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Abstract

In this paper, we are interested in self-supervised learn-

ing the motion cues in videos using dynamic motion filters

for a better motion representation to finally boost human

action recognition in particular. Thus far, the vision com-

munity has focused on spatio-temporal approaches using

standard filters, rather we here propose dynamic filters that

adaptively learn the video-specific internal motion repre-

sentation by predicting the short-term future frames. We

name this new motion representation, as dynamic motion

representation (DMR) and is embedded inside of 3D convo-

lutional network as a new layer, which captures the visual

appearance and motion dynamics throughout entire video

clip via end-to-end network learning. Simultaneously, we

utilize these motion representation to enrich video classifi-

cation. We have designed the frame prediction task as an

auxiliary task to empower the classification problem.

With these overall objectives, to this end, we introduce

a novel unified spatio-temporal 3D-CNN architecture (Dy-

namoNet) that jointly optimizes the video classification and

learning motion representation by predicting future frames

as a multi-task learning problem. We conduct experi-

ments on challenging human action datasets: Kinetics 400,

UCF101, HMDB51. The experiments using the proposed

DynamoNet show promising results on all the datasets.

1. Introduction

Human action recognition [3, 6, 7, 9, 55] in videos has

attracted a huge attention over the last decade, due to the

potential applications in video surveillance, understanding,

analysis, retrieval tasks and more. In practice, the perfor-

mance of computer vision systems still falls behind that of

humans. On top of the challenges that make object class

recognition hard, complicating aspects like camera motion

and the continuously changing viewpoints negatively influ-

ences the vision system. Although, Convolutional Neural

Networks (ConvNets) have successfully upsurged several

⋆Ali Diba and Vivek Sharma contributed equally to this work and

listed in alphabetical order.
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Figure 1. Overview of the proposed multi-task learning ConvNet

architecture to simultaneously classify action and learn motion

representation by predicting future frames in end-to-end learning

manner. ×, + denotes convolution and concatenation operations.

sub-fields of vision, for action recognition particularly, they

still lack to model the motion cues effectively.

Neural networks for action recognition can be mainly

categorized into two types, namely architecture-driven

ConvNets [42, 49] (which utilize standard filters and pool-

ing kernels in a video architecture to exploit long-range dy-

namics) and encoding-driven ConvNets [9, 16] (which inte-

grate new encoding methods in addition to standard filters

and pooling kernels in a video architecture to learn spatio-

temporal feature representation). This paper falls in the pool

of encoding-driven ConvNets, where we extend the stan-

dard video understanding architecture to incorporate a new

layer to learn dynamic motion representation conditioned

on the action-specific basis.

In this paper, we propose to extend the training of

ConvNets-based action classification to incorporate the

high-level goal to learn action-specific motion representa-

tion via future frame prediction. Our contribution named as

DynamoNet is a method that jointly optimizes a ConvNet

for video action classification and future frame prediction

as a multi-task learning problem. We achieve this by adap-

tively learning the motion features on a video-specific basis

via dynamic motion filters, which enables the motion pre-

diction model to selectively utilize only those motion fea-

tures that lead to improved video classification.

Since we understand the vital role of motion feature rep-

resentation, we propose to use the dynamic convolutional
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filters to dynamically discover and learn video-specific in-

ternal motion representations for improved video classifi-

cation (see Fig.1 for a graphical overview). Our paper is

inspired from [1, 38]. However, while Brabandere et al. [1]

applies the dynamic filters to transform an angle to a filter

(steerable filter) and Sharma et al. [38] emulates a range of

enhancement filters to generate image enhancement meth-

ods. We used the same terminology as in [1, 38]. In contrast

to these works, our work differs substantially in technical

approach and the application scope. Our DynamoNet is de-

signed to learn motion representation, which we achieve by

adaptively extracting informative features by predicting the

short-term future frames to improve classification. We be-

lieve predicting (or reconstructing) the future frames selec-

tively transfers the fundamental notion of motion content to

the filters, which in turn improve the overall effectiveness

of the motion representations. The motion representation

learning is jointly optimized along with the video classi-

fication as a multi-task learning problem. Using short-term

future frame prediction as a proxy task is promising, and we

clearly show that this works for an accurate action recogni-

tion in videos.

