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Abstract

In this work, we address the challenging issue of scene

segmentation. To increase the feature similarity of the same

object while keeping the feature discrimination of different

objects, we explore to propagate information throughout

the image under the control of objects’ boundaries. To

this end, we first propose to learn the boundary as an

additional semantic class to enable the network to be aware

of the boundary layout. Then, we propose unidirectional

acyclic graphs (UAGs) to model the function of undirected

cyclic graphs (UCGs), which structurize the image via

building graphic pixel-by-pixel connections, in an efficient

and effective way. Furthermore, we propose a boundary-

aware feature propagation (BFP) module to harvest and

propagate the local features within their regions isolated

by the learned boundaries in the UAG-structured image.

The proposed BFP is capable of splitting the feature prop-

agation into a set of semantic groups via building strong

connections among the same segment region but weak con-

nections between different segment regions. Without bells

and whistles, our approach achieves new state-of-the-art

segmentation performance on three challenging semantic

segmentation datasets, i.e., PASCAL-Context, CamVid, and

Cityscapes.

1. Introduction

Scene segmentation is a challenging and fundamental

task that aims to assign semantic categories to every pixels

of scene images. The key of scene segmentation refers

to parsing and segmenting a scene image into a range

of semantic coherent regions. Therefore, it is critical to

improve the feature similarity of the same object while

keeping the feature discrimination of different objects. To

this end, on the one hand, we explore to propagate features

throughout the images to share features and harvest context

information, which is beneficial for improving the feature

similarity. One the other hand, in order to keep the discrim-
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Figure 1. (Best viewed in color) The boundary-aware feature

propagation module builds stronger connections within the same

segment and weaker connections between different segments,

which helps to enhance the similarity of features belonging to the

same segment while keeping discrimination of features belonging

to different segments.

inative power of features belonging to different objects, we

propose to make use of boundary information to control the

information flow during propagation progress. In a word,

we propose a boundary-aware feature propagation module

to build strong connections within the same segment and

weak connections between different segments, as shown in

Figure 1. This module requires two components: boundary

detection and graph construction.

First, boundary detection, which is an implicit task

in scene segmentation, is important for meticulous dense

prediction. However, in existing segmentation method-

s, boundary detection did not attract due attention since

boundary pixels only account for a small portion of the

entire image and it has little contribution to the performance

improvement. In this work, we try to find a way to simulta-

neously achieve segmentation and boundary detection, and

further make use of the learned boundary information to

enhance the segmentation performance. With regards to

this, we propose to generate the boundary label of semantic

objects from the existing object class labels given in the

segmentation datasets and define it as an additional class for

learning and classification. By doing so, concise boundaries
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are well learnt and inferred as one additional class because

the characteristics of pixels on boundary are different from

those of most pixels off boundary. And the parsing of

pixels among disputed area (i.e., near the boundary) is

enhanced. Moreover, taking boundary as an additional class

requires little change on network but makes the network be

aware of the boundary layout that could be further used for

segmentation improvement.

Second, graphic model is needed to create the order

rules for feature propagation. Convolutional methods [13,

79] are popular in scene segmentation, but they usually

consume large computation resources when aggregating

features from grand range of receptive fields. Moreover, the

convolution kernels could not vary with input resolutions,

thus cannot ensure a holistic view of the overall image.

Recently, DAG-RNN [66] proposes to use four directed

acyclic graphs (DAGs) with different directions to model

the function of undirected cyclic graphs (UCGs), which

structurize the image by building pixel-by-pixel connec-

tions throughout whole image. However, DAGs require

lots of loops to scan the images pixel by pixel. Thus it

is very slowly even on low-resolution feature maps, which

limits its application on “dilated FCN” [13, 86, 82] and on

high resolution datasets like Cityscapes [15]. To address

this issue, we propose a more efficient graphic model

to achieve faster feature propagation. We find that each

DAGs adopted by [66] could be alternatively replaced by

two Unidirectional Acyclic Graphs (UAGs), in which the

pixels of the same row or column are dealt in parallel

with 1D convolution. The proposed UAGs greatly speed

up the feature propagation process. Moreover, different

from the DAGs that are extremely deep, the proposed

UAGs are much shallower and thus alleviate the problem

of propagation vanish [57].

