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Abstract

Weakly-supervised learning under image-level labels su-

pervision has been widely applied to semantic segmenta-

tion of medical lesions regions. However, 1) most existing

models rely on effective constraints to explore the internal

representation of lesions, which only produces inaccurate

and coarse lesions regions; 2) they ignore the strong prob-

abilistic dependencies between target lesions dataset (e.g.,

enteroscopy images) and well-to-annotated source diseases

dataset (e.g., gastroscope images). To better utilize these

dependencies, we present a new semantic lesions repre-

sentation transfer model for weakly-supervised endoscopic

lesions segmentation, which can exploit useful knowledge

from relevant fully-labeled diseases segmentation task to

enhance the performance of target weakly-labeled lesions

segmentation task. More specifically, a pseudo label gen-

erator is proposed to leverage seed information to generate

highly-confident pseudo pixel labels by incorporating class

balance and super-pixel spatial prior. It can iteratively in-

clude more hard-to-transfer samples from weakly-labeled

target dataset into training set. Afterwards, dynamically-

searched feature centroids for same class among different

datasets are aligned by accumulating previously-learned

features. Meanwhile, adversarial learning is also employed

in this paper, to narrow the gap between the lesions among

different datasets in output space. Finally, we build a

new medical endoscopic dataset with 3659 images collected

from more than 1100 volunteers. Extensive experiments on

our collected dataset and several benchmark datasets vali-

date the effectiveness of our model.
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‡This work is supported by NSFC (61821005, 61722311,

U1613214, 61533015), and LiaoNing Revitalization Talents Program
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Figure 1: Demonstration of our semantic lesion repre-

sentation transfer model, where the left and right images

are from gastroscope and enteroscopy datasets, respec-

tively. Our model learns the semantic transferable knowl-

edge from source data to target data via pseudo pixel-label

and dynamically-searched feature centroids (i.e., different

shapes) of each class.

1. Introduction

Weakly-supervised learning [19, 38] focuses on learn-

ing a pixel-level lesion segmentation model for medical im-

ages with only weakly-labeled (image-level) annotations.

Due to the slight requirements for large-scale, high-quality

fully-labeled (pixel-level) annotations, it has been widely-

explored in a number of medical diagnosis tasks, e.g., au-

tomated glaucoma detection [43], thoracic disease localiza-

tion [39], histopathology segmentation [19], etc.

However, weakly-supervised learning is a huge chal-

lenge for semantic lesions segmentation since 1) effective

constraints or domain expertise are needed to learn the inter-

nal representation related to image-level annotations, which

can produce inaccurate and coarse lesion regions; 2) it ig-

nores the strong probabilistic dependencies between tar-

get lesions segmentation task and well-to-annotated source

diseases, where such dependencies are treated as semantic

knowledge. For example, diseases detected by both gastro-

scope and enteroscopy tend to share similar appearances,
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and further have similar prior distributions. Based on such

dependencies, in this paper, we explore how to transfer

semantic knowledge from closely-related fully-annotated

source dataset (e.g., gastroscope images) to weakly-labeled

target dataset (e.g., enteroscopy images).

To take advantage of the semantic transferable knowl-

edge, we propose a new weakly-supervised semantic le-

sions representation transfer model as shown in Figure 1,

and its goal is to learn the transferable semantic knowl-

edge from fully-labeled source diseases dataset to improve

the segmentation performance on target weakly-labeled le-

sions segmentation task. The core idea of our model is

a pseudo pixel-label generator, which can leverage seed

information by incorporating class balance with super-

pixel prior [1] to further prevent the dominance of well-

to-transfer categories. The hard-to-transfer samples can

be incrementally introduced from the target dataset into

training set. Afterwards, to mitigate the mapping features

gaps of same class among source and target datasets, we

endeavor to learn transferable knowledge by aligning the

dynamically-searched feature centroids, which are gradu-

ally reckoned with previously-learned features and highly-

confident pseudo labels. Meanwhile, adversarial learning

is utilized in the output space to drive the segmentation

outputs of the source and target datasets to share closer

global distribution. Finally, we conduct the experiments on

our built medical endoscopic dataset and several benchmark

datasets to justify the superiority of our model. The experi-

mental results can strongly support the effectiveness of our

proposed model.

The contributions of our work are as follows:

• We develop a new semantic lesion representation

transfer model for weakly-supervised lesions segmen-

tation. To our best knowledge, this is an earlier explo-

ration about semantic transfer for endoscopic lesions

segmentation in the medical image analysis field.

• A pseudo pixel label generator is proposed to pro-

gressively mine more highly-confident pseudo labels,

which can not only include more hard-to-transfer sam-

ples from the target dataset into training set, but also

achieve class balance with super-pixel priors.