Precisely, our network takes the current video-clip with

T frames and generates T + 1 future frames using T dy-

namic motion kernels or dynamic filters. The network struc-

ture is based on 3D ConvNets. Specifically, given an in-

put video-clip x with T frames the network generates T

dynamic motion kernels (FT ) to predict the consecutive

next frame given the previous one i.e. Ft : xt → x̂t+1,

t ∈ {1, . . . , T}. These filters are video dependent mo-

tion kernels and are conditioned on the input and therefore

vary from one sample to another during training and test-

ing phase, which means that the filter dynamically extracts

important motion representation from a given input. Fur-

ther, we utilize these T d-dimensional dynamic motion fea-

tures along with STC-ResNext [6, 20] 3D-ConvNet features

for video classification. Moreover, we believe the dynamic

motion kernels capture the important concepts of motion

representation from the temporal cue and the extracted mo-

tion features are robust and compact global temporal rep-

resentation for the whole video, this makes them a perfect

fit for action recognition task well. Our method is evaluated

on three challenging benchmark action recognition datasets,

namely UCF101, HMDB51 and Kinetics 400. We experi-

mentally show that the 3D ConvNets when combined with

our dynamic motion filters (see Sec. 4) achieve state-of-the-

art performance on UCF101 (97.8%), HMDB51 (76.8%)

and Kinetics 400 (77.9%).

2. Background and Related Work

Action Recognition with ConvNets. With Convolutional

Neural Networks (ConvNets) the vision community has

successfully made huge leaps forward in several sub-fields

of vision and has outperformed hand-engineered repre-

sentations by a significant margin particularly for action

recognition. End-to-end ConvNets have been introduced

in [13, 24, 42, 49, 57] to exploit the appearance and the

temporal information. These methods operate on 2D (in-

dividual image-level) or 3D (video-clips or snippets of K

frames). In the 2D setting, spatial and/or temporal infor-

mation are modeled via LSTMs/RNNs to capture long-term

motion cues [10, 65], or via feature pooling and encoding

methods using Bilinear models [9], Vector of Locally Ag-

gregated Descriptors (VLAD) [16], and Fisher vector en-

coding (FVs) [48]. While, in the 3D settings, the input to

the network consists of either RGB video clips or stacked

optical-flow frames to capture the long-term temporal infor-

mation. The filters and pooling kernels for these architec-

tures are 3D (x, y, time) i.e. 3D convolutions (s×s×d) [65]

where d is the kernel temporal depth and s is the kernel

spatial size. Simonyan et al. [42] used two-stream 2D Con-

vNets cohorts of RGB images and a stack of 10 optical-flow

frames as input. Tran et al. [49] on the other side explored

3D ConvNets with fixed kernel size of 3 × 3 × 3, where

spatio-temporal feature learning for clips of 16 RGB frames

was performed. In this way, they avoid to calculate the opti-

cal flow explicitly and still achieve good performance. Fur-

ther, in [50, 51] Tran et al. extended the ResNet architecture

with 3D convolutions. In [13] Feichtenhofer et al. propose

3D pooling. Sun et al. [47] decomposed the 3D convolu-

tions into 2D spatial and 1D temporal convolutions. Wang

et al. [57] propose to use sparsely sampled non-overlapping

frames from the whole clip as input for both spatial and

temporal streams and then combine their scores in a late

fusion approach. Carreira et al. [3] propose converting a

pre-trained 2D ConvNet [22] to 3D ConvNet by inflating

the filters and pooling kernels with an additional temporal

dimension d. All these architectures have fixed temporal

3D convolution kernel depths throughout the whole archi-

tecture. In T3D [7], Diba et al. propose temporal transi-

tion layer that models variable temporal convolution kernel

depths over shorter and longer temporal ranges. Further-

more in [6], Diba et al. propose spatio-temporal channel

correlation that models correlations between channels of a

3D ConvNets wrt. both spatial and temporal dimensions.

