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Abstract

In this paper we propose an attentive recurrent gener-

ative adversarial network (ARGAN) to detect and remove

shadows in an image. The generator consists of multiple

progressive steps. At each step a shadow attention detector

is firstly exploited to generate an attention map which spec-

ifies shadow regions in the input image. Given the attention

map, a negative residual by a shadow removal encoder will

recover a shadow-lighter or even a shadow-free image. A

discriminator is designed to classify whether the output im-

age in the last progressive step is real or fake. Moreover,

ARGAN is suitable to be trained with a semi-supervised

strategy to make full use of sufficient unsupervised data. The

experiments on four public datasets have demonstrated that

our ARGAN is robust to detect both simple and complex

shadows and to produce more realistic shadow removal re-

sults. It outperforms the state-of-the-art methods, especially

in detail of recovering shadow areas.

1. Introduction

Shadow exists in most images and is formulated in inter-

action among the illumination, object materials and scene

geometry. Obviously, the detected shadows can provide

important clues for various applications of visual scene un-

derstanding, such as scene geometry depiction [41], cam-

era location [21], object relighting [22], and scene illumi-

nation inference [60]. Meanwhile, the shadow removal is

able to boost the performance of some computer vision and

computer graphics tasks, such as object detection and track-

ing [37, 33, 36], object recognition [5, 17, 31, 32, 18], in-

trinsic image decomposition [29]. Therefore, it is desirable

to develop an effective method of shadow detection and re-

moval.

∗This work was co-supervised by Chengjiang Long and Chunxia Xiao.

Figure 1. Given an input image (left) with shadow, our goal is

to generate a more accurate attention map gradually indicating

the detected shadow region (right-top) and recover a more realis-

tic shadow-removal image (right-bottom) gradually with multiple

progressive steps.

Previous works for shadow detection and removal can

be mainly divided into two categories. One category is tra-

ditional methods [12, 61] based on some prior knowledge,

such as consistent illumination in shadow regions. Its short-

coming is that the priors might dissatisfy some shadow im-

ages under a complex environment so that the performance

of shadow removal result cannot be guaranteed. The other is

deep learning methods [44, 15, 53, 26, 65] whose effective-

ness rely heavily on supervised data to learn a robust model.

Particularly, however, when the training data is insufficient,

such deep learning methods often appear color distortion or

other problems in the shadow removal results.

In this paper, we propose a novel attentive recurrent gen-

erative adversarial network (ARGAN) for shadow detection

and removal. As illustrated in Figure 2, the generator in-

volves multiple progressive step for shadow detection and

removal in a coarse-to-fine fashion, and the discriminator is

designed to classify whether the generated shadow-removal

image at the last step from the generator is real or fake.

At each progressive step in the generator, a shadow atten-

tion detector is used to generate an attention map. Then a

shadow removal encoder is designed to combine the previ-

ous shadow-removal image and the current detected shadow

attention map to obtain a negative residual [8] for recover-
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ing the shadow-lighter or even shadow-free images.

The intuition behind multiple progressive steps in the

generator is that it is much easier to detect and remove

shadow gradually with a step-by-step approach so that we

are able to handle shadows especially with complicated

scenes. The detected shadow region and recovered shadow-

lighter image from the previous step are the input of the

present step. Therefore, we are able to explore a recurrent

unit such as Long and Short Term Memory (LSTM) [14]

to reserve the valuable and detailed information to make

sure that the detected shadow regions are more and more

accurate, and that the shadow-removal images are more and

more realistic, as illustrated in Figure 1.

We shall emphasize that we adopt the adversarial train-

ing process [10] between the generator and the discrimina-

tor to generate a shadow-removal image. With the number

of epochs increases, both models improve their functional-

ities so that it becomes harder and harder to distinguish a

generated shadow-removal image from a real shadow-free

image. Therefore, after a certain large number of training

epochs, we can utilize the learned parameters in the gen-

erator to generate a shadow attention map and a shadow-

removal image at each progressive step. The output from

the last step is our final result.

Moreover, we apply a semi-supervised learning strat-

egy [47] to make full use of sufficient unsupervised shadow

images available online by modifying the original adversar-

ial loss to cover both labeled data and unlabeled data. We

can first use the generator and generate a shadow-removal

image for any input images with shadow, and then just use

the discriminator to discriminate whether the generated im-

age is real or not. This treatment can improve the general-

ization ability and robustness of our ARGAN.