• A new medical endoscopic dataset with 3659 images

collected from more than 1100 volunteers is built. We

demonstrate the effectiveness of our model against

several state-of-the-arts on our endoscopic dataset and

several benchmark datasets.

2. Related Work

In this section, we discuss some representative related

works about semantic lesion segmentation and semantic

representation transfer.

Semantic Lesion Segmentation: Computer aided di-

agnosis (CAD) [31, 9, 37, 7] is developed to assist clini-

cian to improve the efficiency and accuracy of medical le-

sions segmentation. Traditional methods rely on local im-

age features handcrafted by domain experts [18, 6]. To

further improve the segmentation quality, most advanced

methods [28, 20, 10] based on convolutional neural net-

works [14, 32, 4] are proposed, which can achieve state-

of-the-arts performance but acquire lots of pixel-level an-

notations. Thus, weakly-supervised semantic lesions seg-

mentation methods [19, 38] are proposed to save annotation

efforts. However, there is currently still a large segmen-

tation performance gap between models trained only with

image tags and models trained with pixel annotations.

Semantic Knowledge Transfer: Learning the seman-

tic transferable representation from source dataset to target

dataset for classification task via generative adversarial net-

work [13] has been widely-explored [23, 34, 35, 24, 15].

As pointed out in [42], methods addressing classification

transfer do not translate well to the semantic segmenta-

tion task, which is still a significant challenge. Recently,

Bousmalis et al. [2] propose to learn transferable knowl-

edge via transferring the source images to target dataset.

[42] utilizes a curriculum learning approach to mitigate the

gap between source and target dataset. Several researches

[16, 5, 15, 12, 33] focus on employing adversarial learning

to semantic segmentation transfer in the feature space. [17]

introduces an additional generator conditioned on the extra

auxiliary information for target dataset. [44] exploits a self-

training strategy for semantic representation transfer. How-

ever, existing models cannot be directly applied to semantic

lesion transfer, since 1) they cannot ensure the features in

same class but in different datasets are mapped nearby due

to non-valid labeled information for target samples; 2) the

model tends to transfer some easier-to-learned classes in-

stead of balancing all the classes.

Therefore, we focus on learning semantic transfer-

able knowledge by highly-confident class-balanced pseudo

labels and dynamically-searched feature centroids with

previously-learned experience.

3. The Proposed Model

In this section, we provide a brief overview about our

semantic lesion representation transfer model. Then, the

details about model formulation, training and testing proce-

dures are elaborated.

3.1. Overview of Our Proposed Model

The overview architecture of our model is shown in Fig-

ure 2. Two subnets marked as S1 and S2 are designed for

classification and segmentation tasks, respectively, where

the prediction of subnet S2 is refined by classification prob-

ability via convolution operation, as shown in dashed ar-

rows of Figure 2. Suppose that the source dataset (e.g., gas-
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Figure 2: Framework of our proposed model, where six components of our model include ResNet-50 network for feature

extraction, adversarial learning for enforcing various lesion segmentation to share closer distribution, pseudo label generator

for weakly-labeled enteroscopy dataset, semantic representation transfer loss LSRT for aligning feature centroids among

source and target datasets, and two subnets denoted as S1 and S2 for classification LC and segmentation LS , respectively.

troscope images) and target dataset (e.g., enteroscopy im-

ages) are denoted as Xs = {(xs
i , y

sc
i , yssi )}ns

i=1 and Xt =
{(xt

j , y
tc
j }nt

j=1, respectively, where ysci and yssi are the cor-

responding image and pixel annotations of xs
i , and ytcj is the

corresponding image annotation of xt
j . We firstly forward

image xs
i of source dataset Xs to optimize the whole net-

work excluding discriminator D. The segmentation output

for image xt
j of target dataset Xt is then predicted by subnet

S2. Since our goal is to encourage the segmentation outputs

of source dataset Xs and target dataset Xt to share closer

distribution, discriminator D takes these two predictions as

the input to distinguish whether the input is from Xs or Xt.

Although we employ generative adversarial objective to

narrow the gap of segmentation outputs between Xs and

Xt, it cannot ensure the features of same class in differ-

ent datasets (i.e., Xs and Xt) are mapped nearby. Inspired

by this key observation, we endeavor to learn the seman-

tic representation transfer by aligning the feature centroid

for each class. However, we do not have pixel annotations

as guidance to compute centroids for target dataset Xt. To

address this issue, we propose a new method to generate

pseudo pixel labels, which takes into account class balance

and super-pixel segmentation priors. Based on the pseudo

labels of target dataset, we utilize exponentially-weighted

features based on previously-learned experience to compute

semantic centroid for each class. Furthermore, the target

image xt
j assigned with pseudo pixel labels ŷtsj is then for-

warded into our model to fine-tuning the whole network.