Finally, based on the UAG-structured image and the

learned boundaries information, we build a boundary-aware

feature propagation (BFP) module. In the BFP, local

features of the same segment are shared via unimpeded

connections to exchange information that achieves feature

assimilation, while features of different segments are ex-

changed under controlled connections with the guidance

of learned boundaries. There are several advantages of

our proposed boundary-aware feature propagation (BFP)

network. First, since the proposed UAGs deal with pixels

of the same row or column in parallel, we achieve the

propagation process in a high speed. And the UAGs contain

much fewer parameters than convolutional methods. Sec-

ond, as we express boundary detection as classification of

a semantic class, lots of parameters and complex module

for boundary detection are saved. Third, with the advice

of boundary confidence, the local features are propagated

in a more motivated way, enhancing the similarity of

features belonging to the same segment while keeping the

discrimination of features belonging to different segments.

The main contributions of this paper can be summarized

as follows:

• We show that the boundary can be learned as one of

semantic categories, which requires little change on

network but obtains essential boundary information.

• We propose some unidirectional acyclic graphs

(UAGs) to propagate information among high-

resolution images with a high speed.

• We propose a boundary-aware feature propagation

module to improve the similarity of local features be-

longing to the same segment region while keeping the

discriminative power of features belonging to different

segments.

• We achieve new state-of-the-art performance consis-

tently on PASCAL-Context, CamVid, and Cityscapes.

2. Related work

2.1. Scene Segmentation

Scene segmentation (or scene parsing, semantic segmen-

tation) is one of the fundamental problems in computer

vision and has drawn lots of attentions. Recently, thanks

to the great success of Convolutional Neural Networks

(CNNs) in computer vision [42, 68, 71, 52, 25, 72, 27,

80, 26], lots of CNNs based segmentation works have been

proposed and have achieved great progress [29, 22, 81, 83,

84, 70, 60]. For example, Long et al. [54] introduce the fully

convolutional networks (FCN) in which the fully connected

layers in standard CNNs are transformed to convolutional

layers. Noh et al. [56] propose deconvolution networks to

gradually upsample the coarse features to high resolution.

Chen et al. [13] propose to remove some pooling layers (or

convolution stride) in CNNs and adopt dilated convolution

to retain more spatial information. And some works focus

on lightweight network architectures [3, 46] and real-time

segmentation [85, 58, 77, 59].

Context aggregation is a hot direction in scene segmenta-

tion. For example, Chen et al. [13] propose an atrous spatial

pyramid pooling (ASPP) module to aggregate multi-scale

context information. Yu et al. [79] employ multiple dilated

convolution layers after score maps to exercise multi-scale

context aggregation. Zhao et al. [86] introduce pyramid

spatial pooling (PSP) to exploit context information from

different scale regions. Zhang et al. [82] encode semantic

context to network and stress class-dependent feature maps.

He et al. [30] propose adaptively pyramid context module to

capture global-guided local affinity. Fu et al. [21] integrate

local and global dependencies with both spatial and channel

attention. Ding et al. [17] employ semantic correlation to

infer shape-variant context.