Several aspects distinguish our work from the previous

shadow detection and removal methods [12, 61, 44, 15, 53,

26, 65]. First of all, our proposed ARGAN adopts adver-

sarial training process to optimize each shadow attention

detector and each shadow removal encoder in the generator.

Secondly, the generator involves multiple progressive steps

for shadow detection and removal in a coarse-to-fine fash-

ion so that it can handle shadows with complicated environ-

ment. Thirdly, a semi-supervised strategy by incorporating

sufficient unsupervised shadow images available online is

able to increase the robustness of our network. We evaluate

our proposed ARGAN on the four public datasets and com-

pare with the state-of-the-art methods on the performance

of both shadow detection and shadow removal. The results

clearly demonstrate the efficacy of our proposed model.

2. Related Work

The related work can be divided into four categories:

shadow detection methods, shadow removal methods, Gen-

erative Adversarial Network and attention mechanism.

Shadow detection methods involve traditional methods,

using user interactions [11, 61, 6] and hand-crafted fea-

tures [25, 12, 51], and recent deep learning methods [23,

52, 40, 16, 26, 65] for automatic shadow detection. To spec-

ify, Khan et al. [23] detected the shadow by combining the

boundary and region ConvNets in the CRF model. Vicente

et al. [52] proposed a semantic-aware patch level CNN ar-

chitecture for shadow detection. Nguyen et al. [40] detected

shadow using conditional generative adversarial networks.

Hu et al. [16] detected shadow by analyzing image context

in a direction-aware manner. However, these methods only

work well on image with simple shadow. They cannot de-

tect accurate shadow with complex scenes.

Shadow removal methods based on gradient domain

manipulation [39, 7], illumination [61, 56, 55, 23, 46], color

transferring [45], accurate shadow matte [4, 11, 54] and

depth information [57] have been exposed for a long time.

Recently three deep learning methods have been proposed

for shadow removal. One is Qu et al.’s multi-context em-

bedding network [44] integrating high-level semantic con-

text for shadow removal. One is Hu et al.’s [15] using

direction-aware spatial context features for shadow detec-

tion and removal. Another is Wang et al.’s GAN-based

method [53] which jointly learns shadow detection and

shadow removal. Different from [53], our proposed AR-

GAN involves multiple progressive steps with attentive re-

current units in the generator to achieve better performance

on shadow removal.

Generative Adversarial Network (GAN) [10] and its

variants [60] have been proposed to deal with various

image-to-image translation problems, such as image super-

resolution [27], image inpainting [42], style transfer [28]

and domain adaptation/transfer [30, 19, 50], raindrop re-

moval [43], shadow detection and removal [53]. Unlike [43]

which only progressively updates the attention map with the

same input image for a one-step removal, our proposed AR-

GAN progressively detects shadow and removals shadow

step by step in a coarse-to-fine fashion.

Attention mechanism [2] is designed to encode se-

quence data based on the assigned importance score of each

element, which has attained significant improvement in var-

ious tasks in natural language processing [24, 49], speech

recognition [3], computer vision [63], image captioning [59,

34, 9] and visual question answering (VQA) [35, 1]. Dif-

ferent from [63] which uses the progressive and recurrent

idea to integrate multiple contextual information of multi-

level features, our ARGAN progressively and recurrently

updates the shadow attention maps and the shadow removal

images in the generator in a coarse-to-fine fashion so that it

can handle shadows with complicated environment.
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Figure 2. The framework overview of the proposed ARGAN consists of two components, i.e., a generator and a discriminator. The generator

consists of N shadow attention detectors and N shadow removal encoders. Each shadow attention detector is designed to generate the

shadow attention map, and each shadow removal encoder is to produce shadow-lighter or even shadow-free image. The discriminator is

formed by five convolutional layers and a fully connected layer to classify the output shadow-free image as real or fake.

3. Approach

As illustrated in Figure 2, we present an attentive recur-

rent generative adversarial network (ARGAN) to explore

the mapping relationship from shadow images to the cor-

responding shadow-free images. Like all the generative ad-

versarial networks, our ARGAN contains two components,

i.e., a generator to produce a shadow-free image as real as

possible, and a discriminator to classify whether the gener-

ated shadow-free image is indeed a real image or not.