In contrast to these prior works, our work differs substan-

tially in scope and technical approach. We propose an archi-

tecture to learn dynamic motion filters for modeling an ef-

fective internal motion representation in order to adaptively

extract informative motion features conditioned on a video-

specific basis to improve action recognition.

Finally, it is worth noting the self-supervised learning

works on “harvesting” training data from unlabeled sources

for action recognition. Fernando et al. [14] and Mishra et

al. [31] shuffle the video frames and treat them as posi-

tive/negative training data; Sharma et al. [37, 39] mines la-
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bels using a distance matrix based on similarity although for

video face clustering; Wei et al. [59] divides a single clip

into non-overlapping 10-frame chunks, and then predict the

ordering task; Ng et al. [32] estimates optical flow while

recognizing actions. We compare all these methods against

our unsupervised future frame prediction based ConvNet

training in the experimental section.

Future Frame Prediction. Given an observed image or a

sequence of frames predict the future frames is very pop-

ular these days [15, 18, 33, 40, 44, 60, 61, 66], where

mostly researchers predict low-level pixels or motion, until

recently image synthesis is done via neural networks: Gen-

erative adversarial networks [5, 17, 34, 53, 54], variational

auto-encoders [25, 63, 64], deep regression networks [52]

to anticipate the visual representation in the future. These

works basically form to be a part of either deterministic

prediction frameworks [41, 52] or probabilistic prediction

frameworks [53, 63]. It has been shown that the proba-

bilistic content-aware motion prediction models the motion

fields or image features better in comparison to determinis-

tic models which cannot model the uncertainty well. Suc-

cessful predicting the future will demonstrate the computers

understanding of objects in the scene. One straight forward

approach would be discriminate training, etc to predict the

next future frames, but our world is full of uncertainty. Its

not the predictions are wrong, its just an intrinsic ambigu-

ity in the prediction. In contrast to previous work, our main

goal is not to predict future frame, but rather to learn mo-

tion representations by predicting future frames. Precisely,

we propose a method that predicts high-level concepts such

as objects and actions by learning dynamic motion filters to

predict the consecutive next frame given the previous one in

a self-supervised manner.

Further, in the similar spirit of frame prediction although

for different tasks using action recognition datasets, it is

worth noting works of Mathieu et al. [29] and Srivastava

et al. [45]. We quantitatively compare to Mathieu et al. [29]

in our experiments.

Filter Generating Networks. Starting with the seminal

work of Jaderberg et al. [23] where the authors propose

transformation filters to do translation and rotation, all these

papers [1, 26, 38] utilize the same concept (deep-down) to

learn a steerable filter [1], weather prediction filter [26], or

an enhancement filter [38] using input-output image pairs.

Different from these works, we propose to apply these filters

for learning motion representation in videos with an overall

goal to improve action classification. We clearly show that

this works in our experiments.

Learning Motion Representation. We share the same mo-

tivation with these works [8, 11, 35, 36, 46] for learning

motion representation in deep learning fashion, but without

using optical flow information as the target output.

3. Proposed Method

Our aim is to learn a dynamic motion representation

model with an overall goal to improve video classifica-

tion. To this end, we propose two ConvNet architectures de-

scribed in this section. Our first architecture is proposed to

learn dynamic motion filters by predicting the short-term fu-

ture frames in an end-to-end self-supervised learning fash-

ion. The other proposed end-to-end network is designed to

simultaneously classify action, in addition to learn motion

representation by predicting the future frames.

We use 3D ConvNets [20, 6], STCnet/3D-ResNext archi-

tecture as the base models, and incorporated two branches

to do classification and frames prediction. The input to the

network is a stack of 16, 32 or 64 frames in different exper-

imental setups, which we refer as a video clip.

3.1. Dynamic Motion Filters

The filter generating network (DynamoNet) is inspired

from [1, 26, 38] and is composed of 3D filters and pool-

ing kernels, with the last fully-connected layer (i.e., dy-

namic motion filter parameters). The DynamoNet is self-

supervised or unsupervised. The DynamoNet maps the in-

put to the filter. Precisely, the network takes a video-clip x

with T frames and outputs filters FΘ,t,Θ ∈ R
s×s×t, where

Θ is the transformation parameter that learns the mapping,

s is the spatial kernel size and t is the number of filters -

which is driven by the input stack of frames i.e. t ∈ T .