Graphic models have a long history in scene segmen-

tation. Early works construct the graphic model with
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Figure 2. An overview of the proposed approach. We use the ResNet-101 (CNN) with the dilated network strategy [13] as backbone and

the proposed boundary-aware feature propagation (BFP) module is placed on the top of CNN. The supervisor of loss 2 is the new ground

truth of N+1 classes with an additional boundary class generated from the original ground truth of N classes.

hand-crafted features [24, 51, 75, 69]. Markov Random

Fields (MRF) [24, 43, 45] and Conditional Random Fields

(CRF) [41, 61, 13, 53] build the dependencies according

to the similarities of neighboring pixels. Liang et al. [47]

propose to construct graph topology based on superpixel

nodes and incorporate long-range context with Graph LST-

M. Shuai et al. [66] adopt undirected cyclic graphs (UCGs)

to formulate an image and decompose the UCGs with

directed acyclic graphs (DAGs). Byeon et al. [9] propose to

divide an image into non-overlapping windows and employ

a 2d LSTM to construct local and global dependencies.

However, most of graph-based method are time-consuming

and computationally expensive as they require candidate

pre-segments, superpixels, or lots of loops.

In this work, we propose unidirectional acyclic graphs

(UAGs), based on which the local features are quickly

propagated in parallel. And to construct strong depen-

dencies within the same segment and weak dependencies

among different segments, we exploit the learned boundary

information to guide the feature propagation within the

UAG-structured image.

2.2. Boundary Detection

Boundary detection is a fundamental component for

many computer vision tasks and has a long history [1, 19,

40, 35]. For example, Lim et al. [48] propose sketch tokens

(ST) and Dollár [20] et al. propose structured edges (SE)

based on fast random forests to deal with boundary detec-

tion as local classification problem. Recently the success

of CNNs have great improve the performance of boundary

detection [5, 6, 33, 64, 74]. Xie et al. [74] employ features

from the middle layers of CNNs for boundary detection.

Shen et al. [63] propose multi-stage fully convolutional

networks for boundary detection of electron microscopy

images. These methods target at optimizing the accuracy of

boundary detection instead of generating semantic bound-

ary information for high-level tasks. Boundary information

could be used for improving segmentation performance.

For example, Bertasius et al. [6], Hayder et al. [28], Chen

et al. [11] and Kokkinos [38] employ the binary edges to

improve the segmentation performance. However, they all

employ an additional branch of network for edge detection,

which requires more resources and deal with segmentation

and boundary detection as two detached tasks. Different

from [6, 28, 11], our goal is not to detect the clearly

binary boundaries, but to infer a boundary confidence map

that represents the probability distributions of high-level

boundary layout.

3. Approach

Due to the diverse style and complex layout of scene

images, it is necessary to classify every pixel using holis-

tic context information but protect its differentiation from

overwhelming by global scene. In this respect, we propose

a boundary-aware feature propagation module to arm the
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local features with a holistic view of contextual awareness

but keep the discriminative power of features for different

objects. The overall architecture is shown in Figure 2.

We use the dilated FCN (subsampled by 8) based on

ResNet-101 [31] as backbone. The supervisor of loss 2

is the boundary-aware ground truth (N+1 classes) that are

generated from the original ground truth (N classes).

3.1. Semantic Boundary Detection

Boundary delineation is favourable for meticulous scene

parsing. However, because of the various semantic labels

and complex layout of objects in segmentation datasets,

parsing pixels in the boundary area is always difficult and

results in confused prediction. In this work, instead of di-

rectly assigning semantic labels to pixels in boundary area,

we explore to infer the boundary layout first and improve

the segmentation performance with the learned boundary

information. Lots of works have contributed to boundary

detection [5, 6, 33, 64, 74], but most of them focus on edges

that sketch the objects. Different from them, we only focus

on the boundaries of semantic objects that are predefined in

segmentation datasets. We have observed that boundaries

have the property of dramatic changes in RGB and feature

information. And the boundary label is easy to be generated

from the existing ground truth. Consequently, we assume

that the boundary could be viewed as an additional semantic

category and simultaneously learned with other existing

object categories. As shown in Figure 2, we obtain a new

ground truth (Loss 2, N+1 classes) from the original ground

truth (Loss 1, N classes) and utilize the new ground truth

for supervising the network to learn and infer the boundary

layout.