At the generative stage, given an input shadow image I ,

we iteratively update the detected shadow region indicated

with an attention map Ai by shadow attention detector Gi
det

and output a shadow-lighter or even shadow-free image Oi

by shadow removal encoder Gi
rem at i-th step by the fol-

lowing equations:

Ai =

{

Gi
det(I) i = 1

Gi
det(Oi−1, Ai−1) i > 1

(1)

Oi =

{

Gi
rem(I, Ai) i = 1

Gi
rem(Oi−1, Ai) i > 1

(2)

At the discriminative stage, we design a discriminator

D to encode the final output shadow-free image ON with

semi-supervised strategy to handle the supervised data (the

ground-truth shadow-free images F ) and unsupervised data

(F is missing) under the adversarial framework.

In the following subsections, we are going to discuss the

generative network, the discriminative network, and the loss

functions, as well as the implementation details.

3.1. Generative Network

Our generative network is composed of N progressive

steps and each step has one shadow attention detector and

Conv

LSTM

BN+LRelu

Conv 

Conv 

BN+LRelu

Sigmoid

Conv 

LSTM

BN+LRelu

Conv 

Conv 

BN+LRelu

Sigmoid
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Figure 3. Each shadow attention detector consists of ten convolu-

tional layers with 64 as output channel number, one LSTM layer

and one convolutional layer. Note that every convolutional layer

here is followed by a batch normalization and Leaky-ReLU active

function. The stride is 1.

one shadow removal encoder.

Shadow attention detector. We incorporate attention

mechanism to selectively choose what our network wants

to observe, locate shadows of the input image and make

the attention of shadow removal encoder focusing on the

detected shadow regions. As shown in Figure 2, a recurrent

unit through Long and Short Term Memory (LSTM) [14]

can be formulated into our recurrent attention network, in

which LSTM can make full use of the intermediate output

of the previous step in the recurrent network and, as a prior,

generate attention map which represents shadow region in

the later steps.

As illustrated in Figure 3, the shadow attention detector

in our recurrent network is designed as ten convolutional

layers with batch normalization and Leaky ReLU activation

function (Conv+BN+LRelu) to extract feature from the in-

put image. A convolutional LSTM unit [58] is to estimate
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Figure 4. Attention maps generated by shadow attention detector

at the first three progressive iterations. From left to right are input

shadow image, region attention maps A1, A2 and A3, respectively.

the shadow regions by combining information at the previ-

ous step and passing the estimated result to the next step and

a convolutional layer to generate a shadow attention map,

which is the shadow matte in Equation 1.

Note that all the N shadow attention detectors share the

same architecture. Each output of attention map Ai is a

matrix. Each value in such a matrix is in the range from 0

to 1, rather than a binary mask. The larger the value, the

more attention at this area. It indicates that the area of large

value is more likely to be marked as shadow region. As

shown in Figure 4, the red area with greater attention value

close to 1 is more likely to be shadow region, whereas the

blue area where the attention value is close to 0 is more

likely to be considered as non-shadow region. In this way,

our attention map can effectively distinguish soft shadow

and hard shadow in the image by giving different attention

values.

We observe that the attention module may not focus on

all shadow regions of the image initially. The attention

will constantly and gradually cover to the target region in

the subsequent recurrent iterations. Therefore, it gradually

shifts the attention to focus on all shadow regions. Figure 4

shows one example of attention maps generated at the first

three progressive steps. The detected shadow region marked

in red are more and more accurate as the step number in-

creases.

Shadow removal encoder. In order to remove shadow in

an image, we follow the idea of negative residual [8] and de-

sign the shadow removal encoder, which incorporates both

the image with shadow, and the detected shadow regions

attention to generate a negative residual for recovering a

shadow-lighter or shadow-free image.

As illustrated in Figure 5, the encoder firstly uses eight

Conv+BN+LRelu to extract feature from the image. Then it

takes eight deconvolutional layers with batch normalization

and Leaky ReLU activation function (Deconv+BN+LRelu)

to generate image with feature data of a particular distribu-

tion. Skip connection [13] is applied between convolutional

layers and deconvolutional layers because it is able to not

only increase the number of channels in the network, but

also preserve the context information of front layer.