Given an input video-clip x ∈ R
H×W×T , the network

produces dynamic motion filters to predict the consecutive

future frames x̂ ∈ R
H×W×T where H , W denotes the

frame height and width. The scheme is illustrated in Fig. 2.

The future frame predictor network can be formulated as:

x̂t+1 = FΘ,t(xt) (1)

The FΘ,t motion filters are convolved with the input tth

frame xt to generate x̂t+1 frame. FΘ,t is applied to xt at

every spatial position (H,W ) to output the predicted frame

x̂t+1 ∈ R
H×W . Note that the filters are sample-specific

and are conditioned on the input xt. In Fig. 2, we show fil-

ter generating network to predict dynamic filters and thus

predicting the future frames. The filter size determines the

receptive field and is application dependent. From the liter-

ature [38], we exploited a lot of insights about kernel sizes.

For motion prediction, we have tested with different filter

sizes s = {3, 4, 5, 6, 7} and for our setup we found that a

filter size of 5×5 gave the best result, and others (> 5×5 or

< 5 × 5) produced smoother images, with a drop in classi-

fication performance by approx ∼2-3%. Further, we found

that frame prediction done at deep-level performed better in

comparison to the intermediate levels.

For generating the motion filter parameters, the network

is trained using Huber loss function [4] between the target
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Figure 2. DynamoNet. Input to the network is a video with T frames, that generates T dynamic motion filters to predict the consecutive

next frame given the previous one to learn motion representation. The motion filters are then concatenated together to form a global

representation, along with the STC-ResNext features and then fed to classifier. The network is jointly optimized with a classification

objective to adaptively extract informative motion features for improved classification. ×, + denotes convolution and concatenation

operations.

future frame xt+1 and the network’s predicted future frame

x̂t+1. The frame prediction (FP) using the Huber loss func-

tion is defined as:

LFP =







1

2
||x̂t+1 − xt+1||

2
2 if ||x̂t+1 − xt+1||1 < δ

δ||x̂t+1 − xt+1||1 −
1

2
δ2 otherwise

(2)

where the threshold δ is set to 0.01. More details on

the training and the network architecture is discussed in the

experimental section.

Our future frames prediction method differs from all the

recent methods, as we utilize motion filters to synthesize

the next frames given the previous one, Ft : xt → x̂t+1, t ∈
{1, . . . , T}. The main difference of our method for generat-

ing next frames in comparison to other methods differs sub-

stantially in technical approach, we do not generate frames

directly by conv-deconv layers, rather we use these layers

to generate motion filters to reconstruct and predict the next

frames. We believe predicting (or reconstructing) the future

frames selectively transfers the fundamental notion of mo-

tion content to the filters, which in turn improve the overall

effectiveness of the motion representations. Furthermore, in

this way, our network configuration and the learning scheme

helps to learn the pixel motion information in an spatio-

temporal regime.

Inspired by dynamic filter networks [1], we believe for

learning an effective motion representation from a video,

dynamically generated filters is a robust solution to dis-

cover and capture video-specific internal motion variations.

As the parameters of the filters are conditioned on the in-

put, they vary from one sample to another which is perfect

for learning internal motion representations and variations

in the video. By extracting this intra-information from the

clip, we believe we model motion representation from the

same clip, since the generated filters are demonstrating the

dynamic information of frames. This representation can be

effective for video classification task, in the next section we

show how joint optimization can be modeled for motion

representation learning and classification - simultaneously

to have a more solid action classifier.

Example frame prediction structure: Let’s assume that a

given input clip has 16 frames, the predicted future frames

are 16 frames consisting 15 reconstructed ones (2nd to 16th

frames from input) and a new future frame obtained from

the 16th frame. Each predicted (reconstructed) frame is ob-

tained by applying the dynamic motion filter to the previ-

ous frame (input frame) at every spatial position. In this

way, the dynamic motion filters are learned by predicting

the consecutive next frame given the previous one.

