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Abstract

Beyond current image-based virtual try-on systems that

have attracted increasing attention, we move a step for-

ward to developing a video virtual try-on system that pre-

cisely transfers clothes onto the person and generates visu-

ally realistic videos conditioned on arbitrary poses. Besides

the challenges in image-based virtual try-on (e.g., clothes

fidelity, image synthesis), video virtual try-on further re-

quires spatiotemporal consistency. Directly adopting exist-

ing image-based approaches often fails to generate coher-

ent video with natural and realistic textures. In this work,

we propose Flow-navigated Warping Generative Adversar-

ial Network (FW-GAN), a novel framework that learns to

synthesize the video of virtual try-on based on a person im-

age, the desired clothes image, and a series of target poses.

FW-GAN aims to synthesize the coherent and natural video

while manipulating the pose and clothes. It consists of: (i) a

flow-guided fusion module that warps the past frames to as-

sist synthesis, which is also adopted in the discriminator to

help enhance the coherence and quality of the synthesized

video; (ii) a warping net that is designed to warp clothes

image for the refinement of clothes textures; (iii) a pars-

ing constraint loss that alleviates the problem caused by the

misalignment of segmentation maps from images with dif-

ferent poses and various clothes. Experiments on our newly

collected dataset show that FW-GAN can synthesize high-

quality video of virtual try-on and significantly outperforms

other methods both qualitatively and quantitatively.

1. Introduction

The emergence of image synthesis technique signif-

icantly advances the progress of the virtual try-on sys-

∗equal contribution
†Corresponding author is Jian Yin

tems [15, 37], which are of great value to lots of applica-

tions, e.g., online shopping, movie making, and video edit-

ing. However, most of the try-on methods are based on sin-

gle images, while the video-based virtual try-on problem

has been largely unexplored. In this work, we make a first

attempt to address this problem. Specifically, given a person

image, the desired clothes, and a series of target poses, we

synthesize a realistic-looking video that preserves the dis-

tinct appearance from both the person and clothes image.

Some of the results are illustrated in Figure 1, showing that

the proposed approach can generate high-quality virtual try-

on videos with convincing details.

Most existing methods use encoder-decoder-like neural

networks [15, 37] to synthesize virtual try-on images. They

mainly focus on synthesizing the person image by replac-

ing with other clothes, conditioned on a fixed pose, and

thus fail to generate realistic videos due to the lack of abil-

ity of manipulating arbitrary poses and different clothes

when virtual try-on is conducted in unconstrained scene.

Besides 2D image synthesis, various 3D modeling tech-

niques [22, 27, 30, 43] have been developed for virtual try-

on. However, those methods focus on single images as well,

and have not been extended to video generation. Moreover,

it requires huge labor cost to collect the 3D annotation and

massive computation to build the 3D model, which limits

the performance of virtual try-on in the practical scenario.

Particularly, in a video sequence, person or clothes im-

ages often contain various visual appearance, viewpoints,

and arbitrary human layouts due to different poses. It is

impractical for current convolution-based generators to ex-

ploit entangled information without the aid of any external

structured knowledge. Besides, different poses for a whole

human body may result in heavy occlusions or dramatic ap-

pearance changes for some body parts. Furthermore, spa-

tiotemporal consistency is critical to the visual quality of

the synthesized video, which is not considered in the exist-

ing image-based synthesis methods.
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Figure 1. Some results of our method. Given a person image, the desired clothes, and the series of the target poses, our FW-GAN learns

to automatically fit the desired clothes onto the person, restructure the pose of the person, and output the realistic video. Input images in

the first column, the poses in the first row, the results of virtual try-on for each pose in the other columns.

To address the above mentioned challenges, we propose

an FW-GAN to achieve the controllable video synthesis for

virtual try-on, by manipulating both different poses and var-

ious clothes. FW-GAN consists of three main components:

1) a flow-navigated module that enforces the synthesized

video to be spatiotemporal coherent and high-quality visual;

2) a warping net adapted to estimate the grid of transforma-

tion parameters that warps the desired clothes in order to fit

the corresponding region of the person image; 3) a human

parsing constraint loss that constrains body layouts to en-

force consistency from a global view. In particular, the op-

tical flow [2] plays a critical role in the proposed FW-GAN

for making the generated videos coherent, which warps the

pixel of the preceding frames to the new frames, and is

also used as the conditioned input of the flow-embedding

discriminator, resulting in more photo-realistic frames and

spatiotemporal smoothing videos. Besides, to preserve the

details of the desired clothes, a weight mask is leveraged to

adaptively select the pixel values from the warped desired

clothes or synthesized clothes.

