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Abstract

In this paper, we propose a novel approach to two-view

minimal-case relative pose problems based on homography

with a common reference direction. We explore the rank-1

constraint on the difference between the Euclidean homog-

raphy matrix and the corresponding rotation, and propose

an efficient two-step solution for solving both the calibrated

and partially calibrated (unknown focal length) problems.

We derive new 3.5-point, 3.5-point, 4-point solvers for two

cameras such that the two focal lengths are unknown but

equal, one of them is unknown, and both are unknown and

possibly different, respectively. We present detailed analy-

ses and comparisons with existing 6- and 7-point solvers,

including results with smart phone images.

1. Introduction

RANSAC [7] has been established as one of the most

successful techniques for model estimation from data with

outliers. Using a minimal point-correspondence is of ex-

treme importance for handling large amounts of outliers

in the image correspondences [8]. However, reducing the

number of point correspondence requires reasonable as-

sumptions or extra data, e.g., coplanar points, planar mo-

tion, pure rotation or translation, etc. When a common ref-

erence direction (e.g.,gravity) is known for both cameras,

there is only one unknown rotation parameter [41], and the

relative pose of the cameras has only four degrees of free-

dom. In practice, modern cellphones or camera-IMU (iner-

tial measurement unit) systems have accelerometers which

can provide the gravity vector. Similar situations arise when

we detect a vanishing point. On the other hand, in indoor

and outdoor environments, planar parts of the scene are of-

ten dominant, such as floor, walls, doors, street or other

general structures. In this paper, we assume that the scene

contains at least one plane, and propose new homography-

based minimal solvers to calibrated and partially calibrated

relative pose estimation with a common reference direction.

The main contributions of this paper are:

• A rank-1 constraint on the difference between the

Euclidean homography matrix and the corresponding

rotation is introduced to formulate the problem effi-

ciently.

• Based on this constraint, we propose an efficient two-

step solution for eliminating part of the unknowns

from the original equations.

• This allows us to solve the homography-based relative

pose problems with a common direction, including the

calibrated case (3-point), two cameras with equal fo-

cal lengths (3.5-point), two cameras where one is cal-

ibrated and the other’s focal length is unknown (3.5-

point), and two cameras with different focal lengths

(4-point).

2. Related work

When the two cameras are semi-calibrated, in the sense

that the only unknown intrinsic parameter are the focal

lengths, at least seven point correspondences are needed to

recover the motion and focal lengths of two cameras [16, 2].

If the two cameras have the same focal length, at least six

point correspondences are needed [38, 27, 14, 21, 22]. One

the other hand, if 4 points are coplanar, only one extra point

is enough [40]. When one camera is fully calibrated and the

other one’s focal length is unknown, six point correspon-

dences are needed as well [3, 21, 22]. Given a fully cali-

brated camera, it is well known that the relative pose prob-

lem can be solved using five point correspondences [33, 28,

21]. If the points are coplanar, homography-based solver

need four point correspondences [15]. Recently, it has been

shown that with a common direction, the two-view relative

pose problem can be solved with only three point correspon-

dences using epipolar constraints [9, 32, 39] or homogra-

phies [37, 36]. In [11], the author propose a homography-

based relative pose estimation assuming a known vertical

direction and a dominant ground plane.
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The most closely related work to ours for the calibrated

case is by Saurer et al. [37, 36]. In [36] the authors generate

a 443 × 451 G-J (Gauss-Jordon) elimination template us-

ing [19]. The two-step solution proposed in Section 4 gives

a template with size 24× 34. Since the computational com-

plexity of G-J elimination is o(n3), the speedup is signifi-

cant. However, for the calibrated relative pose with known

direction, essential-matrix based solvers are more efficient,

e.g., the solver proposed by Sweeney et al. [39] only needs

to solve a quadratic eigenvalue problem.

