minimizing
Efit + Erei + Eocc. Plane parameters ¢ and scales s are
propagated among spatially neighboring superpixels with
the improved fast propagation method. Note that for su-
perpixels in S, their scales are fixed to 1. Then we process
the superpixels that are not in S, by minimizing the F,,;
term. Finally, all superpixels are optimized together by min-
imizing Et;4 + Ere; + Eoce + Epr; with the improved fast
propagation method. We provide detailed explanations of
the optimization in Sup.Mat.

3.4. Refinement

A pixel-level refinement serves as the final step of our
pipeline. Since superpixels may not adhere tightly to
boundaries, we use the fast smoothing method proposed in
[21] to improve the quality of the depth map.

4. From two-frame to multi-frame

Given a video with a sequence of frames I =
{I,I5,...; L4, I; 11}, we aim to estimate a dense depth map

co hi co hi er

Re(ours)

0.6 0.8 —F

Hco@niler 0.6 HcodniOer
04 R.(g1) R.(g1)

0.4

0.2

@ 0.2
. ! =

Cr
(a) Re(gt) (b)

Figure 5. Distribution of motion and corresponding spatial rela-
tions. The height of each bar reflects the percentage of current
type of motion relations in total motion relations. And inside each
bar, we show the corresponding ground truth distribution of spatial
relations. For example, in (a), considering the first bar, coplanar
relations account for about 58% of total motion relations. And in
this bar, considering the corresponding spatial relations, coplanar
relations occupy about 83%, hinge relations 12% and crack rela-
tions 5%. (a) and (b) verify that our assumption Rs = R is
reasonable in most dynamic cases.

for I;. Since a multi-frame setting helps in many as-
pects (e.g. consistency checking [41]) in the reconstruc-
tion of dynamic scenes, we mainly study the effect of track-
ing superpixels between temporally neighboring frames to
achieve a more accurate estimation of motion relations.
Prior methods on temporally consistent superpixels [3, 17]
have achieved satisfying performance in challenging envi-
ronments. We follow [17] to track superpixels, and then
for I;, we get a prior of motion relations E, = {(4,7)},
Ry, = {(i,4,7)}, wp = {(i,j,w}})}, where S; and S; are
temporally consistent [17] and spatially neighboring super-
pixels. r € {coplanar, hinge} and w;} records how many
frames the relations hold. Then the total energy function to
jointly estimate homographies and determine motion rela-
tions is defined as follows,

En(H,Re) = Esra +Am Y Epnu(Re(i,§)). (1)

(i,5)EEp

The E,,,.,; term is defined as follows,
Emu(Re(i, 7)) = min(wij, mm)0(Re(i, j) # Rp(i, j)). (12)

The optimization process of Eq.11 is similar to Eq.1. Other
stages are the same as two-frame reconstruction pipeline.

5. Experiments

Implementation details. In our experiment, we
set superpixel size to be about 150 pixels per super-
pixel.  We set {Ag;, Asys Vs Arps Ar3, Wery Whiy, Weo ) =
{1,1,0.1,1,1,1,0.5,2}. Other Parameters were adjusted
differently for each dataset. We use a small split of the
datasets to optimize the parameters and evaluate our method
on the remaining parts. For multi-frame depth reconstruc-
tion, we use five consecutive frames from a video and re-
construct the fourth frame. For learning-based methods
[39, 40], we provide training details in the Sup.Mat.
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Method DT MVG | DMDE | Superpixel | SFMLeaner | Geonet Ours+ Ours+ | Ours+
[15] [9] [25] Soup[16] [40] [39] MirrorFlow | CPM CPM
Settings S T T T M M T T M
MPI Sintel 0.4903 | 0.3327 | 0.2970* | 0.1669* 0.4733 0.4398 0.2017 0.2070 | 0.1632
Virtual KITTI | 0.2911 | 0.2432 - 0.1045* 0.1532 0.1430 0.0930 0.1276 | 0.1010
KITTI 0.2217 | 0.2907 | 0.1480* | 0.1268* 0.1817 0.1630 0.1023 0.1340 | 0.1232
SYNTHIA 0.1910 | 0.1973 - - 0.1537 0.1321 0.1123 0.1337 | 0.1323
Running Time | 100s 600s (60s)* 700s* (0.02s) (0.02s) 600s 5s Ss