We conduct extensive experiments on our newly col-

lected dataset, including quantitative comparison, ablation

study, and human perceptual study on the Amazon Me-

chanical Turk platform. The proposed FW-GAN substan-

tially outperforms all existing methods on synthesizing vir-

tual try-on video with arbitrary poses both qualitatively and

quantitatively. The main contributions of our work include:

• To generate high-quality synthesized video of virtual

try-on under a sequence of poses, a person image, and

the desired clothes, we propose an FW-GAN to incor-

porate the optical flow with warping net for warping

the frames and clothes images, respectively, which can

preserve the details in global and local views.

• A flow-embedding discriminator is proposed that in-

corporate an effective flow input to the discriminator

to improve the spatiotemporal smoothing.

• We employ a parsing constraint loss function as one

form of structural constraints to explicitly encourage

the model to synthesize results under difference poses

and various clothes to produce coherent part configu-

rations with the input image.

2. Related Work

Image synthesis. Generative adversarial networks

(GANs) [11] has recently achieved impressive results on

image synthesis. To capture the image distribution, GANs is

capable of generating fake images which are indistinguish-

able from the real images. Conditional generative adver-

sarial networks (cGANs) [26] can generate samples with

desired attributes by appending condition on the inputs of

both the generator and discriminator, and showed promising

results on image-to-image translation[19, 14, 13, 8, 9, 7].

For person image generation, Lassner et al. [23] proposed
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Figure 2. The framework of the proposed FW-GAN. FW-GAN consists of four encoder and two decoder with residual blocks. FW-GAN

first to predict the flow, then warps the last past synthesized frame. We use weight mask and grid mask to polish the results.

a generative model of people in clothing for the full body.

They first learned to generate human parsing maps and then

learned a model to translate the resulting segments to real-

istic images, but the fashion attributes are not controllable

in this method. Zhao et al. [44] proposed an image genera-

tion model to generate multi-view cloth images from only a

single view input. [25, 9, 33, 7] synthesized person images

conditioned on arbitrary poses.

Virtual try-on. Most previous works on virtual try-on

were based on computer graphics. Guan et al. [12] de-

signed a framework for synthesizing clothes on 3D bodies,

with ignoring the shape and pose. Anna et al. [18] proposed

a method for dynamically tracking and retexturing clothes

for real-time visualization in a virtual mirror environment.

Sekine et al. [30] developed a virtual fitting method for ad-

justing clothes images to users by modeling their 3D body

shapes from single images. Pons-Moll et al. [27] addressed

the problem of capturing multiple garments on fully dressed

people in motion by using a multi-part 3D model of clothed

bodies. [42, 35] proposed an approach for computing a real-

istic 3D model of a human body from a single photograph.

There are also a few works based on image-based generative

models which aim to synthesize perceptually correct images

from real 2D images. Jetchev and Bergmann [21] intro-

duced a conditional analogy GAN to swap fashion items.

However, during inference, they needed the pair images of

the original item on the person and the target item, which

might not be easy to acquire. VITON [15] used a coarse-

to-fine framework to replace the original fashion item on

the person with the desired item, and enhance the fidelity of

the synthesized image with a refinement network. [37, 8]

addressed a similar problem, but it also aimed to preserve

clothing characteristic by learning a thin-plate spline trans-

formation with a geometric matching module.

Video synthesis. Extensive studies have been conducted

on video synthesis. Video inpainting [41], video matting

and blending [1, 6] and video super-resolution [31, 32] were

proposed for addressing specific problems. Chan et al. [5]

proposed a method for transferring dance movement from a

source video of a person dancing into a target if acquiring

a video lasting for a few minutes in which the target sub-

ject performs standard moves. Their method was based on

pix2pixHD [39] and a state of the art pose detector Open-

Pose [3, 34, 40]. vid2vid [38] addressed the problem of

video-to-video synthesis based on GANs coupled with a

spatiotemporal adversarial objective. The video technique

has huge application potential, but the virtual try-on for gen-

erating video is less explored.