Different from previous boundary detection works that

aim to boundary delineation only or deal with segmentation

and boundary detection as two detached tasks, our proposed

semantic boundary detection is embed with semantic object

parsing. Our boundary detection module only targets at

boundaries of semantic objects predefined in the training

data and generate concise boundary information under in-

teraction with segmentation. These two tasks are combined

into one, and they benefit each other. By training them

together, the scene segmentation classes help suppress the

edges within objects that are not semantic boundary of

objects, e.g., edges of eyes. Scene segmentation helps the

boundary detection to filter out noise and delineate well-

directed boundary, while boundary detection makes the

scene segmentation be aware of the important boundary

layout information.

3.2. Unidirectional Acyclic Graphs

Context is designed to aggregate wide range of surround-

ing information, thus it desires a holistic view of the overall

image without regard to resolution. One popular way is

=

=

=

Unidirectional Parallel Operation

UCG DAGSE DAGSW DAGNE DAGNW

DAGSWDAGSE UAGS.E UAGS.WUAGS

DAGNWDAGNE UAGN.E UAGN.WUAGN
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DAGs UAGs

Pixel-by-pixel Operation
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Figure 3. Each point of the DAGs has three different directions.

Thus, the DAGs have to scan the image pixel by pixel and

consumes lots of time with many loops. We decompose the four

DAGs to six Unidirectional Acyclic Graphs (UAGs). Each of

UAGs propagates information toward a single direction, which

deals with pixels of each row in parallel and then deals with pixels

of each column in parallel. For example, the UAGS is in the south

direction only and the UAGS.E is in the east direction only (based

on UAGS).

to employ stacked convolution or dilated convolution to

enlarge the receptive field [13, 79, 18], but this consumes

large computation resources. The work of [66] proposes

DAG-RNN to capture long-range context based on directed

acyclic graphs (DAGs). As shown in Figure 3, pixels are

locally connected to form a undirected cyclic graph (UCG)

to build propagation channels among the whole image. To

overcome the loopy property of UCG, the UCG is decom-

posed to four DAGs with different directions (southeast,

southwest, northeast, northwest). However, since each pixel

of the DAGs has three different directed connections, the

feature propagation based on DAG-structured images has

to scan the image pixel by pixel and requires lots of loops.

Thus it is very slowly even on low-resolution feature maps,

which limits its application on “dilated FCN” [13, 86, 82]

and on high resolution datasets like cityscapes [15] and

CamVid [8]. To address this issue, we explore to reduce

the number of loops and propagate information in parallel.

Herein, we propose some Unidirectional Acyclic Graphs

(UAGs) as shown in Figure 3, which deal with pixels of

each row in parallel and then deals with pixels of each

column in parallel. Each DAGs adopted by [66] could
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(a) (b) (c) (d) (e)

Figure 4. (a) Image; (b) Original ground truth; (c) New generated ground truth: add a boundary class generated from the original ground

truth; (d) Boundary confidence map: the probability distribution of the boundary layout; (e) Propagation confidence map: the confidence

distribution of propagation.

be alternatively replaced by two UAGs. For example,

the DAGSE is decomposed to UAGS and UAGS.E , where

UAGS is south directed that deals with pixels of the same

row in parallel and UAGS.E is east directed (after UAGS)

that deals with pixels of the same column in parallel. As

a result, the number of loops for each DAGs is reduced

from H×W to H+W, where H and W are the height and

width of feature maps. The proposed UAGs greatly speed

up the feature propagation process, which is economic and

desired in practice, especially for applications that require

high resolution and big eyeshot (e.g., self-driving vehicle).

Moreover, due to the pixel-by-pixel operation, the recursive

layers in DAGs are very deep that could be unrolled to

thousand layers. This causes the problem of propagation

vanish [57]. The proposed UAGs are much shallower than

DAGs and thus alleviate the the problem of propagation

vanish.