3.2. Action Recognition

We utilize 3D ConvNets over 2D ConvNets for video

classification and frame prediction because of their com-

pelling advantages of exploiting long-range temporal cues

rather than merely spatial cues. Precisely, we use the re-

cently proposed STCnet [6] or 3D-ResNet/ResNext [20]

as the main building block of the DynamoNet. We chose

these architectures because of their promising performance

for action classification both in terms of accuracy and high

computation speed. Further, the 3D temporal convolution

kernels efficiently capture the visual appearance and the

temporal information across frames in videos in compari-

son to 2D convolutions - which lacks to model the temporal

dimension. That being said, 3D-STCnet/ResNet are good

candidates to extract the spatio-temporal feature represen-

tations for action classification and motion analysis.

Here, we recycle the dynamic motion filters architecture

from Section 3.1. Figure 2 shows the schematic layout of
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the whole architecture. Our architecture has two network

branches, one branch learns the dynamic motion represen-

tations FΘ,T and the second branch is the standard fully-

connected layer of the 3D-STCnet (AR). Both of the net-

work branches are trained together, therefore we have the

action representation (AR) and dynamic motion representa-

tion learned at the same time. As the last step to action clas-

sification, we flatten the motion filters and then followed by

a fully-connected layer of size Rd, the d-dimensional DMR

is then concatenated with AR and then fed to classification

layer. By this design we incorporate the motion information

for action classification task.

End-to-end learning. Finally, we now extend the loss of

approach 1, by adding the softmax-loss (classification) for

joint optimization of motion filter learning by future frame

prediction with a classification objective. The total loss of

the whole pipeline is given by:

Ltotal = αLFP + βLClassification (3)

where α, β are losses weights and both of the tasks are

optimized together. We show it both qualitatively and quan-

titatively that the trained DMR is optimized to capture an

accurate motion information for sample-specific actions in

this manner. Figure 3 shows qualitative results with dy-

namic filter based predicted frames.

3.3. Unsupervised Training

For comparison with the previous self-supervised or un-

supervised representation learning methods [14, 31, 32, 59],

we remove the classification branch and just keep the dy-

namic motion filters with the frame prediction part only, an

unsupervised video learning pipeline is obtained. As we

already know, the important aspect of videos are meaning-

ful motions. Using our approach, in practice, one can eas-

ily learn motion representation in an unsupervised way by

simple reconstructing and/or predicting the future frames

via the self supervisory signal available in the sequence of

frames.

We have investigated the method with a number of un-

labeled videos and trained the network from scratch. We

show that such a unsupervised pre-training can be very ben-

eficial for a stable model weight initialization, and thus this

reduces the need of large labeled video datasets for training

3D ConvNets from scratch for the action classification task.

More details on the training schemes and their results are

discussed in the experimental section.

4. Experiments

In this section, we first introduce the datasets, implemen-

tation details of our proposed approach, and then show the

applicability of unsupervised pre-training, followed by the

role of frame prediction in the training scheme. Finally, we

compare our method with the state-of-the-art methods on

three challenging human action and activities datasets.

4.1. Network Design

The DynamoNet consists of three parts: first is the

3D-Conv which in our experiments is STCnet or 3D-

ResNet/ResNext with different depths. We have applied

more layers for two branches, for the action classification

part to extract an efficient representation, we added two

conv-layer (64 filters each) and a fully connected layer. On

the frame prediction, we use 2 conv-layers (64 filters each)

with a softmax layer to yield the dynamic filters. After flat-

tening the filters, there is a fully connected layer with size of

512 to extract the dynamic motion representation. The AR

and DMR features are concatenated together and then fed to

the classification loss. In the rest of this section, we use the

backbone architecture: STC-ResNext101 and ResNext101

for the DynamoNet (STCnet) and DynamoNet (ResNext).

4.2. Datasets

We evaluated our proposed DynamoNet on three

challenging human action and activities datasets;

HMDB51 [28], UCF101 [43] and Kinetics [3]. We

use the pre-defined training/testing splits and protocols

provided originally. We report the mean average accuracy

over the three splits for HMDB51 and UCF101 and for

Kinetics, we report the performance on the validation set.