3. FW-GAN

3.1. Problem Formulation

Given a pose sequence, a person image, and a clothes

image, we aim to generate a photo-realistic video in which

the person wears the desired clothes, and the person’s move-

ment is the same as the pose sequence. Formally, let Ip, Ic,

and Pi represent the person image input, the clothes image

input, and the i-th frame of pose sequence respectively. And

we denote the pose sequence input by S = {Pi}
N
i=1 and the
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video output by V = {Ri}
N
i=1 where N is the frame num-

ber of the pose sequence and Ri is the i-th frame of the out-

put. Our goal is to learn the mapping (Ip, Ic, S) → V . Our

training dataset is {V i
t , I

i
c, I

i
p}

n
i=1, where V i

t , Iic, Iip are the

i-th training video, clothing image input, and person image

input respectively, and n is the number of samples.

3.2. Pose Embedding

A pose of a person in an image is composed of 2D skele-

tons with M joints P = (l1, ..., lM ), where li = (xi, yi) is

the coordinate of the i-th joint in the image. As interpreted

in [28], the coordinate li can be regarded as a random vari-

able and has a probability density map pi formed by:

pi[x, y] = P (li = (x, y)) ∀(x, y) ∈ U (1)

where U is the coordinate space of the input image. Then

the pose P is equivalent to a concatenation of all probability

density maps p = (p1, ...,pM ).

3.3. Network Architecture

3.3.1 Generator

We propose a residual-like generator to incorporate the op-

tical flow with warping net for exploiting temporal infor-

mation, a personal appearance and clothes information si-

multaneously. Formally, our generator is based on a con-

ditional GAN framework which aims to capture the con-

ditional probability distribution. We denote the generator

as G. Let Ip represents the variable of the person image

input. Ic is the variable of the clothes image input, and

S = {Pi}
N
i=1 is the pose sequence. Then we have the pose

embedding p of the pose sequence S. Let V
′

= {Ri}
N
i=1

represents the output of G. Moreover, let V represents the

ground truth of the video. The generator G is equivalent to

a conditional distribution so that we can compute the proba-

bility of V
′

withG(V
′

|p, Ic, Ip). We optimizeG by solving

the standard minimax optimization problem. Formally, the

objective function is defined by:

min
G

max
D

Lgan = EV∼pdata(V )[logD(V )]

+ EJ∼p(J)[log(1−D(G(V
′

|p, Ic, Ip)],

(2)

where J = (p, Ic, Ip) and D is the discriminator.

As shown in Figure 2, in the generator, every input has a

correspondent encoder to extract feature maps. Then we

concatenate and input these feature maps into two sepa-

rate networks which are both composed of several residual

blocks. The outputs of residual networks are fed to decoders

which will generate optical flow and photo-realistic images.

3.3.2 Discriminator

Several works [39, 19, 24] show that using multiple discrim-

inators could lighten the model collapse problem in GAN

training. At the meantime, our task requires both visual

quality of each frame and temporal consistency. Based on

the above observation, we design two discriminators: frame

discriminator, and flow-embedding discriminator.

Frame Discriminator is responsible for the visual qual-

ity of each frame. In other words, it ensures that each gener-

ated frame looks like real video frames. Frame discrimina-

tor takes four inputs, pose sequence S = {Pi}
N
i=1, person

appearance image Ip, cloth image Ic, generated frame v.

Tuple (S, Ip, Ic) could be thought of conditional input of

frame discriminator. This discriminator should output 1 for

a true pair ((S, Ip, Ic), v) and 0 for fake pair ((S, Ip, Ic), ṽ).
Flow-embedding Discriminator is responsible for tem-

poral consistency between neighboring frames. We think

consecutive generated frames should have temporal dynam-

ics of consecutive real frames with the same optical flow.

Just like frame discriminator, flow-embedding discrimina-

tor also takes conditional input, optical flow. We denote O

as K − 1 optical flow for the K consecutive frames. This

discriminator should output 1 for a true pair(O, v) and 0 for

fake pair (O, ṽ). During experiments, we find those dis-

criminators well on video try-on. It makes the person and

the clothing move more smoothly on the generated video.

Figure 3. The framework of Warping Net. We first input the

person image, target pose, and desired clothes into the encoder to

extract the feature maps, respectively. Then, the matching layers

are trained to compute the relation among of the feature maps. Fol-

lowed by the matching layers is a regression network that outputs

the warping grid of transformation mappings. Finally, we use this

warping grid to warp the desired clothes.