For the partially calibrated two-view relative pose prob-

lem with equal focal lengths, the most closely related work

to ours is Malis et al. [29]. They compute the homog-

raphy between two views, then try all the possible fo-

cal lengths and choose the one which minimizes the cost

function. In fact, their method needs multiple views to

improve accuracy. Other related works are the 6-point

solvers [38, 27, 14, 21, 22], which are all based on rank-

2 and trace constraints, and the 5-point (4 coplanar points

plus 1 point out of the plane) solver [40]; for the one un-

known focal length problem, the most closely related work

is the single-side 6-point solver [3, 21, 22]; for the varying

focal lengths problem, it is the 7-point solver using Boug-

noux formula [2]. Compared to the SOTA (state-of-the-art)

solvers, the partially calibrated solver proposed in Sec. 4 has

two advantages. 1) It needs 3.5 or 4 instead of 6 or 7 points,

which is important for RANSAC, 2) it is more accurate.

3. Problem formulation

Let π denote the observed plane and n = [nx, ny, nz]
T

be its unit normal vector in the first camera frame. The

distance from the optical center of the first camera to the

plane is denoted by d. Suppose this plane is observed from

two views with projection matrices P1 = K1[ I | 0 ] and

P2 = K2[R | t ], where K1,K2 are the camera intrinsic

matrices and {R, t} are the rotation matrix and translation

vector, respectively. The homography for points belonging

to the plane between consecutive frames is defined as fol-

lows:

λm2 = Gm1, (1)

with

G ∼ K2HK−1

1
, (2)

where λ is a scale factor, ∼ indicates equality up to a scale

factor, and m1 = [u1, v1, 1]
T and m2 = [u2, v2, 1]

T are

the homogeneous coordinates of the point in the first and

second images. H , the so-called Euclidean homography

matrix is defined by

H = (R− 1

d
tnT ). (3)

In this paper, we assume that the views have a common ref-

erence direction. We can use a vanishing point or the gravity

Figure 1: One can calculate the roll, pitch angles of the cam-

era coordinate with respect to the world coordinate (gravity)

using the IMU data, and align the y-axes with the gravity.

direction obtained by an IMU on mobile phones and robots

for this direction. Without loss of generality, we can align

the y-axes of the two cameras to the common reference di-

rection (see Figure 1). Using this direction, we can com-

pute the rotation matrices R1, R2 of the two cameras for the

alignment. Applying the rotations to the normalized image

points we obtain

λRT
2
K−1

2
m2 = HyR

T
1
K−1

1
m1, (4)

where

Hy = (Ry −
1

d′
t′n′T ), (5)

with

Ry =

⎡

⎣

cos θ 0 sin θ
0 1 0

-sin θ 0 cos θ

⎤

⎦, (6)

R = R2RyR
T
1
,
t

d
= R2

t′

d′
, n = R1n

′. (7)

Our aim is to estimate the relative pose using homography.

4. Our approach: Rank-1 constraint

Given two matching image points m1 = [u1, v1, 1]
T and

m2 = [u2, v2, 1]
T , the homography constraint (1) can also

be written as
[

0 0 0 -u1 -v1 -1 v2u1 v2v1 v2
u1 v1 1 0 0 0 -u2u1 -u2v1 -u2

]

g = 0, (8)

g = [g1 g2 g3 g4 g5 g6 g7 g8 g9]
T . (9)

By stacking the constraint rows for n point correspon-

dences, (8) leads to a system of equations of the form

Ag = 0, (10)

where A is a 2n × 9 matrix. Then g and the 2D homog-

raphy matrix G can be formulated as the null space of A.