3.2. Model Formulation

In order to learn transferable knowledge for target dis-

ease segmentation task, we formulate our proposed model

as the following objective:

L =LC(X
s, Xt) + LS(X

s, Xt) + ηLD(Xs, Xt)

+ µLSRT (X
s, Xt),

(1)

where η ≥ 0 and µ ≥ 0 are trade-off parameters and the

definitions of each loss function are shown as follows:

Classification Loss LC(X
s, Xt): LC(X

s, Xt) rep-

resents the classification loss of both target and source

datasets (e.g., gastroscope and enteroscopy datasets). The

subnet S1 is utilized to discriminate whether the input im-

age has lesion or not by the loss LC(X
s, Xt):

LC(X
s, Xt) =E(xs

i
,ysc

i
)∈Xs

(

J(S1(x
s
i , θS1

), ysci )
)

+E(xt
j
,ytc

j
)∈Xt

(

J(S1(x
t
j , θS1

), ytcj )
)

,
(2)

where θS1
denotes the parameters of the subnet S1.

S1(x
s
i , θS1

) and S1(x
t
j , θS1

) are the classification softmax

outputs for source and target datasets, respectively, and

J(., .) is the typical cross-entropy loss.

Segmentation Loss LS(X
s, Xt): For the subnet S2

with softmax outputs, LS(X
s, Xt) can be formulated as

the segmentation loss for dataset Xs with supervised pixel

annotation yssi , and dataset Xt with assigned pseudo pixel

label ŷtsj . It can then be formulated as:

LS(X
s,Xt)=E(xs

i
,yss

i
)∈Xs

(

−

|xs
i |

∑

a=1

(yssia )
⊤ log(S2(x

s
i , θS2

)a)
)

+Ext
j
∈Xt

(

−

|xt
j |

∑

b=1

(ŷtsjb)
⊤ log(S2(x

t
j , θS2

)b)+λ
∥

∥ŷtsjb
∥

∥

1

)

,

s.t., ŷtsjb ∈
{

{ek|ek ∈ R
K} ∪ 0

}

, ∀b = 1, . . . |xt
j |,

(3)

where θS2
denotes the parameters of S2, S2(x

s
i , θS2

)a and

S2(x
t
j , θS2

)b are the segmentation softmax outputs of sub-

net S2 at pixel a (a = 1, 2, ..., |xs
i |) and b (b = 1, 2, ...,

∣

∣xt
j

∣

∣),

respectively. yssia denotes one-hot encoding of ground truth

label for the a-th pixel position in image xs
i , and ŷtsjb is as-

signed pseudo label for the b-th pixel position in image xt
j .
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K and ek are the number of classes and one-hot vector, re-

spectively. Notice that assigning ŷtsjb as 0 can neglect this

pseudo pixel label in training procedure. We thus expect

the ℓ1-norm regularization on ŷtsj can serve as a negative

sparse constraint to prevent the trivial solution from ignor-

ing all pseudo pixel labels. λ ≥ 0 is a global weight to

control the amount of selected pseudo labels, and a larger λ

can promote the selection of more pseudo labels for model

training.

Similar to self-paced learning [21], Eq. (3) in our model

can iteratively produce pseudo pixel labels corresponding to

large confidence. However, the optimization of the second

term in Eq. (3) can result in two issues: (i) our model will

tend to be biased towards initially easily-learned classes and

neglect other hard-to-transfer classes in the training proce-

dure; (ii) the generated pseudo labels with highly-confident

scores are spatially discrete. To address the issue (i), the

second term in Eq. (3) can be formulated as Eq. (4) where

class-wise confidence levels are normalized.

min
ŷts
jb

Ext
j

(

−

|xt
j|

∑

b=1

K
∑

k=1

(ŷtsjb)k log(S2(x
t
j , θS2

)b) + λk

∥

∥ŷtsjb
∥

∥

1

)

,

s.t., ŷtsjb = [(ŷtsjb)1, ..., (ŷ
ts
jb)K ] ∈

{

{ek|ek ∈ R
K} ∪ 0

}

,

(4)

where λk (k = 1, 2, ...,K) are class balance parameters

that determine the proportion of generated pseudo labels for

each class k. In order to avert dominance of large amount of

pixel classes, we develop a new method for the determina-

tion of λk as summarized in Algorithm 1: after obtaining

maximum predicted probability Mj of each pixel for all tar-

get images, we sort the probabilities of all pixels predicted

as class k. λk can be determined when e−λk equals to the

probability ranked at (1 − p)length(SMk). The value of p

is starting from 25% and empirically added by 5% in each

training epoch, and the maximum portion p is set as 55%.

Furthermore, the optimal solution of Eq. (4) is:

(ŷtsjb)k =



















1, if k = argmax
k

S2(x
t
j , θS2

)b

e−λk
and

S2(x
t
j , θS2

)b > e−λk ,

0, otherwise.