3.3.3 Warping Net

As shown in Figure 3, the Warping Net consists of two en-

coders, matching layers, and a regression network. Let Ck

denote a Convolution layer with kernel size of 4, a stride

2, and k filters. Let Rk dnotes a Convolution layer with

kernel size of 3, a stride 1, and k filters, followed by Batch-

Norm2d Normalization and ReLU activation function. Let

Lk denotes a Linear function output k dimension. For the

Matching layers, we directly use the correlation map com-

putation from the GEOCNN [29]. Therefore, encoder con-

tains: C64, C128, C256, C512, R512, R512. Regression

network consists of: C512, C256, C128, C64, L32.
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3.4. Learning Objective Functions

In this paper, the objective function of FW-GAN is a

weighted sum of several different losses. We will introduce

them in details in the following sections.

Perceptual Loss. To obtain the high level and various

features, we extract two different features from pre-trained

VGG network and discriminators of our adversarial net-

work, following [39, 15]. Then, we combine them to denote

perceptual loss of this work.

Lperceptual =

N∑

i=0

λi‖φi(Î)− φi(Y )‖1

+

K∑

k=0

M∑

j=0

λkλj‖ϕ(k,j)(Î)− ϕ(k,j)(Y )‖1,

(3)

where φi(Î) describe the i-th feature map of the synthesized

image Î within VGG network, while λi controls the weight

of them. Similarly, ϕ(k,j)(Î) is the j-th layer feature map in

the k-th discriminator of the synthesized image Î , while λj
denotes the weight of j-th layer and λk describe the weight

of k-th discriminator. N denotes the number of VGG layers.

K denotes the number of discriminators. M denotes the

number of discriminator’s layers.

Parsing Constraint Loss. However, the above objec-

tives do not consider the local information from sub-parts.

To further improve the quality of the generated image, we

propose a novel parsing consistent loss to make the part

configuration of the generated image and those of ground

truth coherent. Let ψ is a human parser. We require the

parsing results of the synthesized image and the ground

truth image should be the same. In this paper, we ap-

ply a light network [19] to train human parser. Especially,

we denote the parsing result of the ground truth image as

F = ψ(Y ) ∈ R
n×n×c, where n is the height/width of the

image and c is the number of the semantic labels. The out-

put for the synthesized image is defined as P = ψ(Î). For

each pixel, the parsing results should be the same, e.g., the

predicted parsing labels F (h,w) ∈ R
c for the pixel index

(h,w) is equal to the P (h,w). Since the softmax loss is a

widely used method in deep CNNs that quantifies the dis-

similarity between the two probabilities. Thus, we define

the parsing consistent loss as

Lpcl = −

W∑

w=0

H∑

h=0

C∑

l=0

F (h,w, l) logP (h,w, l), (4)

where the C denotes the number of parsing labels, H de-

notes the width of image, W denotes the width of image.

3.4.1 Overall Objective Function

Besides, we directly adopt a flow loss as Lflow from

FlowNet [10]. We take the L1 loss from the pix2pix [20] as

our grid loss Lgrid to constrain the generator to learn more

pixel from the warped clothes. Let Lgan denotes the loss

of generator in this paper. In summary, FW-GAN objective

describes a weighted sum of all the losses as the Eq. (5)

shown.

Lsyn =α1Lgan + α2Lperceptual + α3Lpcl

+ α4Lflow + α5Lgrid,
(5)

where hyper-parameters αi, (i = 1, 2, 3, 4, 5) control the

weight of each loss.

4. Experiments

In this section, we first introduce the implementation de-

tails of the proposed FW-GAN. Then we describe the eval-

uation metrics for evaluating the quality of the generated

video. Next, we introduce the baseline method and our col-

lected dataset. Finally, we make a visual comparison with

the method of baseline and ablation study and analyze the

quantitative and qualitative results.

4.1. Implementation Details

In training, the generator and the discriminators are up-

dated alternatively with a mini-batch size of 4 through the

stochastic gradient solver, Adam optimizer (β1 = 0.5,

β2 = 0.999). We alternate between 1 steps of optimizing

the generator and 1 step of optimizing the discriminators.

The initial learning rate is 0.0002. The implementations are

based on the Pytorch platform on four Titan XP GPU. After

30 epochs, high-quality results can be obtained. We deploy

the user study on the Amazon Mechanical Turk (AMT) plat-

form.