Based on (1), (2), (4) we obtain the relationship between

the Euclidean homography Hy and 2D homography G

Hy ∼ RT
2
K−1

2
GK1R1, (11)
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where ∼ indicates equality up to a scale factor. Unlike the

essential matrix which obeys rank-2 and trace constraints,

there are no explicit constraints for a Euclidean homogra-

phy matrix. In this case, we define a new matrix Q

Q = RT
2
K−1

2
GK1R1 − kRy, (12)

which is the difference between the homography matrix Hy

and the corresponding rotation Ry . Note that there is a

scalar k in front of the rotation matrix, because (11) is up to

scale. Using (5), we obtain

Q = −kt′n′T , (13)

and Q has rank 1 (when t′ = 0, rank(Q) = 0, which

means a pure rotation, which will be discussed in Sec-

tion 5). In particular, each of the 2 × 2 submatrices of Q
must have zero determinant. For succinct representation,

let c = k cos θ, s = k sin θ, and we obtain

Q =

⎡

⎣

h1−c h2 h3−s
h4 h5−k h6

h7+s h8 h9−c

⎤

⎦, (14)

with

k2 = c2 + s2. (15)

This expression can reduce the degree of the monomials.

Since each 2 × 2 submatrices of Q must vanish, (14) leads

to the following system of nine equations

h1(h5 − k)− c(h5 − k)− h2h4 = 0, (16)

h9(h5 − k)− c(h5 − k)− h6h8 = 0, (17)

h3(h5 − k)− s(h5 − k)− h2h6 = 0, (18)

h7(h5 − k) + s(h5 − k)− h4h8 = 0, (19)

sh4 − ch6 + h1h6 − h3h4 = 0, (20)

sh6 + ch4 + h6h7 − h4h9 = 0, (21)

sh2 + ch8 + h2h7 − h1h8 = 0, (22)

sh8 − ch2 + h2h9 − h3h8 = 0, (23)

h1h9−h3h7−ch1−ch9−sh3+sh7+k2 = 0. (24)

We need to solve the system of 10 equations (15)-(24).

Efficient two-step solution

However, a well known property of a Euclidean homog-

raphy matrix is that it can be decomposed into rotation,

translation and normal of the plane {R, t, n} using the SVD.

Once the Euclidean homography matrix is determined, the

rotation matrix can be extracted too. It means that we do not

need to calculate the unknowns of the homography matrix

and the rotation matrix simultaneously. In equation (16)-

(24), we can divide them into two subsets: the homography

components {h, k} and the rotation components {c, s}. In

this case, we can try to eliminate the rotation components

first instead of solving the 10 polynomial equations directly.

By exploiting relationship among these nine equa-

tions: (16)-(17), (18)+(19), (20)2+(21)2, (22)2+(23)2 and

substituting (16) (18) into (24), we get a total of 5 poly-

nomial equations without the rotation parameters {c, s}

(h1−h9)(h5−k)−h2h4+h6h8=0,

(h3+h7)(h5−k)−h2h6−h4h8=0,

k2(h2

2
+h2

8
)−(h1h8−h2h7)

2−(h3h8−h2h9)
2=0, (25)

k2(h2

4
+h2

6
)−(h1h6−h3h4)

2−(h4h9−h6h7)
2=0,

(h5−k)(h2

7
+h2

9
−k2)+(h3−h7)h4h8−(h1+h9)h6h8=0.

The system of polynomial equations (25) can also be gen-

erated using the computer algebra system Macaulay2 [10].

4.1. Calibrated case

With 3 point correspondences, the general solution of g
in (10) is a 3-dimensional null space that can be written as

g = αga + βgb + gc, (26)

Substituting (26) into the new system of polynomial equa-

tions (25), we get 5 equations in three unknowns {α, β, k}.

The degrees of these 5 equations are {2, 2, 4, 4, 3}, respec-

tively. Now we solve the system of equations (25) us-

ing action matrix method [5]. As described in [4], we

found that, in order to create the action matrix, we need

to generate additional equations by multiplying the ini-

tial equations with monomials. The degrees of the ad-

ditional equations are up to four, which means that we

need to multiply the first and second equations in (25) with

{k, α, β, k2, α2, β2, kα, kβ, αβ} and the last one in (25)

with {k, α, β}. There are in total 26 polynomials with 35

monomials. After removing 2 unnecessary equations and

1 monomial which is not used in the action matrix, we ob-

tain a 24 × 34 template for the G-J elimination. Then we

construct the 10 × 10 action matrix for solving {k, α, β}.