Kinetics. Kinetics is a challenging human action recog-

nition dataset introduced by [3], which contains 400 and

600 action classes. There are two versions of this dataset:

untrimmed and trimmed. The untrimmed videos contain

the whole video in which the activity is included in a short

period of it. However, the trimmed videos contain the ac-

tivity part only. We evaluate our models on the trimmed

version. We use all training videos for training our models

from scratch.

UCF101. To evaluate our DynamoNet action recogni-

tion performance, we first trained it on the Kinetics dataset

and then fine-tuned on UCF101. Furthermore, we also eval-

uate our models by training them from scratch on UCF101

using randomly initialized weights and unsupervised pre-

training method to study the impact of pre-training on a

huge dataset such as Kinetics, and also the unsupervised

pre-training method.

HMDB51. For HMDB51, we employ the same method-

ology as UCF101 and we fine-tune the DynamoNet on

HMDB51, which was pre-trained on Kinetics. Also, we

similarly evaluate our model by training it from scratch on

HMDB51 using randomly initialized weights.

4.3. Implementation Details

We have used the PyTorch framework for the implemen-

tation and all the networks are trained on 8 P100 NVIDIA
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GPUs. Here, we describe the implementation details of our

proposed DynamoNet, frame prediction and action classifi-

cation.

Training. We train our DynamoNet with just frame

prediction part as the pre-training step on 500K unlabeled

video clips from YouTube8M dataset. DynamoNet operates

on a stack of 16 or 32 RGB frames. We have resized the

video frames to 122px when smaller and then randomly do

the 5 crops (and their horizontal flips) of size 112× 112 as

the main network input size. For the network weight initial-

ization, we adopt the same technique proposed in [21]. For

the model training, we use SGD, Nesterov momentum of

0.9, weight decay 10−4 and batch size of 64. The learning

rate for start is set to 0.1 and reduced by a factor of 10 man-

ually when the validation loss is saturated. To train the total

loss, we set the coefficients of the losses as: α = 0.1 and

β = 1.0. Once the unsupervised pre-training is done, the

main training with both branches of action recognition and

frame prediction is done on Kinetics dataset with a maxi-

mum number of 200 epochs. We also employ batch nor-

malization for network training. In our experiments, we

use different version of STCnet and 3D-ResNet/ResNext as

the main convolutional section of DynamoNet, since they

are state-of-the-art methods in 3D-CNN action models. We

have evaluated different depth of these networks in our ex-

periments. STCnet has similar structure of 3D-ResNet with

an extra module to handle spatio-temporal channel correla-

tions in Conv layers.

Testing. For action recognition on videos, we separate

each video into non-overlapping clips of 16/32/64 frames.

The DynamoNet is applied over the video clips by taking a

112× 112 center-crop, and for a video-level prediction, we

average the prediction scores over all clips in a video.

4.4. Unsupervised Pre­Training

Since the frame prediction part can be trained separately

without the need of labeled video, we have studied the effect

of unsupervised pre-training the 3D-Conv part of network

which carries most of information. As mentioned before the

network is trained for frame prediction on 500K unlabeled

video clips from YouTube8m. While doing pre-training, the

action classification part is detached. After the pre-training

is done, both of the branches are activated to be trained also

for action classification as well.

We fine-tune with lower learning rate the self-

supervised (or unsupervised) pre-trained network on

UCF101/HMDB51 directly, and in Table 1 we show that

our method performs better in comparison to state-of-the-

art self-supervised methods [14, 31, 32, 59] when trained

from scratch on UCF101/HMDB51. It is obvious that our

DynamoNet used more data to train, but the extra data is just

video clips without any labels. So our method is an effec-

tive way to do pre-training without any cost on data labeling

Model UCF101 HMDB51

3D-ResNet 101 55.4 29.2

STC-ResNet 101 56.7 30.8

Shuffle and learn [31] 50.9 19.8

Odd-One-Out [14] 60.3 32.5

AVTS [27] 83.7 53.0

ActionFlowNet [32] 83.9 56.4

AOT [59] 86.5 -

DynamoNet (ResNext) 87.3 58.6

DynamoNet (STCnet) 88.1 59.9

Table 1. Comparison of self-supervised methods on UCF101 and

HMDB51 split-1 with RGB input. All of the methods (except

baseline networks) has been trained with a self-supervised method

and then fine-tuned on UCF101 and HMDB51.

for video classification methods.