4.2. Dataset

We constructed a new video dataset appropriate to Video

Virtual Try-on, named VVT. We first collected 791 videos

of fashion model catwalk, which backgrounds are mostly

white colour, ensuring us to focus on the task of virtual

try-on and providing convincing evaluations for our models.

Moreover, then we removed the noisy frames without pose

results or parsing results. The frame number of each video

mainly lies in the range between 250 and 300. We split the

videos into a training set and a testing set with 661 videos

and 130 videos respectively. The total frame numbers of the

training set and the testing set are 159170 and 30931 respec-

tively. We also crawled 791 person images and 791 clothes

images and made every video associated with a person im-

age and a clothes image. We also ensured that every person

image is different from the person in the associated video

and every clothes image is different from the clothes in the

associated person image. Therefore, a sample in the dataset

is composed of a video, a person image and a clothes image.
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Figure 4. Visual compare with the baseline method and the ablation methods on the VVT dataset. First three columns start from left

are inputs to our task. They are person image, desired clothes and target pose respectively. The last three columns are generated frame from

different methods. The images of the last column are generated from our proposed algorithm. It looks better than the other two algorithms.

4.3. Evaluation metrics

Fréchet Inception Distance(FID) [17] is a metric for

evaluating image synthesis quality. It uses the inception

model [36] as a feature extractor after removing the last

few layers of the network, and extracts feature vectors from

real images and synthesized images respectively. Then

it computes the mean µ and covariance matrix Σ for the

feature vectors from the real images. It also computes

the same statistics µ̃ and Σ̃ for the feature vectors from

the synthesized images. Then the FID is calculated as

‖µ− µ̃‖
2
+Tr(Σ+Σ̃−2

√
ΣΣ̃). Because this paper focuses

on the video synthesis problem, we deploy a variant of FID

following vid2vid [38], which is more suitable for evaluat-

ing video synthesis quality than the original FID. We use

I3D [4] and 3D-ResNeXt-101 [16] as our pre-trained video

recognition CNNs. In detail, we take 10 frames as a video

clip, and exploit the output of the last average pooling layer

in the network as our feature vector.

4.4. Baselines

CP-VTON [37] stands for Characteristic-Preserving Vir-

tual Try-On Network proposed by Wang et al. [37]. Com-

pared with VITON [15], they mainly deal with key char-

acteristics of clothes. It is obvious that CP-VTON [37] in-

deed generate cloth with much more key characteristics. On

our experiments, we retrain CP-VTON and VITON [15] on

the VVT dataset. When testing, we adapt them to our task

which means we input pose heatmap of each frame rather

than fixed pose heatmap. During the experiment, we find

that it generates almost the same image no matter what pose

heatmap we input. Then, we take a glance at the dataset

used for training CP-VTON and VITON and found that

most images of that dataset are in almost the same pose.

4.5. Qualitative Results

Figure 6 and Figure 4 show some qualitative results on

VVT dataset. The results show that the flow module and

grid module play an important role in synthesizing realistic-

look video. Without the grid, module leads to synthesize

blurred and low-resolution video, and the pattern on the

clothing is lost. Without flow-embedding discriminator net-

work (w/o) fails to obtain spatiotemporal smoothing. Fig-

ure 6 demonstrates that given a person image, a clothes im-

age, and a target pose image, FW-GAN is capable of synthe-

sizing our desired image result in which the desired person
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Figure 5. Some results of the Warping Net, which are shown in the

4th column. The warped grid are in the 5th column. The Warping

Net predict the transformation mapping parameters to warp the

clothes which at a similar level of realism as the ground truth.

Fréchet Inception Distance I3D ResNeXt-101

CP-VTON [37] 32.35 159.50

VITON [15] 30.05 129.74

FW-GAN (w/o grid + flow + parsing) 6.57 14.01

FW-GAN (w/o grid + flow) 7.37 17.47

FW-GAN (w/o grid + parsing) 7.47 15.88

FW-GAN (w/o grid) 7.04 15.31

FW-GAN (w/o parsing) 7.30 19.34

FW-GAN (w/o DT) 7.45 20.78

FW-GAN (w/o flow) 6.98 13.17

FW-GAN (Ours) 7.052 23.94

Table 1. Comparison with previous methods on the VVT dataset.

is wearing the desired clothes with the desired pose. Fig-

ure 7 shows some failure results of our method caused by

uncommon styles of clothing. Some results of Warping Net

are shown in the Figure 5. We can observe that the proposed

warping net can achieve promising performance.