3.3. BoundaryAware Feature Propagation

However, unselective propagation would make the fea-

tures assimilated, which results in smooth representation

and weakens the features’ discrimination. To classify

features in different objects and stuff in scene segmentation,

it is beneficial to improve the feature similarity of the same

object while keeping the feature discrimination of different

objects. Therefore, we introduce the boundary information

into feature propagation to control the information flow

between different segments. As shown in Figure 1, with the

learned boundary information, we build strong connections

for pixels belonging to the same segment but weak con-

nections for different segments. During propagation, more

information is passed via strong connections within the

same segment and less information flows crossing different

segments. In such a way, pixels get more information from

other pixels of the same objects and less information from

pixels of other objects. Consequently, features of different

objects could keep their discrimination while features of

the same object trend to be cognate, which is desired for

segmentation. The detailed process of proposed boundary-

aware feature propagation is presented below.

As our UAGs are unidirectional and in parallel, we

formulate the propagation process in 1D here for notation

ht-1 ht ht+1

it-1 it it+1
pt-1 pt pt+1

x x x

x x x

Figure 5. As our UAGs are unidirectional and in parallel, we show

the propagation process in 1D here for clarity. it represents the

feature of pixel at position t, ht is output (hidden state), pt is the

propagation confidence.

clarity. Extension to 2D/3D is straightforward. We denote

the feature of pixel at position t as it, and the corresponding

output (hidden state) is denoted as ht. The standard

propagation process based on our UAG-structured image is

formulated as following:

ht = g(U ∗ it +W ∗ ht−1 + δ) (1)

where ∗ is 1D convolution operation, U,W are learnable
parameters of 1D convolution and δ is learnable bias. g is

element-wise nonlinear activation function (we use ReLU).

For the boundary-aware propagation, we first extract the

boundary confidence map from the (N + 1) segmentation

confidence maps, as shown in Figure 2. We denote the

boundary confidence of pixel t as bt, corresponding to it.

Based on the boundary confidence map, we generate the

propagation confidence map:

pt = 1− βf(αbt − γ) (2)

where pt is the propagation confidence that decides how
much the information of pixel t to be passed to next

region. α=20 and γ=4 are constant chosen by experience,

f is sigmoid function to enhance the boundary, β is a

learnable parameter. With the propagation confidence, the

propagation process can be reformulated as below:

ht = g(U ∗ it +W ∗ ht−1pt−1 + δ) (3)

as shown in Figure 5, the propagation is controlled by the
boundary and thus models boundary-aware context feature

for better parsing of different segments.
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For the UAGs that have “two directions”, they are also

unidirectional and in parallel. For example, UAGS.E is

formulated below:

h
j
t = g(U ∗ i

j
t +W ∗ h

j
t−1

p
j
t−1

+ Ŵ ∗ h
j−1

t−1
p
j−1

t−1
+ δ) (4)

There are two hidden states, h
j
t−1

and h
j−1

t−1
, input to

the current cell, where t and j are the denotations of

horizontal and vertical axis, respectively. Finally, the

hidden states of the corresponding positions in four UAGs

(i.e., UAGS.E , UAGS.W , UAGN.E , UAGN.W ) are fused

together to generate the final output, as shown in Figure 3.

One example of boundary confidence map and propa-

gation confidence map is shown in Figure 4. We learn

the boundary confidence map under the supervise of new

generated ground truth with additional boundary class. To

control the progress of feature propagation, propagation

confidence map is generated from boundary confidence

map. If pixel it is in boundary region, then it has a higher

boundary probability bt and hence a smaller propagation

probability pt. Thus, the feature propagation is suppressed

and weak signals are passed to next pixel. Otherwise, it has

a strong propagation to spread its features to next pixel.

4. Experiments

4.1. Implementation Details

Our Network is implemented based on the public plat-

form Pytorch. We use ResNet-101 [31] with the dilated

network strategy [13] (subsampled by 8) as our backbone.