We have also evaluated the impact of the self-supervised

(or unsupervised) pre-training on the demand of labeled

training data for training on large datasets like Kinetics. To

train a 3D-CNN like STCnet or 3D-ResNet from scratch,

we need a huge amount of labeled video clips. We showed

with a pre-trained 3D-ConvNet by DynamoNet pipeline, we

can use a fraction of Kinetics videos but still achieve a rea-

sonable performance. Table 2 shows how we can handle the

cases with limited number of videos. The evaluation is done

on the validation set of Kinetics. We can observe that Dyna-

moNet performance when trained with half of the dataset is

still comparable with others trained on full amount of data.

Model Data size Top1-Val (%)

3D-ResNext 101 [19] half 53.9

3D-ResNext 101 [19] full 65.1

STC-ResNext 101 [6] half 55.4

STC-ResNext 101 [6] full 66.2

DynamoNet (STCnet) half 63.6

DynamoNet (STCnet) full 67.6

Table 2. Evaluation of training on half and full Kinetics dataset.

Model SSIM

Mathieu et al. [30] 0.92

Ours 0.95

Table 3. Frame prediction quantitative performance comparison on

378 test videos from UCF101.

4.5. Frame Prediction Learning Impact

There might be a question about the effect of prediction

loss on the training pipeline. We have done experiments

to generate filters and have used them as feature combined

with action representation for action classification without

frame prediction objective. A DynamoNet which is trained

on the UCF101 achieves 50.2%, training DynamoNet with-

out prediction loss performs 43.2%. As expected, the per-
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Last frame GT Last frame Prediction Difference GT and Prediction Optical Flow

Figure 3. Qualitative results. Comparison between the actual ground truth frame and the predicted future frame - obtained using our

proposed approach. First column is an actual frame from video clip as Ground-Truth (GT). Second column is the DynamoNet predicted

frames. Third is the difference image of the GT and the predicted frames, and in fourth column, we show the optical flow extracted from

the predicted frames which presents corresponding motion regarding the last frame. Best viewed in color.

formance was poor and filters do not present any meaning-

ful information in absence of prediction objective function.

4.6. Frame Prediction

We have compared our frame prediction performance

with Mathieu et al. [30] which provided results on 378 test

videos from UCF101 in Table 3. Moreover in Figure 3, we

present a few examples of qualitative prediction results us-

ing our DynamoNet. The predicted frames show that the

dynamic motion filters are able to capture the motion infor-

mation, and thereby help to predict the future frames.

4.7. Action Recognition

In this section, we compare the DynamoNet performance

with the state-of-the-art methods by first pre-training on Ki-

netics and then fine-tuning on target dataset, i.e. all three

splits of the UCF101 and HMDB51 datasets. For UCF101

and HMDB51, we report the average accuracy over all three

splits. Our experiments are best with STCnet and 3D-

ResNet/Next configuration which is of depth 101.
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Method Top1-Val Top5-Val

DenseNet3D 59.5 -

Inception3D 58.9 -

C3D [19] 55.6 -

3D ResNet101 [19] 62.8 83.9

3D ResNext101 [19] 65.1 85.7

RGB-I3D [3] 68.4 88

STC-ResNet101 (16 frames) [6] 64.1 85.2

STC-ResNext101 (16 frames) [6] 66.2 86.5

STC-ResNext101 (32 frames) [6] 68.7 88.5

S3D-G [62] 74.7 93.4

R(2+1)D [51] 74.3 91.4

NL-I3D [58] 77.7 93.3

DynamoNet (ResNext) (16 frames) 66.3 86.7

DynamoNet (ResNext) (32 frames) 68.2 88.1

DynamoNet (STCnet) (16 frames) 67.6 87.2

DynamoNet (STCnet) (32 frames) 71.4 90

DynamoNet (STCnet) (64 frames) 77.9 94.2

Table 4. Performance (%) comparison of DynamoNet with other

state-of-the-art methods on Kinetics-400 dataset.