The template size of the solver is much smaller than that

of [36], which is 443× 451. Since the computational com-

plexity of G-J elimination is o(n3), the speedup is signifi-

cant. Once {α, β, k} are calculated, {c, s} can be linearly

obtained from two of the nine equations (16)-(24). Finally

the translation and normal vector can be extracted from ma-

trix Q. We do not need to use the SVD to compute {R, t, n}.

Once Hy is calculated, the rotation is uniquely determined,

with two possible opposite translations.

Note that although the proposed solver is much more ef-

ficient than the SOTA homography-based solver [36] (600x

speedup in practice), there are more efficient solvers based

on the essential matrix if one wants to solve for rela-

tive pose with known direction, e.g., the one proposed by

Sweeney et al. [39]. The solver [39] only needs to solve a

quadratic eigenvalue problem and the only difference is that

the homography-based solvers simultaneously calculate the
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normal of the plane. Since both formulations are solving the

same problem with 3 point correspondences, they should re-

turn very similar results. In this case, for the calibrated rela-

tive pose estimation, we recommend [39]. We just show an

efficient solution to the formulation which is used in [36].

4.2. Partially calibrated case

Assuming the only unknown camera parameter is the fo-

cal length. For most CCD or CMOS cameras, it is reason-

able to assume the cameras have square-shaped pixels, and

the principal point coincides with the image center [14]. In

addition, smart phones, tablets are special because the re-

lationship between the axes of the camera and the IMU are

usually approximate to 0◦, ±90◦, 180◦ [20, 12]. Therefore,

for uncalibrated smart phones and tablets we can directly

use the images and gravity direction.

Equal and unknown focal length: f+H+f 3.5-point

The first situation is when the two cameras have the same

focal length, and this is a 7-DOF problem. In this case,

we need at least 3.5 point correspondences (we still need to

sample 4 point correspondences, but only need one equation

from the last correspondence) and the general solution of g
in (10) is a 2-dimensional null space that can be expressed

by

g = ηga + gb. (27)

Hy can be formulated with {f, η} using (11), and then sub-

stituting Hy into (25) results in a system of 5 equations with

3 unknowns: the focal length f , the scalar η of the null

space ga and the scale factor k of the rotation matrix. In

order to solve the system efficiently, we use an automatic

generator for the polynomial equations, e.g., [24, 25, 23].

We obtain a template of size 152 × 176, and the system

has 24 solutions. In practice, 4 of these solutions have been

found to be always imaginary. The remaining pose and nor-

mal can be extracted as in the calibrated case.

One unknown focal length: H+f 3.5-point

We also address the problem where the first camera is

calibrated and the only unknown is the focal length of the

second camera. In this case, the general solution for g can

be expressed by (27) as well. Then Hy can be formulated

with {f, η} using (11). Substituting Hy into the equation

system (25) we may obtain a G-J elimination template of

size 64× 76, and the system has up to 12 solutions.

Different and unknown focal lengths: f1+H+f2 4-point

For two cameras with different focal lengths, we have an

8-DOF problem and we need at least 4 points. With 4 point

correspondences, g is uniquely determined and Hy can be

formulated with f1, f2 using (11). Substituting Hy into (25)

results in a system of 5 equations with 3 unknowns: the fo-

cal lengths f1, f2 and the scalar k of the rotation matrix.

The remaining steps are the same as the equal and unknown

focal length case. Solving the system of equations (25) re-

sults in a template of size 33 × 41, and the system has 8

solutions. See the supplementary material for more details.

We need to mention that the 4-point (f1Hf2) solver

has multiple physically possible solutions. The 3.5-point

solvers have one parameter in the 2-dimensional null space,

and a unique solution can be found using RANSAC. How-

ever, with 4 points the 2D homography is uniquely deter-

mined, and the f1Hf2 solver has up to 8 solutions. Un-

der positive focal length and depth constraint, there may

still be multiple (usually two) physical possible solutions.