4.6. Quantitative results

We used our learned models and the baseline to synthe-

size 3000 video clips in the validation set. Every video clip

was composed of 10 continuous frames. Then we deployed

I3D and 3D-ResNeXt-101 to extract spatial-temporal fea-

ture vectors from the synthesized video clips and the real

video clips and computed the FID based on these feature

vectors. Table 1 reports the FID of our approach and the

baseline, demonstrating that our method significantly out-

performs the baseline. It also shows the detailed ablation

studies conducted on our model. Although the ablation re-

sults in Table 1 do not demonstrate remarkable improve-

ment, we think that this is because FID uses deep convo-

lution layers to extract feature maps and will lose some in-

formation important for evaluating video synthesis quality.

As shown in Table 1, the FID scores of VITON [15] in the

last row that indicates the proposed FA-GAN can gener-

ate more spatio-temporal smoothing videos, compared with

other methods. The lower number indicates the better per-

formance. In particular, w/o flow denotes FW-GAN with-

out optical flow. w/o parsing denotes FW-GAN without the

parsing constrain loss. w/o grid deonotes FW-GAN with-

out warping network. w/o DT denotes FW-GAN without

the flow-embedding discriminator. w/o (grid + flow + pars-

ing) denotes FW-GAN without warping network, optical

flow, and the parsing contraint loss. w/o (grid + flow) de-

notes FW-GAN without warping network, and optical flow.

w/o (grid + parsing) denotes FW-GAN without warping net-

work, and the parsing contraint loss.

5. Human Perceptual Study

To achieve the fair visual comparison, we deploy the

user study on the Amazon Mechanical Turk (AMT) plat-

form. AMT is a platform that operates a marketplace for

work that requires human intelligence. We carefully design

a subjective A/B test similar to Wang et al. [38]. Different

from them, we let the image GIFs represents the video. We

show the images for workers that contain person image, the

desired clothes image, and the target pose GIFs, followed

by two shuffled options GIFs. All the images and the GIFs

are the sizes of 256 × 192. There are about 100 workers,

and about 1000 assignments in the AMT study. The assign-

ments are shown for workers in limited time and unlimited

time as two jobs, respectively. The workers are asked for

picked one option which captures the pose sequence, the

desired clothes, and the appearance of the person well. The

results are shown in the Table 2, which reports the FW-GAN

outperform the other methods and achieve the highest hu-

man preference scores.

Human Preference Score Human Preference Score

(limited time) (unlimited time)

FW-GAN (ours) / CP-VTON [37] 0.5940 / 0.4060 0.889 / 0.111

FW-GAN (ours) / VITON [15] 0.5721 / 0.4279 0.893 / 0.107

Table 2. Human perceptual study with others on the VVT dataset.

5.1. Ablation Study

We conduct an ablation study to explore the effects of

the important component of FW-GAN. The results are re-

ported in Table. 1. Our model without grid module, flow

module and parsing constraint loss got the best FID score in

I3D, and the model without flow module achieved the best

FID score in ResNeXt-101. Although our full model didn’t

obtained the best FID score, Figure 4 demonstrates that our

full model is capable to synthesize more photo-realistic im-

ages with clearer and more complete clothing patterns. On

1167



Figure 6. Some results of FW-GAN on the VVT dataset.

the other hand, FID uses the output of last pooling layer

as the feature vector, which loses some information of the

original image input, and the FID scores among our ablation

models differ not much.

Figure 7. Some failure results conduct on the VVT dataset, which

were caused by uncommon clothes.

6. Conclusion

We propose Flow-navigated Warping Generative Adver-

sarial Network (FW-GAN) for video virtual try on, which

generates novel person video in arbitrary poses and var-

ious clothes. To achieve good virtual try-on quality, our

FW-GAN mainly contains three components: 1) FW-GAN

incorporate the optical flow and geometric matching for

warping the frames and clothes image, respectively, which

can preserve the details in global and local views, 2) a

flow-embedding discriminator is proposed that incorporate

an effective flow input to the discriminator to improve the

spatiotemporal smoothing, and 3) a parsing constraint loss

function as one form of structural constraints to explicitly

encourage the model to synthesize results under difference

poses and various clothes to produce coherent part config-

urations with the input image. Our experimental results

demonstrate that the proposed FW-GAN significantly out-

performs other state-of-the-art approaches on synthesizing

video of virtual try-on by manipulating pose and clothes.
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