Following the last deconvolutional layer, 2

Conv+BN+LRelu are applied to extract the feature

map and a convolutional layer with sigmoid activation to

convert the feature map into a corresponding map with 3
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Figure 5. The aritecture of the shadow removal encoder. It con-

sists of 8 Conv+BN+LRelu and 8 Deconv+BN+LRelu. The skip

connections are linked between convolutional layers and decon-

volutional layers. After that, 2 Conv+BN+LRelu, 1 Conv and 1

Sigmoid layer generates a corresponding map with 3 channels and

the same size of the input Oi−1. A product operation is applied be-

tween the sigmoid output and the detected attention map Ai. Then

a negative residual is obtained to recover a shadow-lighter or even

shadow-free image Oi.

Layer Output Kernel Stride Layer Output Kernel Stride

Conv 64 3×3 2 Deconv 512 4×4 2

Conv 128 3×3 2 Deconv 512 4×4 2

Conv 256 3×3 2 Deconv 512 4×4 2

Conv 512 3×3 2 Deconv 256 4×4 2

Conv 512 3×3 2 Deconv 128 4×4 2

Conv 512 3×3 2 Deconv 64 4×4 2

Conv 512 3×3 2 Deconv 3 4×4 2

Conv 512 3×3 2 Conv 3 3×3 1

Deconv 512 4×4 2 Conv 3 3×3 1

Table 1. The architecture for shadow removal encoder. Conv

means the convolutional layer, Deconv means the deconvolutional

layer. Output channels denotes for the amount of output channels

in current layer. Kernel means the convolutional kernel size. Stride

denotes the moving step size of convolutional kernel.

channels and the same size of the input Oi−1. The param-

eters for all the convolutional layers and deconvolutional

layers are summarized in Table 1. Finally, we convert

the sigmoid output to the residual information with the

detected attention map Ai by a product operation to get a

negative residual for recovering a shadow-lighter or even a

shadow-free image Oi from the input image Oi−1.

As we can observe in Figure 6, as the progressive step

number increases, the shadow in the output image becomes

lighter and lighter, and the last output image O3 is almost

shadow-free.

3.2. Discriminative Network

Discriminator is designed as a binary classifier to predict

whether the final output image ON from the generator is

real or fake. It is worth mentioning that both generator and

discriminator constantly improve their ability. Finally, they

achieve a balanced state that the image produced by gener-

ator seems to be a real shadow-free image, which is consis-

tent with our expectation that our generator model can pro-

duce a realistic shadow-free image so that the discriminator

may consider it as a real shadow-free image.

To make it simple, we design our discriminator with five

Conv+BN+LRelu and one fully connected layer, as shown
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Figure 6. Output images generated by shadow removal encoder at

the first three progressive iterations. From left to right are input

shadow image, output images O1, O2 and O3, respectively.

in Figure 2. The output channel numbers for all these six

layer are 64, 128, 256, 512 and 1, respectively. Note that

the kernel size for convolutional layers is 4 × 4, and the

stride length is 2. The last fully connected layer outputs the

actual probability value for the input image. The fake image

and the real image are distinguished by calculating the cross

entropy loss between them.

It worths paying attention to that some shadow scenes

may be missed in the shadow datasets. To solve this prob-

lem, inspired by [47], we apply semi-supervised learning

strategy to our network. We use shadow image without

ground-truth as unsupervised data in the training process.

For each training process, we also input an unsupervised

data to the generator and generate a shadow-free image. The

discriminator discriminates whether the generated image is

real or not. The semi-supervised strategy can improve the

generalization ability of our network and make our genera-

tor models more robust.

In addition, to make our ARGAN more stable, we use

the latest spectral normalization [38] method to stabilize the

training process of discriminator network, because spectral

normalization is a simple and effective standardized method

for limiting the optimization process of the discriminator in

GAN, and it can make the whole Generator model better.

3.3. Loss functions

The loss function we use to optimize our ARGAN comes

from the shadow attention detector, shadow removal en-

coder, and discriminator. The total loss Ltotal can be for-

mulated as:

Ltotal = Ldet + Lrem + Ladv, (3)

where the corresponding loss components are described as

following.