Table 4 presents Kinetics dataset results for DynamoNet

compared with the other 3D ConvNets who have provided

results on the dataset. The DynamoNet (STCnet101) with

64 frames input depth outperforms STC-ResNext101 [6]

which has the input size of 32 frames, and also I3D [3] with

64 frames input.

Method UCF101 HMDB51

DT+MVSM [2] 83.5 55.9

iDT+FV [55] 85.9 57.2

C3D [49] 82.3 56.8

C3D+iDT [49] 90.4 −

LTC+iDT [49] 92.4 67.2

Conv Fusion [13] 82.6 56.8

Two Stream [42] 88.6 −

TDD+FV [56] 90.3 63.2

RGB+Flow-TSN [57] 94.0 68.5

ST-ResNet [12] 93.5 66.4

TSN [57] 94.2 69.5

RGB-I3D [3] 95.6 74.8

Inception3D [6] 87.2 56.9

3D ResNet 101 (16 frames) [19] 88.9 61.7

3D ResNext 101 (16 frames) [19] 90.7 63.8

STC-ResNext 101 (16 frames) [6] 92.3 65.4

STC-ResNext 101 (64 frames) [6] 96.5 74.9

DynamoNet (ResNext) (16 frames) 91.6 66.2

DynamoNet (ResNext) (32 frames) 93.1 68.5

DynamoNet (STCnet) (32 frames) 96.6 74.9

DynamoNet (STCnet) (64 frames) 97.8 76.8

Table 5. Accuracy (%) performance comparison of DynamoNet

with the state-of-the-art methods over all three splits of UCF101

and HMDB51. For a fair comparison, in this table we report the

performance of methods which utilize only RGB frames as input.

In Table 5, we compare the performance of Dy-

namoNet with current state-of-the-art methods on

UCF101/HMDB51. Our DynamoNet (with STCnet

model) outperforms STCnet [6], 3D-ResNet [50], RGB-

I3D[3] and C3D [49] on both UCF101 and HMDB51

and achieves 97.8% and 76.8% accuracy respectively.

As shown in Table 5, DynamoNet performs better than

STC-ResNext101 by almost 2% on UCF101. Note that

most of current methods [3, 57] utilize optical-flow maps

in addition to RGB frames, such as I3D which obtains a

performance of 98% on UCF101 and 80% on HMDB51,

also utilize flow information. Since our DynamoNet is

providing motion representation for action classification in

an end-to-end fashion, we show that a nice performance

can also be obtained even without incorporating flow

information.

Despite of not using optical-flow information, our results

show how DynamoNet can exploit spatio-temporal appear-

ance and motion information together with 3D-Conv struc-

ture, in addition to dynamic motion representation learning.

Our work encourages similar approaches to exploit motion

cues for action and activity classification in a more efficient

manner thus leading to improve both accuracy and compu-

tation performance.

5. Conclusion

The capability of the current video understanding archi-

tectures to effectively learn and exploit motion representa-

tion is a key issue in the field of action classification. In this

work, we propose to learn an action classification driven

motion representation in videos using dynamic motion fil-

ters by predicting the future frames. Furthermore, we show

that the learned motion representation is effective for ac-

tion classification. We demonstrate the effectiveness of our

proposed method on three challenging action recognition

benchmark datasets: UCF101, HMDB51 and Kinetics. In

addition to yielding a better performance than the state-of-

the-art methods, our dynamic motion representations are ro-

bust and compact - which retains a global motion represen-

tation in a more expressive way.

Even though, in this paper we have focused on action

classification only, we believe the our motion information

can be added as a complementary cue for other tasks, like

video understanding, video retrieval and more. Since our

motion filter learning is self-supervised, we believe abun-

dantly available unlabeled videos are an effective resource

to acquire knowledge and to learn a effective feature repre-

sentation. In future, we would like to explore two-stream

network paradigm for making a more efficient pipeline of

frame prediction and action classification.
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