Table 3. Performance comparison of depth accuracy and time consumption. The table lists the MRE on different datasets. We adopt results
of DMDE [25] and S.Soup [16] (labelled with *) from their papers, since the authors haven’t released the source code. Running times
of [16, 25, 40] are tested on GPU. It is clearly shown that our method achieves state-of-the-art performance on various benchmarks in a
reasonable time. In summary, Ours+MirrorFlow (T) performs best in traffic scenes (Virtual KITTI, KITTI, SYNTHIA) and Ours+CPM

(M) performs best in other scenes (MPI Sintel).

hi cr

co hi cr co
- 0.27 0.07 CO- 0.26 0.09

0.09 0.14 hi 0.12 | 0. ‘ 0.17

0.02 0.15 -Cl" 004 0.21 -

(a) Re(ours) — (b) Rs(ours) —
Figure 6. Confusion matrices (a) and (b) demonstrate the accuracy
of our method in estimating motion relations R and spatial rela-
tions Rs. The horizontal axis shows superpixel relations predicted
by our method and the vertical axis shows ground truth relations.
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Figure 7. Parameter analysis. Upper: Effect of different optical
flow estimation methods. We test our two-frame method with
CPM [11] (semi-dense matches) and MirrorFlow [12] (dense flow
field). Lower Left: The effect of density of point matches on
reconstruction quality. Lower Right: The trend of MRE as the
superpixel size increases.

In this section, we evaluate the performance of our
method both qualitatively and quantitatively on challeng-
ing datasets containing moving objects, including synthetic

MPI Sintel | KITTI | SYNTHIA
T [15] 9.7% 24.9% 21.1%
MVG [9] 37.4% 45.7% 33.2%
Geonet [39] 20.1% 52.2% 43.7%
Ours+MirrorFlow 44.0% 67.7% 59.3%
Ours+CPM (T) 39.6% 56.3% 48.3%
Ours+CPM (M) 50.1% 59.7% 55.5%

Table 4. Performance comparison under depth inlier rate.

Figure 8. Results on Youtube-objects dataset [24].

datasets MPI Sintel [2], Virtual KITTI [5], SYNTHIA [28],
real-world datasets KITTI [6, 7] and Youtube-objects [24].
We choose MVG [9], DT [15], FGI [21], DMDE [25],
S.Soup [16], SEFMLearner [40] and Geonet [39] as the base-
line methods. Note that MVG is a traditional SFM pipeline
implemented by ourselves, in which we use MirrorFlow
[12] to estimate dense correspondences between two con-
secutive frames and then directly apply triangulation to re-
construct the scene. For convenience, we define three ab-
breviations to represent the setting of each method, “S" for
single-frame, “T" for two-frame and “M" for multi-frame.
We provide the results of three variants of our method: ours
+ CPM (T), ours + MirrorFlow (T) and ours + CPM (M).
Since the authors of DMDE and S.Soup haven’t released the
source codes, we simply show the evaluation results posted
in their papers.

Assumption R; = R.. We use Virtual KITTI dataset
to verify that our assumption is effective and reasonable in
dynamic scenes. In Figure 5, to obtain the ground truth dis-
tribution of motion and spatial relations, we directly com-
pute homographies and plane parameters on ground truth
optical flow and depth data and determine superpixel rela-
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tions with the criteria in Table 2. Figure 5 (a) reflects that
the assumption R; = R, is applicable in most dynamic
cases. Figure 5 (b) demonstrates the distribution of mo-
tion relations estimated by ours + CPM (T) method and the
corresponding ground truth spatial relations, which reflects
that the assumption is also effective when using the homo-
graphies estimated by our method.

Parameter analysis. Figure 7 studies the effect of point
matches estimation methods, the density of point matches
and superpixel size over the quality of two-frame depth re-
construction. We select 120 pairs of images from MPI Sin-
tel, Virtual KITTI, and SYNTHIA datasets and use MRE as
the evaluation metric. Let Z¢ denote the estimated depth
map and Z9 denote the ground truth.