(5)

To handle the issue (ii), the pseudo labels that are pro-

duced by Eq. (5) can be refined with super-pixel spatial

priors [1], which ensures spatial continuity of generated

pseudo labels. Moreover, Algorithm 2 presents the details

about how to apply super-pixel spatial refinement for the as-

signment of pseudo labels ŷtsj : the super-pixel priors St
j is

applied for each target image xt
j . When the (h,w)-th pixel

which has same spatial priors among its 8-neighborhoods

has no valid pseudo labels, its pixel label can be decided via

voting the pseudo labels of its 8-neighborhoods.

Algorithm 1 Determination of λk in Eq. (4)

Input: Subnet S2, the number of classes K, portion p of

selected pseudo labels, target image xt
j ∈ Xt;

Output: λk

1: for j = 1, . . . , |Xt| do

2: Set MPk = ∅;

3: Lj = argmax(S2(x
t
j , θS2

), axis = 3);
4: Mj = max(S2(x

t
j , θS2

), axis = 3);
5: for k = 1, . . . ,K do

6: Mk
j = Mj(Lj == k);

7: MPk = [MPk,matrix to vector(Mk
j )];

8: end for

9: end for

10: for k = 1, . . . ,K do

11: SMk = sorting(MPk, ascending);
12: Tk = (1− p)length(SMk);
13: λk = − log(SMk[Tk])
14: end for

return λk;

Adversarial Loss LD(Xs, Xt): To drive lesion seg-

mentation outputs between Xs and Xt to share simi-

lar distribution, we utilize generative adversarial objective

LD(Xs, Xt) in this paper. Discriminator D in Figure 2

takes these two segmentation softmax outputs of subnet S2

as input to distinguish whether the input is from Xs or Xt,

and S2 is trained to fool D. Formally, it can be defined as:

LD(Xs,Xt) = Ext
j
∈Xt

(

log(D(S2(x
t
j , θS2

), θD))
)

+ Exs
i
∈Xs

(

log(1−D(S2(x
s
i , θS2

), θD))
)

,
(6)

where D(S2(x
s
i , θS2

), θD) and D(S2(x
t
j , θS2

), θD) indi-

cate the output of discriminator D for image xs
i and xt

j ,

respectively, and θD indicates the parameters of discrimi-

nator D.

Semantic Transfer LSRT (X
s, Xt): To ensure that the

features of same class in different datasets Xs and Xt

are mapped nearby, LSRT (X
s, Xt) is proposed for seman-

tic representation transfer via feature centroid alignment,

which can be defined as:

LSRT (X
s, Xt) =

K
∑

k=1

∥

∥Cs
k − Ct

k

∥

∥

2

2
+ α

∥

∥Cs
k − Ct

k

∥

∥

1
, (7)

where Cs
k and Ct

k are the centroids of the class k in datasets

Xs and Xt, respectively. α ≥ 0 is a trade-off parame-

ter. Considering that the centroids of same class in different

datasets have similar sparse property, we utilize the second

term of Eq. (7). Specifically, motivated by exponential re-

ward design in reinforcement learning [22, 25], we propose

a new method to search centroids for each class based on

exponentially-weighted previously learned features, which

resort to history learned experience. Furthermore, pseudo
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Algorithm 2 Determination of Ultimate Pseudo Pixel Labels

Input: Enteroscopy image xt
j ∈ Xt, width W and height

H of image xt
j , the number of classes K;

Output: Pseudo labels ŷtsj ;

1: Solve λk via Algorithm 1;

2: for j = 1, . . . , |Xt| do

3: Compute initial pseudo labels ŷtsj via Eq. (5);

4: Compute super-pixel segmentation priors St
j of xt

j ;

5: for h = 1, . . . , H, w = 1, . . . ,W do

6: Set Chw = ∅;

7: if ŷtsj has no pseudo labels at (h,w)-th pixel then

8: for k = 1, . . . ,K do

9: Ck
hw=

h+1
∑

x=h−1

w+1
∑

y=w−1
1(

((ŷts
j
)xy=k)&((St

j
)hw=(St

j
)xy)

)

10: Chw = [Chw, C
k
hw];

11: end for

12: Nk = argmax(Chw, axis = 0);
13: if Chw[Nk] > 4 then

14: (ŷtsj )hw = Nk;

15: end if

16: end if

17: end for

Return the ultimate pseudo labels ŷtsj for xt
j ;

18: end for

labels generated by Algorithm 2 are used to guide semantic

alignment for dataset Xt. The details of computing centroid

for each class are shown in Algorithm 3.