In detail, the convolution strides for downsampling in last

two blocks are reset to 1 and the convolutions of last

two blocks are dilated with dilation rates of 2 and 4

receptively. Pool 5 and layers after it are discarded. The

network is trained with mini-batch, batchsize is set to 12

for PASCAL-Context and 8 for Cityscapes and CamVid.

Following deeplab-v2 [13], we use the “poly” learning rate

policy, where current learning rate Lrc depends on the

base learning rate Lrb and iterations: Lrc = Lrb×(1 −

iter
total iter

)0.9. Momentum and weight decay are fixed to

0.9 and 0.0001 respectively. We adopt random horizontal

flipping and random resizing between 0.5 and 2 to augment

the training data.

Most of the scene segmentation datasets do not provide

boundary layout, we use the provided segmentation ground

truth to generate boundary-aware ground truth, as shown in

Figure 4 (c). As we adopt the dilated FCN as our backbone,

the spatial size is downsampled 8 times in encoding process.

Thus to avoid the loss of boundary information in feature

maps with smallest spatial size, pixels with distance smaller

than 9 pixels (i.e., trimap of 18 pixels) to boundary are

defined as boundary pixels and their ground truth labels are

set to N+1, where N is the number of classes in datasets. In

our experiments, the over-wide boundary (e.g., trimap of 50

Methods Input Resolution # Loops Time (s)

FCN 480× 360 none 0.35

DAGs 480× 360 10800 17.92

UAGs 480× 360 300 0.47

FCN 960× 720 none 0.42

DAGs 960× 720 43200 56.97

UAGs 960× 720 600 0.76

Table 1. Inference speed comparison of FCN (baseline), DAGs,

and UAGs on dilated ResNet-101 with different resolution inputs.

pixels) squeezes small objects and weakens the function of

boundary in feature propagation. We evaluate our network

with mean Intersection-over-Union (mIoU). Mathematical

definition of mIoU please refer to [54].

4.2. Efficiency Analysis

To evaluate the speed of the proposed UAGs, we report

in Table 1 the inference time of UAGs and compared it with

DAGs [66] on different resolution of input images, based

on dilated FCN (subsampled by 8). The number of loops

is also recorded. Different from DAGs that have to scan the

image pixel by pixel, the proposed UAGs deal with pixels of

each row/column in parallel, hence they save a lot of loops.

As shown in Table 1, the UAGs contain much less loops

than DAGs and consequently they are much faster than

DAGs. Especially with high resolution (e.g., 960×720),

DAGs are very slow and time-consuming. The speed

of DAGs is highly related with the input resolution that

determines the number of loops, thus DAGs are not suitable

of high-resolution datasets (e.g., Cityscapes [15]) and FCN

with dilated network strategy [13]. Besides the inference

time, training of DAGs based on dilated FCN requires one

hundred times more GPU hours than our proposed UAGs,

which also shows the high efficiency of our approach. To

quantitatively compare the segmentation performances of

DAGs and proposed UAGs, we evaluate them on VGG-

16 [67] with encoder-decoder strategy, exactly in the same

way like that in [66]. DAGs and UAGs achieve almost the

same results on PASCAL-Context (UAGs 43.0% vs. DAGs

42.6%). This shows that the proposed UAGs realize the

same function as DAGs but with a much faster speed.

4.3. Ablation Studies

We show the detailed results of ablation studies of the

proposed approach in Table 2. The proposed UAGs harvests

local features and propagate them throughout the whole

image to achieve a holistic context aggregation, which

greatly improves the segmentation performance from the

baseline (dilated FCN). Then, based on the UAGs, we learn

the boundary information and inject it to the propagation

process to control the information flow between different

regions. With the boundary information, the UAGs build

stronger connections of pixels within the same segment
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Figure 6. Qualitative examples of inferred boundary map.

and weaker connections between different segments. Thus,

features of the same segment become more similar but

features of different segments remain discriminative.