MRE = M% > 12 - 2323 (13)
peElt

where M, is the number of pixels in image I;. In Fig-
ure 7, we can see that introducing other constraints (Mirror-
Flow introduces symmetries) helps to improve the quality
of the depth map in most cases. For the density of point
matches, we observe that the quality of the depth map im-
proves quickly and finally achieves a stable result as the
density increases. For superpixel size, we observe that the
MRE of results keeps stable when superpixel size increases

from 50 to 150 pixels per superpixel.

Result analysis. Figure 6 (a) and (b) are confusion ma-
trices that demonstrate the accuracy of the estimated mo-
tion relations R, and spatial relations R on Virtual KITTI
dataset. It is shown clearly that our method correctly esti-
mates most of the relations. The major errors come from
the hinge relation. Our method sometimes mistakes hinge
relation for coplanar relation. But in practical reconstruc-
tion experiments, our pipeline still outputs reasonable re-
sults since each superpixel has many neighboring superpix-
els and we can select reliable relations for reconstruction by
minimizing the energy function Eq. 6.

Table 3 provides a statistical comparison between our
method and other competing methods over depth quality. In
order to compare our method with state-of-the-art methods
DMDE [25] and S.Soup [16], we use the same experiment
setup as [16] and follow [25] and [16] to use MRE as the
evaluation metric. For learning-based methods [39, 40], we
directly evaluate the public training models provided by the
authors on Virtual KITTI, KITTI and SYNTHIA datasets,
while fine-tuning the models before testing on MPI Sintel
dataset. In Table 4, we also provide results comparison with
the inlier rate as the metric. In this experiment, the inlier
rate is defined as, inlier rate = Iv%t >oper, 0129 = Z] <
10% - th), and higher is better.

Next, we introduce the performance of our methods on
different datasets in detail.

MPI Sintel, derived from an open source 3D animated
short film, is a famous dataset for the evaluation of op-

cl;

tical flow, depth, segmentation and so on. For depth re-
construction, this dataset is very challenging due to irregu-
lar deformation of objects, significant illumination changes,
and complex scene structures. On this dataset, our two-
frame method outperforms other competing methods ex-
cept for S.Soup. Our methods may output low-quality depth
maps when the foreground objects are too large and do not
connect to the background. More details can be found in
Sup.Mat. When using multiple frames, we get superior re-
sults to other methods since the estimation of superpixel re-
lations improves.

KITTI, a novel challenging real-world computer vision
benchmark for multiple tasks, can be used to test depth
reconstruction methods since it provides sparse LiDAR
measurements as the ground truth depth. It is shown
clearly in Table 3 that the results of ours+MirrorFlow and
Ours+CPM (M) outperforms all other methods. And al-
though ours+CPM (T) is inferior to S.Soup, our method
runs much faster. On this dataset, we observe that using
MirrorFlow to estimate homographies greatly improves the
reconstruction results since MirrorFlow exploits symme-
tries and generally outputs more accurate homographies in
traffic scenes.

Virtual KITTI and SYNTHIA. The two datasets pro-
vide synthetic traffic videos with perfect ground truth depth.
In Table 3, the results of ours+Mirrorflow and ours+CPM
(M) outperform competitors. And Ours+CPM (T) provides
comparable results to other methods but runs much faster.

We provide qualitative depth estimation results on
Youtube-objects dataset [24] in Figure 8. More results are
demonstrated in Sup.Mat.

6. Conclusion

We propose a unified framework for dense monocular
depth estimation in complex dynamic scenes with two or
more frames. We build our method based on the piecewise
planar assumption and our observation that motion relations
indicate spatial relations in most dynamic cases. This obser-
vation provides a new insight into solving the RSA problem
in dynamic reconstruction. Our results on popular public
benchmarks demonstrate clearly that our method success-
fully handles various dynamic scenes and achieves superior
performance to state-of-the-art methods at a much faster
speed. We believe that combining our method with other
advanced techniques (e.g. deep learning) will lead to fur-
ther improvements in the quality of depth map.
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