Shadow attention detector loss Ldet in each shadow at-

tention detector is defined as the mean square error (MSE)

between shadow matte M (which is obtained by comparing

the ground-truth shadow-free image and its corresponding

shadow image) and the output attention map. In our genera-

tor, we apply the shadow attention detector for N iterations,

and the loss function is expressed as:

Ldet =

N
∑

i=1

βiVMSE(Ai,M), (4)

where βi is the weight of the MSE loss at i-th iteration,

βi = 0.7N−i+1, and VMSE(Ai,M) is the mean square error

between M and Ai.

Shadow removal encoder loss Lrem contains accuracy

loss and perceptual loss [20]. We define the loss function

as:

Lrem =

N
∑

i=1

Lmse(Oi, F ) +

N
∑

i=1

Lper(Oi, F ), (5)

where Oi is the shadow-lighter or even shadow-free image

generated by shadow removal encoder, F is the correspond-

ing ground-truth shadow-free image, Lmse(Oi, F ) is accu-

racy loss, and Lper(Oi, F ) is perceptual loss.

Lmse(Oi, F ) is used to measure the difference between

the ground-truth image and shadow-free image generated

by shadow removal encoder at the i-th iteration. The

smaller the value of MSE, the more accurate the shadow

removal encoder. The accuracy loss function is defined as:

Lmse(Oi, F ) = βiVMSE(Oi, F ). (6)

Lper(Oi, F ) is used to calculate global difference be-

tween the ground-truth image and the shadow removal

result. We extract image features using the pre-trained

VGG16 model [48] on the ImageNet dataset. The loss func-

tion is defined as :

Lper(Oi, F ) = VMSE(VGG(Oi),VGG(F )), (7)

where VGG(Oi) and VGG(F ) are the feature of image Oi

and F extracted from VGG16 model.

Adversarial loss Ladv with supervised learning is ex-

pressed as:

Ladv = E(I,F )[log(D(y)) + log(1−D(G(I)))], (8)

and with semi-supervised learning, it is defined as

Ladv = λE(I,F )[log(D(y)) + log(1−D(G(I)))]+

(1− λ)E(Î)(log(1−D(G(Î)))),
(9)

where Î is an unsupervised data. G is the generator. The

output of the discriminator D represents the probability of

input image is the real image. λ is a weighting hyper-

parameter and the expectation value is over a supervised

training set (I, F ) of input-output pairs.

3.4. Implementation Details

Our proposed ARGAN is implemented in Tensorflow

on a computer with Intel(R) Xeon(R) Silver 4114 CPU @

2.20GHz 192G RAM NVIDIA GeForce GTX 1080Ti. In

our experiments, the input size of image is 256 × 256. We

set N = 3 and λ = 0.7. The minibatch size of 4. The initial

learning rate is set as 0.0002. We use Momentum Optimizer

to optimize our generator and use Adam Optimizer for the

discriminator. We alternatively train the generative network

and the discriminative network for 100,000 epochs.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 7. Shadow detection results comparisons. (a) is input images. (b) is results of Guo [12]. (c) is results of Zhang [61]. (d) is results

of DSC [15]. (e) is results of ST-CGAN [53]. (f) is results of A+D Net [26]. (g) is results of BDRAR [65]. (h) is ground-truth. (i) is our

ARGAN’s results.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Shadow detection results comparisons. (a) is input images. (b) is results of Guo [12]. (c) is results of Zhang [61]. (d) is results of

DSC [15]. (e) is results of ST-CGAN [53]. (f) is results of A+D Net [26]. (g) is results of BDRAR [65]. (h) is our ARGAN’s results.

4. Experiments

To verify the effectiveness of our proposed ARGAN+SS,

we compare our method with several state-of-the-art

shadow detection and removal methods on four datasets:

SBU dataset [52], UCF dataset [64], SRD dataset [44], and

ISTD dataset [53].

4.1. Datasets and metrics

SBU dataset [52] contains 4727 pairs of shadow and

shadow mask image. UCF dataset [64] contains 110 images

with corresponding shadow masks. Both datasets have no

shadow-free images so that we can only evaluate the detec-

tion performance on them. SRD dataset [44] has 408 pairs

of shadow and shadow-free images publicly available but,

without the ground-truth shadow masks, can only be used

for the evaluation of shadow removal. ISTD dataset [53]

contains 1870 image triplets of shadow image, shadow

mask, and shadow-free image. We can use this dataset to

train our ARGAN and evaluate the performance on both

shadow detection and shadow removal. We use 1330 triplets

of shadow image, shadow mask and shadow-free images of

ISTD [53] train dataset for training as supervised data, and

the remaining 540 triplets for evaluation.