Instead of aligning those newly obtained centroids in

each iteration directly, we propose to align the centroids

via resorting previously-leaned experience to overcome two

practical limitations: 1) Categorical information in each

batch is often insufficient, e.g., it is possible that some

classes are missing in the current training batch since the

samples are randomly selected; 2) If the batch size is small,

even one false pseudo label will lead to the enormous devia-

tion between the true centroid and pseudo-labeled centroid.

3.3. Details of Network Architecture

Baseline, Subnet S1 and S2: We utilize DeepLab-v3

[4] architecture based on ResNet-50 [14] as the backbone

network, which is pre-trained with ImageNet [11]. For the

ResNet-50 [14], we remove the last classification layer and

modify the stride of the last two convolutional blocks from 2

to 1 for higher dimensional output. Moreover, three dilated

convolutional filters with stride of {1, 2, 4} are utilized in

the last convolutional block to enlarge receptive field. As

shown in Figure 2, the output feature map generated by

baseline ResNet-50 is passed into subnet S1 for image clas-

sification. It is forwarded into subnet S2 as well for pixel

segmentation, which contains an Atrous Spatial Pyramid

Pooling(ASPP) [3] block and a pixel classifier layer.

Algorithm 3 Optimizing Semantic Representation Transfer Loss

Input: Max-iteration N , classes number K, the feature

centroids {Cs
k}

K
k=1 and {Ct

k}
K
k=1 of each class k for

Xs and Xt;

Output: LSRT (X
s, Xt);

1: for n = 1, . . . , N do

2: LSRT (X
s, Xt) = 0;

3:
(

(xs
i , y

ss
i ), (xt

j)
)

= RandomlySampling(Xs, Xt);
4: ŷtsj = PseudoLabeling(xt

j) via Algorithm 2;

5: Extracting pixel feature maps F s
i and F t

j by subnet

S2 for xs
i ∈ Xs and xt

j ∈ Xt

6: for k = 1, . . . ,K do

7: Csn
k = 1

|xs
i |

|xs
i |

∑

a=1
(F s

i )a1(yss
i

)a=k;

8: Ctn
k = 1

|xt
j|

|xt
j|

∑

b=1

(F t
j )b1(ŷts

j
)b=k;

9: Cs
k=

∑n

x=1 C
sx
k ·γn−x; (Exponentially-weighted)

10: Ct
k=

∑n

x=1 C
tx
k ·γn−x; (Exponentially-weighted)

11: end for

12: Return LSRT (X
s, Xt);

13: end for

Discriminator (D): Inspired by [26], for the discrimina-

tor D, we employ a fully convolutional networks for retain-

ing global information compared with multi-layer percep-

tion. It consists of 5 convolutional layers with stride of 2

and kernel of 3. In more detail, the channels of 5 convolu-

tional filters are {16, 32, 64, 64, 1}, respectively. Excluding

the last convolution layer, the activation function of each

filter is Leaky RELU with the parameter as 0.2.

3.4. Training and Testing

Training: In each training step, for losses LC(X
s, Xt)

and LS(X
s, Xt), we firstly forward the source image xs

i

(e.g., gastroscope) with the image-level label ysci and the

pixel-level annotation yssi to the network and generate the

segmentation softmax output S2(x
s
i , θS2

). We then obtain

the target softmax output S2(x
t
j , θS2

) for image xt
j (e.g.,

enteroscopy) only with the image-level label ytcj , and ulti-

mate pseudo pixel labels ŷtsj are generated via Algorithm 2.

In addition, these two segmentation outputs are passed into

discriminator D for optimizing LD(Xs, Xt). For training

the objective LSRT (X
s, Xt), the centroids Cs

k and Ct
k for

each class k are computed via Algorithm 3, which resorts

to previously learned features.

Testing: In testing phase, a target image xt
j (e.g., en-

teroscopy) is passed into feature extractor ResNet-50 fol-

lowed by subnet S1 and S2 for classification and segmen-

tation. The discriminator D and other algorithmic designs

would not be involved. As for implementation details, we

use a single Titan XP GPU with 12 GB memory. The Adam
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Metrics Baseline [4] CDWS [19] NMD [5] Wild [16] DFN [40] LtA [33] CGAN [17] Ours

IoUn(%) 75.13 25.11 81.10 81.58 81.33 81.73 80.32 84.76

IoUd(%) 33.24 15.51 36.85 38.59 37.50 41.10 41.33 43.16

mIoU(%) 54.19 20.31 58.97 60.09 59.41 61.42 60.82 63.96

Table 1: Comparison performance between our proposed model and the state-of-the-arts on our medical dataset. Models with

the best performance are bolded.

optimizer is used to train whole networks with the batch

size as 4. The initial learning rate is set as 1.0 × 10−4 and

it is exponential decay with the rate and step size as 0.7 and

950, respectively.

4. Experiments

In this section, we give detailed descriptions about our

built dataset, and both source code and built dataset are

available at http://ai.sia.cn/lwfb/. Although our

model is mainly designed for medical image analysis, the

experiments on other benchmark datasets are also con-

ducted to validate its generalization performance.