We also visualize some examples of the inferred bound-

ary confidence map in Figure 6. As shown in Figure 6, the

inferred boundary map mainly involves boundaries between

the semantic segments predefined in datasets instead of

other edge information. Therefore, it contains the desired

boundary layout of semantic objects and could be used for

control of the feature propagation throughout image. The

results in Table 2 show the effectiveness of the boundary-

aware feature propagation (BFP) network. Following [37,

11], we evaluate the performance of BFP near boundaries,

as shown in Figure 7. We compute the mIoU for the regions

within different bands of boundaries.

DT-EdgeNet [11] is the most related to BFP. However,

BFP learns the boundary as one of semantic classes and

is trained end-to-end, while DT-EdgeNet learns edge with

additional EdgeNet and requires a two-step training process

for DeepLab and EdgeNet. As shown in Figure 6, Our

learned boundaries response less to object interior edges

than DT-EdgeNet. BFP is proposed to perform feature

propagation that is some kind of contextual feature mod-

eling, while DT is used to refine the segmentation scores.

We use the DT to filter the segmentation scores of BFP and

this brings 0.7% performance gain, which shows that the

DT and BFP are complementary.

4.4. Comparison with the StateoftheArt Works

PASCAL-Context [55] provides pixel-wise segmenta-

tion annotation for the whole scene image. There are

4998 training images and 5105 testing images in PASCAL-

5 10 15 20 25 30 35 40 45 50

38

40
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44

46

48

50

52

54

Without Boundary

With Boundary

Trimap Width [Pixels]

m
Io

U
 [
%

]

Figure 7. Segmentation performance within band (trimap) around

boundaries.

Methods Backbone UAGs Boundary MS mIoU

FCN ResNet-50 41.2

BFP ResNet-50 ! 49.8

BFP ResNet-101 ! 50.8

BFP ResNet-101 ! ! 52.8

BFP ResNet-101 ! ! ! 53.6

Table 2. Ablation Study of Boundary-aware Feature Propagation

(BFP) Network on PASCAL-Context. Baseline is dilated FCN and

MS means multi-scale testing.

Methods mIoU

O2P [10] 18.1

FCN-8s [62] 39.1

BoxSup [16] 40.5

HO-CRF [2] 41.3

PixelNet [4] 41.4

DAG-RNN [66] 43.7

EFCN [65] 45.0

DeepLab-v2+CRF [13] 45.7

RefineNet [50] 47.3

MSCI [49] 50.3

CCL+GMA [18] 51.6

EncNet [82] 51.7

BFP (ours) 53.6

Table 3. Testing accuracies on PASCAL-Context.

Methods mIoU

DeconvNet [56] 48.9

SegNet [3] 50.2

FCN-8s [54] 52.0

DeepLab [12] 54.7

DilatedNet [79] 65.3

Dilation+FSO [44] 66.1

G-FRNet [34] 68.0

Dense-Decoder [7] 70.9

BFP (ours) 74.1

Table 4. Testing accuracies on CamVid.

Context. Following [55], we use the most common 59 class-

es for evaluation. Testing accuracies of PASCAL-Context

are shown in Table 3, which shows that the proposed BFP

outperforms the state-of-the-art works by a large margin.

CamVid [8] is a road scene image segmentation dataset

which provides dense pixel-wise annotations for 11 seman-

tic categories. There are 367 training images, 101 validation

images and 233 testing images. The testing results are
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mIoU

FCN [62] 97.4 78.4 89.2 34.9 44.2 47.4 60.1 65.0 91.4 69.3 93.9 77.1 51.4 92.6 35.3 48.6 46.5 51.6 66.8 65.3

DPN [53] 97.5 78.5 89.5 40.4 45.9 51.1 56.8 65.3 91.5 69.4 94.5 77.5 54.2 92.5 44.5 53.4 49.9 52.1 64.8 66.8

LRR [23] 97.7 79.9 90.7 44.4 48.6 58.6 68.2 72.0 92.5 69.3 94.7 81.6 60.0 94.0 43.6 56.8 47.2 54.8 69.7 69.7

Deeplabv2 [13] 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4

RefineNet [50] 98.2 83.3 91.3 47.8 50.4 56.1 66.9 71.3 92.3 70.3 94.8 80.9 63.3 94.5 64.6 76.1 64.3 62.2 70.0 73.6