This is similar to the standard 4-point homography algo-

rithm which has two physically possible poses [6, 31]. In

order to choose the good solution, it is necessary to have

additional information such as an estimate of the normal to

the target plane [30], or using the points out of this plane.

Improving numerical stability

In order to improve the numerical stability, the points

should be normalized [17]. We use the varying focal lengths

problem as an example. First we translate the origin to the

image center, then scale the points so that the average dis-

tance from the origin is equal to
√
2. In this case, we may

obtain two transformation matrices: T1 = diag(σ1, σ1, 1),
T2 = diag(σ2, σ2, 1). Applying the transformation to the

image points, and the corresponding camera matrices be-

come K ′−1
1

= diag(1, 1, σ1f1),K
′−1
2

= diag(1, 1, σ2f2).
Once the equations are solved, the focal length only need to

be divided by σ1, σ2. This normalization is necessary. We

show more details in the supplementary material.

5. Degenerate configurations

In our case, there are three kinds of degeneracies. The

first is caused by the data, e.g., three or more points

collinear, which leads to a rank loss of the matrix A in (10).

It can be easily eliminated by RANSAC [7] or its vari-

ants [26, 35]. The second one is induced by the formula-

tion. In (13), we have mentioned that a pure rotation will

result in rank(Q) = 0. In this case, the zero determinant

of the 2 × 2 submatrices of Q is not a full constraint, since

every element of Q should be zero. However, based on ex-

periments we find that the proposed solvers can deal with

the pure rotation case. The last one is that arbitrary planar

motions when the optical axes lie in the plane are critical

motions for the standard 6-point and 7-point solvers [18].

The proposed fHf solver can deal with this case (non-zero

rotation angle). The 3.5-point Hf solver can deal with pure

translation (except for R1 = R2 = I, ty = 0). For more

details see the supplementary material.

6. Experiments

In this section, we test the solvers on synthetic data with

known ground truth. The data with different noise levels are

used to evaluate the numerical stability and precision. For
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Figure 2: Rotation and translation errors for equal and unknown focal length problem, respectively. (a) Sideways motion. (b)

Forward motion. From top to bottom: increased image noise, increased Pitch noise and 0.5 pixel standard deviation image

noise, increased Roll noise with constant 0.5 pixel standard deviation image noise.
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Figure 3: Focal length errors for equal and unknown focal

length problem. Left column: Sideways motion. Right col-

umn: Forward motion.

the equal focal length problem, since [27, 38, 14, 22] use

the same formulation and constraints (rank-2 and trace con-

straints of the essential matrix), so we only compare with

one of them, the SOTA solver [22]. In addition, we also

compare with the 4-plus-1 solver (4 coplanar points plus 1

point out of the plane) [40]. For the one unknown focal

length problem, [3] and [22] also use same formulation and

constraints, so we only compare with SOTA [22]. For the

varying focal lengths problem, we compare with the 7-point

solver using Bougnoux formula [2]. Since we still need to

sample 4 points for the 3.5-point solvers, we show the re-

sults of both the minimal case and the 4 points case which

uses SVD to compute the 2-dimensional null space.

The synthetic data are generated in the following setup.

We sample 200 3D points distributed on a random but fea-

sible plane. The focal length of the camera is randomly

generated: fg ∈ [300, 3000] pixels with a field of view of

90 degrees, and the resolution of the image is set to 2f×2f .

The rotation error ξR, translation error ξt and focal length

error ξf are defined as:

• ξR = arccos((tr(RgR
T
e )− 1)/2),

• ξt = arccos((tTg te)/(‖tg‖‖te‖)),
• ξf =

|fe−fg|
fg

,

where Rg, tg, fg represent the ground-truth rotation, trans-

lation and focal length, and Re, te, fe are the estimated ro-

tation, translation and focal length, respectively. Note that,
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Figure 4: Rotation and translation errors for one unknown focal length problem, respectively. (a) Sideways motion. (b)

Forward motion. From top to bottom: increased image noise, increased pitch noise and 0.5 pixel standard deviation image

noise, increased roll noise with constant 0.5 pixel standard deviation image noise.
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Figure 5: Focal length errors for one unknown focal length

problem. Left column: Sideways motion. Right column:

Forward motion.

for our solvers, we measure the full rotation and translation

errors based on the noisy (roll, pitch) angles (using (7)).