4.1. Dataset and Evaluation

The datasets in our experiments include one our own

medical dataset, and three benchmark datasets.

Medical Endoscopic Dataset: this dataset is built by

ourself, which has total 3659 images that collected from

more than 1100 volunteers with various lesions, including

gastritis, polyp, cancer, bleeding and ulcer. Specifically,

it contains 2969 gasteroscope images and 690 enteroscopy

images. In the training phase, we treat the gasteroscope

images as the source dataset, whose 2400 images have the

image-level labels and 569 images have both image-level

labels and pixel-level annotations; enteroscopy images are

treated as target dataset, whose 300 images are with their

image-level labels. For the test phase, the other 390 en-

teroscopy images are utilized to evaluate the performance.

Cityscapes [8] is a real-world dataset about urban street

scenes, which is collected in 50 cities. It consists of three

disjoint subsets: training subset with 2993 images, valida-

tion subset with 503 images and test subset with 1531 im-

ages. There are total 34 distinct categories in the dataset.

GTA [27] contains 24996 images w.r.t synthetic street

scenes, which are collected from realistic computer game

Grand Theft Auto V based on the city of Los Ange-

les. The segmentation annotations are compatible with the

Cityscapes dataset [8].

SYNTHIA [29] is a large synthetic dataset whose im-

ages are collected in virtual city without corresponding

to any real city. For the experiments, we use its subset

called SYNTHIA-RANDCITYSCAPES with 9400 images,

including 12 automatically annotated object categories and

some unnamed classes.

For the evaluation, we use intersection over union (IoU)

as basic metric. Additionally, three derived metrics are also

used, i.e., IoU of normal (IoUn), IoU of disease (IoUd) and

mean IoU (mIoU). The larger of the corresponding metric

is, the better of the corresponding model will be.

4.2. Experiments on Medical Endoscopic Dataset

In this subsection, we validate the superiority of our

model by comparing it with several state-of-the-arts on our

built medical dataset:

• Baseline (BL) model utilizes DeepLab-v3 [4] as back-

bone for segmentation without semantic transfer.

• Constrained Deep Weak Supervision (CDWS) [19] ex-

ploits multi-scale learning with weak supervision by

applying area constraint for segmentation predictions.

• No More Discrimination (NMD) [5] refines segmenta-

tion module by leveraging soft pseudo labels and static

object priors with multiple class-wise adaptation.

• FCNs in the Wild (Wild) [16] designs a adversarial

loss with prior constraint on pixel-level output to opti-

mize intermediate convolutional layers.

• Discriminative Feature Network (DFN) [40] designs

both Smooth Network and Border Network to learn

discriminative semantic feature.

• Learning to Adapt (LtA) [33] exploits multi-level

adaptation in the context of semantic segmentation.

• Conditional GAN (CGAN) [17] proposes to integrate

conditional GAN into the segmentation network for

feature space adaptation.

For a fair comparison, we use ResNet-50 [14] as the

backbone architecture and add an additional classification

head to refine segmentation in this experiment. The evalu-

ation results of our model against state-of-the-arts are pre-

sented in Table 1. As shown in Table 1, we have the fol-

lowing observations: 1) Compared with the state-of-the-arts

[33, 17], our proposed model outperforms them by a large

margin around 2.54∼3.14%, which validates the effective-

ness of our model, i.e., a pseudo label generator can mine

more accurate and highly-confident pseudo labels. 2) As for

mIoU, all models [5, 16, 40, 33, 17] with semantic transfer

outperform the models [4, 19] without semantic transfer.

Ablation Study: To validate the effectiveness of dif-

ferent components of our model, we also conduct experi-

ment on our medical dataset with different components ab-

lation, i.e., Baseline network DeepLab-v3 (BL), Adversar-

ial Learning (AL), Pseudo Labels (PL) and Semantic Rep-

resentation Transfer (SRT). As the results shown in Table 2,
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Figure 3: Visualization of the learned representations using t-SNE [36], where blue and red points are source gasteroscope

samples and target enteroscopy samples, respectively. Two separated clusters denote two categories, i.e., lesion and normal.

Metrics BL BL+AL BL+AL+PL BL+AL+SRT BL+PL+SRT Ours Ours-woPL Ours-woCB Ours-woSP

IoUn(%) 75.13 79.81 83.08 81.71 84.38 84.76 81.71 84.08 84.22

IoUd(%) 33.24 39.27 41.07 41.27 43.33 43.16 41.27 40.51 42.37

mIoU(%) 54.19 59.54 62.07 61.49 63.58 63.96 61.69 62.29 63.30

Table 2: Ablation study and different pseudo labels designs of our model on medical dataset with Baseline network DeepLab-

v3 [4] (BL), Adversarial Learning (AL), Pseudo Labels (PL), Semantic Representation Transfer (SRT) and training without

pseudo labels (Ours-woPL), class balance (Ours-woCB) or super-pixel spatial priors (Ours-woSP).

we can observe that when one or more components are re-

moved, the performance degrades, e.g., the performance de-

creases 0.38%∼4.42% in terms of mIoU after removing the

pseudo labels selection or semantic representation transfer.