For shadow detection, we employ Balance Error Rate

(BER) [40] between the ground-truth mask and the pre-

dicted shadow matte to evaluate the shadow detection per-

formance. For shadow removal, we utilize the root mean

square error (RMSE) in LAB color space between the re-

covered shadow removal result and the ground-truth image.

4.2. Performance comparison on shadow detection

We compare our shadow detection results with some

state-of-the-art shadow detection methods including two

traditional methods, i.e., Guo [12] and Zhang [61], and four

recent deep learning methods, i.e., ST-CGAN [53], DSC

[15], A+D Net [26] and BDRAR [65]. To further verify the

effectiveness of the LSTM layer in the shadow attention de-

tector, we remove all the LSTM layers and get a variant net-

work which we call “AGAN”. For the fair comparison, we

train all the competing models together with our proposed

ARGAN on the same training data in supervised learning,

and evaluate the shadow detection performance on the SBU,

UCF and ISTD datasets. We also collect 1330 images of a

wide variety of scenes from online and and take them as un-

supervised data to train our model in semi-supervised learn-

ing. We denote this method as “ARGAN+SS” where “SS”

represents semi-supervised.

The results are summarized in Table 2. As we can

observe, (1) among all the competing methods, our AR-

GAN works the best BER on all the three datasets, which

strongly demonstrates that our proposed ARGAN is able to

detect accurate shadow regions; (2) without LSTM layers,

AGAN performs much worse than ARGAN, which indi-

rectly verify the effectiveness of the LSTM layers in our

shadow attention detector; (3) with semi-supervised learn-

ing, ARGAN+SS further improve the performance from

ARGAN, which strongly proves the robustness of our pro-

posed model.

To further explain the outperforming of our approach, we
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. Shadow removal results. (a) is the input images. (b) is results of Guo [12]. (c) is the results of Zhang [61]. (d) is results of

DeshadowNet [44]. (e) is results of DSC [15]. (f) is results of ST-CGAN [53]. (g) is ground-truth. (h) is our ARGAN’s results.

visualize some results in Figure 7. As we can see, (1) tradi-

tional methods of Guo [12] and Zhang [61] are not able to

effectively detect slender shadows in the image; (2) among

all deep learning methods, comparing with ST-CGAN [53],

DSC [15], A+D Net [26] and BDRAR [65], our proposed

ARGAN is able to detect more accurate shadow regions and

even more close to our human observation.

Figure 8 presents two more shadow images with more

complex scenes. Apparently, our ARGAN achieves the best

performance on shadow detection. This can be explained by

the fact that the shadow attention detectors with recurrent

units LSTMs keep updating the detection results gradually

from coarse to fine in multiple progressive steps.

Year SBU UCF ISTD

Guo 2011 25.03 28.32 27.16

Zhang 2015 7.13 9.21 8.56

DSC 2018 5.31 8.73 2.40

ST-CGAN 2018 13.56 17.69 3.84

A+D Net 2018 7.67 11.05 2.97

BDRAR 2018 6.61 9.45 2.20

AGAN 2019 7.24 8.67 4.23

ARGAN 2019 3.09 3.76 2.01

ARGAN+SS 2019 2.56 3.03 1.75

Table 2. Quantitative comparison results on shadow detection with

BER metric. The best and second best results are marked in red

and blue colors, respectively.
.

4.3. Performance comparison on shadow removal

We compare our proposed ARGAN with the state-of-

the-art methods including the traditional methods, i.e.,

Guo [12] and Zhang [61] and the recent deep learning meth-

ods, i.e., DeshadowNet [44], DSC [15], and ST-CGAN [53].

We also compare with two variants of our model, i.e.,

AGAN and ARGAN+SS. We evaluate the performance of

shadow removal on SRD dataset and ISTD dataset.