DepthSet [39] - - - - - - - - - - - - - - - - - - - 78.2

ResNet-38 [73] 98.5 85.7 93.1 55.5 59.1 67.1 74.8 78.7 93.7 72.6 95.5 86.6 69.2 95.7 64.5 78.8 74.1 69.0 76.7 78.4

PSPNet [86] 98.6 86.2 92.9 50.8 58.8 64.0 75.6 79.0 93.4 72.3 95.4 86.5 71.3 95.9 68.2 79.5 73.8 69.5 77.2 78.4

AAF [36] 98.5 85.6 93.0 53.8 59.0 65.9 75.0 78.4 93.7 72.4 95.6 86.4 70.5 95.9 73.9 82.7 76.9 68.7 76.4 79.1

DFN [78] - - - - - - - - - - - - - - - - - - - 79.3

PSANet [87] - - - - - - - - - - - - - - - - - - - 80.1

DenseASPP [76] 98.7 87.1 93.4 60.7 62.7 65.6 74.6 78.5 93.6 72.5 95.4 86.2 71.9 96.0 78.0 90.3 80.7 69.7 76.8 80.6

BFP (ours) 98.7 87.0 93.5 59.8 63.4 68.9 76.8 80.9 93.7 72.8 95.5 87.0 72.1 96.0 77.6 89.0 86.9 69.2 77.6 81.4

Table 5. Category-wise performance comparison on the Cityscapes test set. Note that the DenseAspp [76] uses stronger backbone

DenseNet-161 [32] than Resnet-101 [31] we adopt as backbone.

shown in Table 4. It shows again that the proposed BFP

outperforms previous state-of-the-arts by a large margin.

Cityscapes [15] is a recent street scene dataset which

contains 5000 high-resolution (1024×2048) images with

pixel-level fine annotations. There are 2975 training im-

ages, 500 validation images and 1525 testing images. 19

classes (e.g., roads, bicycles and cars) are considered for

evaluation on the testing sever provided by the organizers.

The Category-wise results are shown in Table 5. Our BFP is

only trained on fine annotations, while [14] also uses coarse

annotations for training. Some segmentation examples on

Cityscapes are shown in Figure 8.

5. Conclusion

In this work, we address the challenging issue of scene

segmentation. In order to improve the feature similarity

of the same segment while keeping the feature discrim-

ination of different segments, we explore to propagate

features throughout the image under the control of inferred

boundaries. Towards to this, we first propose to learn

the boundary as an additional semantic class to enable

the network to be aware of the boundary layout. Then,

in order to structurize the image to define the order rules

for feature propagation, we propose some unidirectional

acyclic graphs (UAGs) to model the function of undirected

cyclic graphs (UCGs) in a much more efficient way than

DAGs. Based on the proposed UAGs, holistic context is

aggregated via harvesting and propagating the local features

throughout the whole image efficiently. Finally, we propose

a boundary-aware feature propagation (BFP) network to

detect and utilize the boundary information for controlling

the feature propagation of the UAG-structured image. The

proposed BFP is capable of improving the similarity of

local features belonging to the same segment region while

keeping the discriminative power of features belonging to

Images Ours Ground Truth

Figure 8. Qualitative segmentation examples on Cityscapes.

different segments. We evaluate the proposed boundary-

aware feature propagation network on three changeling se-

mantic segmentation datasets, PASCAL-Context, CamVid,

and Cityscapes, which show that the proposed BFP achieves

new state-of-the-art segmentation performance consistently.
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