We generated 2,000 random scenes with 3D points on

different planes and different transformations between two

views. For each solver, we test 5 times on one scene and

obtain 10,000 results for each solver. Since the solvers have

multiple solutions, by evaluating the geometric error of the

fit of each solution with respect to a set of points, we can

pick the best one. We evaluate each solver under image

noise (point location) with different standard deviation and

increased (roll, pitch) noise. The (roll, pitch) noise can be

considered as the direction error. We focus on sideways

(parallel to the scene) and forward (along the z-axis) mo-

tions. The base line between two cameras is set to be 10 per-

cent of the average scene distance. Additionally, the cam-

eras are rotated around every axis. This is similar to [34, 9].

Figure 2 and Figure 3 show the estimated rotation, trans-

lation and focal length errors under sideways and forward

motion for the equal and unknown focal length problem.

The figures are plotted using boxplot function in Matlab.

The bottom and top edges of the box indicate the lower and

upper quartile, and the central mark indicates the median.

The points plotted individually are considered as outliers.

We compare the proposed 3.5-point and 3.5-point (SVD)

solver with the 6-point solver [22] and 5-point solver [40].

We also evaluate the 6- and 5-point solver with general

1660



0 0.2 0.4 0.6 0.8 1

0

5

10

15

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

(a)

0 0.2 0.4 0.6 0.8 1

0

5

10

15

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

(b)

Figure 6: Rotation and translation errors for different and unknown focal length problem, respectively. (a) Sideways motion.

(b) Forward motion. From top to bottom: increased image noise, increased pitch noise and 0.5 pixel standard deviation image

noise, increased roll noise with constant 0.5 pixel standard deviation image noise.
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Figure 7: Focal length errors for different and unknown fo-

cal length problem. Left column: Sideways motion. Right

column: Forward motion.

scenes (with 200 extra non-planar points generated ran-

domly). Figure 4 and Figure 5 show the estimated rota-

tion, translation and focal length errors under sideways and

forward motion for the one unknown focal length problem.

Figure 6 and Figure 7 show the estimated rotation, trans-

lation and focal length errors under sideways and forward

motion for the different focal lengths problem.

In general, under perfect direction information the pro-

posed solvers outperform the standard solvers. Sideways

motion seems to be more challenge for the 6- and 7-point

solvers. Feature points lie in a plane is a degenerate con-

figuration for the standard methods. Our solvers are focus

on this case. Under small (roll, pitch) noise, the proposed

solvers are still comparable to the standard algorithms with

general scenes (50% of the points lie in a plane). It is prac-

tical since good accelerometers today have noise levels of

around 0.02 degrees in the computed angles [9]. The only

drawback of our solvers may be that the translation part is

slightly sensitive to direction noise. The experiments also

show that using 4 points to compute the 2-dimensional null

space is much better than the minimal 3.5-point case.

7. Real data

To illustrate the usefulness of the proposed solvers, we

captured the images and the corresponding gravity vector

using an uncalibrated iphone 6S which has a precision of
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Seq. 3.5-point Malis [29] 6-point [22]

1 11.3 43.4 7.8

2 4.9 38.7 62.1

3 9.7 37.2 48.5

4 6.2 57.6 68.3

5 5.1 44.7 63.6

6 5.2 53.7 53.4

7 5.9 46.9 60.6

8 3.2 16.2 89.3

(a) Equal focal length

3.5-point 6-point [22]

2.1 0.2

2.3 50.6

6.6 43.7

1.1 13.0

2.8 69.2

1.6 19.2

1.5 14.5

1.3 74.5

(b) One unknown focal length

4-point 7-point [2]

(3.7, 3.4) (30.0, 32.8)

(6.5, 4.7) (55.3, 55.7)

(3.3, 6.3) (68.3, 65.9)

(3.7, 3.8) (76.9, 72.0)

(3.3, 5.5) (73.4, 77.3)

(3.1, 3.2) (60.6, 61.1)

(2.6, 3.2) (64.2, 63.8)

(0.6, 1.0) (70.0, 68.5)

(c) Varying focal lengths

Table 1: Median relative error (%) in the estimated focal lengths on the 8 sequences.