The results are summarized in Table 3. As we can

see, (1) our proposed ARGAN achieves the best RMSE

in both shadow regions and the whole image on the two

datasets, which suggests that ARGAN is promising to re-

moval shadows and recover more realistic shadow-free im-

ages; (2) without LSTM layers, AGAN cannot recover the

shadow-free images qualitatively as well as ARGAN. It can

be explained by the fact that LSTM layers affect the de-

tected shadow attention map which affects the quality of

final recovered shadow-free images; (3) ARGAN+SS con-

stantly improves the performance for ARGAN no matter in

shadow regions, non-shadow regions, or even the whole im-

ages. Again, this clearly demonstrates that our proposed

ARGAN is good at utilizing sufficient unsupervised shadow

images in a semi-supervised learning to improve the qual-

ity of the generator and guarantee the performance of both

shadow detection and shadow-free image recovery.

We continue to analyze the performance comparison

with visualization in Figure 9. In these input images, some

areas in non-shadow regions are dark in color. As we can

observe, Guo [12], Zhang [61], DeshadowNet [44], ST-

CGAN [53], DSC [15] , sometimes will consider the areas

with dark color as shadow regions, and recover illumination

in these dark areas. However, the illumination enhancement

changes the color of non-shadow regions, which is not de-

sirable. In contrast, our proposed ARGAN takes full ac-

count of color information in the whole image and can pro-

duce more natural and realistic shadow removal results.

To further verify the robustness of our ARGAN, we

choose 7 images with shadows in complex scenes from

online and apply all the competing methods to produce

shadow-free images, as shown in Figure 10. Obviously,

our ARGAN is robust to deal with shadows with complex

scenes. The recovered illumination in original shadow re-

gions in the recovered shadow-free image is consistent with

surrounding environment and the texture details in shadow

regions are well preserved.

4.4. Discussion

To further explore how the value of N affects the final

performance, we take experiments N = 1, 2, 3 and 4 to

generate a shadow-free images by our ARGAN. On ISTD,

the BER values for shadow detection are 2.22, 2.08, 2.01

and 2.01, respectively; and the RMSE values for shadow

removal on the whole images are 7.35, 6.97, 6.68 and 6.67,

respectively. We observe that N = 3 is a good trade-off be-

tween performance and complexity, as shown in Figure 11.

In addition, we also visualize the shadow-removal results

with AGAN, ARGAN and ARGAN+SS in Figure 12. We
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(a) (b) (c) (d) (e) (f) (g)

Figure 10. Shadow removal results. (a) is the input images. (b) is results of Guo [12]. (c) is the results of Zhang [61]. (d) is results of

DeshadowNet [44]. (e) is results of DSC [15]. (f) is results of ST-CGAN [53]. (g) is our ARGAN’s results.

(a) (b) (c) (d) (e)

Figure 11. The shadow removal results of recurrent N in a different

value. (a) is the input image. (b), (c), (d) and (e) are the results of

N taking 1, 2, 3, 4 respectively.

Figure 12. The visualization results of ablation analysis. (a) is the

input images. (b) is shadow removal results without using LSTM.

(c) is shadow removal results without using unsupervised data. (d)

is our final shadow removal results.

can observe that LSTM layers really matter for shadow-free

image recovery, and with semi-supervised strategy our AR-

GAN+SS is powerful to handle shadow images with com-

plex scenes.

5. Conclusions

In this paper, we have proposed a robust attentive re-

current generative adversarial network for shadow detec-

tion and removal. The generator both to generate shadow

attention maps and to recover the shadow-removal images

SRD ISTD

S N A S N A

Guo 29.89 6.47 12.60 18.95 7.46 9.3

Zhang 9.56 6.9 7.24 9.77 7.12 8.16

DeshadowNet 17.96 6.53 8.47 12.76 7.19 7.83

ST-CGAN 18.64 6.37 8.23 10.31 6.92 7.46

DSC 11.31 6.72 7.83 9.22 6.50 7.10

AGAN 14.68 5.94 7.65 11.79 6.33 7.57

ARGAN 7.24 4.71 5.74 7.21 5.83 6.68

ARGAN+SS 6.35 4.46 5.31 6.65 5.41 5.89

Table 3. Quantitative comparison results on shadow removal with

RMSE metric. The best and second best results are marked in red

and blue colors, respectively. In the table, S represents shadow

regions, N represents non-shadow regions, and A represents the

whole image.

involves multiple progressive steps in a coarse-to-fine fash-

ion. Our model is able to handle shadows with complex

scenes and is very flexible to incorporate sufficient unsu-

pervised shadow images to train a powerful model. In the

future, we plan to extend our method to solve the challeng-

ing video shadow detection and removal problem [62].
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