In addition, we also demonstrate the learned transferable

representations in Figure 3. Notice that our model can well

map the features of same class in different datasets nearby

along the learning process when compared with Baseline

(Figure 3 (a)) and Adversarial Learning (Figure 3 (b)),

which validates that highly-confident pseudo pixel labels

and previously-learned feature can further improve the per-

formance for enteroscopy lesions segmentation.

Effect of Pseudo Labels Selection: We intend to study

how different designs for pseudo labels selection affect the

performance of our model, i.e., training without pseudo la-

bels (denoted as Ours-woPL), training without class balance

(denoted as Ours-woCB) and training without super-pixel

spatial priors (denoted as Ours-woSP). As the results shown

in Table 2, our model which is only with class balance can

achieve 1.61% improvement when comparing with Ours-

woPL, while the training model with both class balance and

super-pixel spatial priors can improve 2.27%. This observa-

tion indicates that the pseudo labels component is designed

reasonably. In addition, as depicted in Figure 4, the pseudo

pixel label generator can iteratively generate more highly-

confident pseudo pixel labels by incorporating class balance

and super-pixel spatial prior.
Effect of Hyper-Parameters: This subsection investi-

gates the effect of parameters {µ, η} and {α, γ}. As the

results illustrated in Figure 5, we can choose the optimal

{µ, η} and {α, γ} by empirically conducting extensive pa-

rameter experiments. Notice that the performance of our

model has great stability when tuning the value of different

parameters. Moreover, it also validates the importance of

incorporating previously-learned features and sparsity prop-

erty of medical endoscopic dataset.
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Figure 4: The illustration of intuitive propagation of pseudo

labels, where input images are from enteroscopy dataset.
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(a) when γ = 0.7, α = 1
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(b) when µ = 10, η = 0.3

Figure 5: The effect of parameters {µ, η} (left) and {α, γ}
(right) on medical endoscopic dataset.

4.3. Experiments on Benchmark Datasets

In this subsection, we conduct experiments on several

benchmark datasets that has compatible annotations with

each other to further justify the effectiveness of our model.

For a fair comparison, we remove the classification head

and adopt the same experimental data configuration with

the completing methods [16, 42, 15, 30, 33, 17]. For the

ablation studies shown in Table 3 and Table 4, BL, AL, PL,

SRT and Ours-woSP indicate baseline, adversarial learning,

pseudo labels, semantic lesions transfer components of our

model and training without super-pixel priors, respectively.

Transfer from SYNTHIA to Cityscapes: In this exper-

iment, our model is used to learn transferable knowledge

from SYNTHIA [29] to Cityscapes [8]. For the training

phase, SYNTHIA dataset with finely-annotated 9400 im-
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Method road sidewalk building wall fence pole light sign veg sky person rider car bus mbike bike mIoU

DF [41] 6.4 17.7 29.7 1.2 0.0 15.1 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 17.4

Wild [16] 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2

CL [42] 65.2 26.1 74.9 0.1 0.5 10.7 3.7 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 29.0

NMD [5] 62.7 25.6 78.3 - - - 1.2 5.4 81.3 81.0 37.4 6.4 63.5 10.1 1.2 4.6 -

LSD [30] 80.1 29.1 77.5 2.8 0.4 26.8 11.1 18.0 78.1 76.7 48.2 15.2 70.5 17.4 8.7 16.7 36.1

LtA [33] 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 -

CGAN [17] 85.0 25.8 73.5 3.4 3.0 31.5 19.5 21.3 67.4 69.4 68.5 25.0 76.5 41.6 17.9 29.5 41.2

BL 22.5 15.4 74.1 9.2 0.1 24.6 6.6 11.7 75.0 82.0 56.5 18.7 34.0 19.7 17.1 18.5 30.4

BL+AL 74.4 30.5 75.8 13.2 0.2 19.7 4.4 4.9 78.2 82.7 44.4 16.0 63.2 33.3 13.5 26.2 36.3

BL+AL+PL 79.2 38.7 76.5 10.7 0.3 22.4 5.6 11.4 79.5 81.3 58.1 20.7 70.4 31.6 24.8 32.3 40.2

BL+AL+SRT 79.9 38.2 77.1 9.7 0.2 21.1 6.8 7.6 76.1 81.6 54.8 21.3 66.2 30.8 21.6 30.6 39.0

BL+PL+SRT 61.6 28.7 71.6 20.8 0.6 28.7 31.1 24.9 80.0 81.5 62.7 16.2 69.4 12.3 27.8 51.5 41.8

Ours-woSP 67.2 29.4 73.5 21.2 0.7 28.4 29.7 24.5 79.9 81.1 62.9 15.8 72.8 12.6 26.5 51.2 42.3