1◦. 8 short sequences with more than 150 images were cap-

tured and each contains one dominant plane. Example im-

ages of the sequences are shown in Figure 8. We extracted

SURF [1] feature points and descriptors of all images. The

ground truth focal length of our mobile phone is 4.2mm

(3442 pixels at the resolution of 4032 × 3024). We ran-

domly sample 2 images Cκ
2

times for each sequence (κ is

the number of images in this sequence). For the single-side

and varying focal lengths problems, we resize the resolu-

tion of the second view to half the original size. We use

RANSAC with a number of iterations fixed to 1000. As

shown in the synthetic experiments, the 5-point solver per-

forms very similar to the 6-point solver. So we compare our

solvers with the standard 6-point solver, the single-side 6-

point solver, the homography-based sampling method and

the 7-point solver. Since the comparisons of rotation and

translation have already been shown in the extensive syn-

thetic experiments, we only show the focal length compar-

ison because rotation and translation is usually good once

we have a good focal length estimate. Table 1 shows the

median error (%) in the estimated focal lengths. As we can

see, the proposed solvers perform very well when the scene

contains one dominant plane even without calibration of rel-

ative rotation of IMU and camera inside the smart phone.

The standard solvers fail with most cases when most fea-

ture points lie in a plane. Recall that the standard solvers

are general methods, and there are also a lot of factors

which may influence the performance, e.g., the quality of

the plane, motions. The proposed solvers need direction in-

formation, which is largely motivated by the availability of

smart phones, tablets.

Figure 8: Example images of the 8 sequences.

Fast implementation

Since the uncalibrated solvers need to sample 4 points,

for the 3.5pt solvers we can first use the standard 4-point

homography algorithm to reject outliers. It is very fast since

we only need to calculate the null space of an 8× 9 matrix.

In addition, the standard 4-point homography algorithm has

unique solution. Second, using the 3.5pt solvers to select

the solution with most inliers using RANSAC based on

the inlier set. The 4 point correspondences which return

the most inliers for the standard 4-point homography do

not necessarily mean they are the best choice for the 3.5pt

solvers. Because the 3.5pt solvers need 2-dimensional null

space. So we still need to use RANSAC with the inlier set.

Once the inlier set is known, the number of iterations would

not be large. In contrast, the 6- and 7-point solvers need to

estimate the hypothesis for every RANSAC loop and verify

all the possible solutions with more iterations. The exper-

iments were run on a laptop computer with an Intel Core

i5-8300H 2.3GHz CPU using Matlab, and only the poly-

nomial solvers were used mex files (based on Eigen linear

algebra library [13]) for speed up. The runtime of one hy-

pothesis estimation for the uncalibrated solvers are 1.4ms,

0.157ms, 0.056ms, respectively.

8. Conclusion

In this paper, we propose new minimal solvers for

homography-based relative pose estimation with a common

direction, among which, the proposed partially calibrated

solvers can be used in the structure-from-motion pipelines

for uncalibrated smart phones, tablets. They mainly cor-

respond to three real-life applications. (i) scenes captured

by a smart device with unknown but fixed focal length, (ii)

scenes captured by multiple devices but one of them is cali-

brated, (iii) scenes captured with a zoom camera or multiple

uncalibrated smart devices. We believe that the proposed

solvers can be used as alternative solutions to increase the

speed and robustness of structure-from-motion systems for

smart phones, tablets.
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