Ours 68.4 30.1 74.2 21.5 0.4 29.2 29.3 25.1 80.3 81.5 63.1 16.4 75.6 13.5 26.1 51.9 42.9

Table 3: Comparisons performance of learning transferable knowledge from SYNTHIA dataset to Cityscapes dataset. Models

with best and runner-up performance are marked with red and blue colors, respectively.

Method road sidewalk building wall fence pole light sign veg terrain sky person rider car truck bus train mbike bike mIoU

DF [41] 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.1

Wild [16] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CL [42] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 11.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

CyCADA [15] 79.1 33.1 77.9 23.4 17.3 32.1 33.3 31.8 81.5 26.7 69.0 62.8 14.7 74.5 20.9 25.6 6.9 18.8 20.4 39.5

LSD [30] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1

LtA [33] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

CGAN [17] 89.2 49.0 70.7 13.5 10.9 38.5 29.4 33.7 77.9 37.6 65.8 75.1 32.4 77.8 39.2 45.2 0.0 25.2 35.4 44.5

BL 80.2 6.4 74.8 8.8 17.2 17.5 30.5 17.7 75.0 14.1 57.9 56.2 27.3 64.1 29.7 24.1 4.7 27.6 33.4 35.1

BL+AL 86.3 32.2 79.8 22.0 22.2 27.1 33.5 20.1 80.3 21.5 75.5 59.0 25.4 73.1 28.0 32.2 5.4 27.3 31.5 41.2

BL+AL+PL 91.7 48.3 76.8 25.1 28.5 28.2 39.7 44.5 79.8 13.6 72.3 53.6 19.1 85.8 23.7 44.2 32.8 13.4 31.5 44.9

BL+AL+SRT 92.4 49.8 73.6 25.3 28.3 24.5 40.9 45.0 79.2 14.2 70.4 50.1 18.6 86.6 22.3 45.4 30.3 11.9 32.8 44.3

BL+PL+SRT 92.6 47.8 77.4 26.7 28.8 29.9 42.4 46.3 80.7 15.1 71.1 55.8 24.3 86.5 21.5 42.4 43.3 12.1 30.8 46.1

Ours-woSP 92.4 47.3 78.5 25.4 27.8 34.8 42.0 44.6 79.8 15.3 67.1 60.5 30.7 86.3 26.4 43.7 36.1 14.8 33.2 46.7

Ours 92.7 48.0 78.8 25.7 27.2 36.0 42.2 45.3 80.6 14.6 66.0 62.1 30.4 86.2 28.0 45.6 35.9 16.8 34.7 47.2

Table 4: Comparison performance of learning transferable representation from GTA dataset to Cityscapes dataset. Models

with best and runner-up performance are marked with red and blue colors, respectively.

ages is regarded as Xs. The Cityscapes without pixel labels

has 2993 images is regarded as Xt. For the test, we use val-

idation subset with 500 images of Cityscapes, which is dis-

joint with training subset. Notice that we consider 16 com-

mon classes for two datasets: road, sidewalk, building, wall,

fence, pole, traffic light, traffic sign, vegetation, sky, person,

rider, car, bus, motorbike and bike. From the presented re-

sults in Table 3, we can conclude that: 1) Our model out-

performs state-of-the-arts [30, 17, 33] by 1.7 ∼ 6.8% for

the remaining classes in terms of mIoU, which verifies the

effectiveness of our model; 2) Ablation studies of both PL,

SRT and SP also validates these components are designed

reasonably; 3) Although the appearances of the hard-to-

transfer classes (e.g., wall, pole, motorbike and bike) are

extremely different between these two datasets, our model

can also achieve comparable performance.

Transfer from GTA to Cityscapes: When conducting

experiments to learn transferable representation from GTA

[27] to Cityscapes [8], in the training process, GTA with

finely-annotated 24996 images and the training subset with

2993 images of Cityscapes without using pixel labels are

treated as Xs and Xt, respectively. The remaining valida-

tion subset with 500 images of Cityscapes is used for eval-

uation. As the results presented in Table 4, we consider 19

shared classes: road, sidewalk, building, wall, fence, traffic

light, traffic sign, vegetation, terrain, sky, person, rider, car,

truck, bus, train, motorbike and bike. Notice that: 1) Other

semantic transfer models can be easily partial towards easy-

to-transfer classes (e.g., road, building, sky, vegetation and

car), while our model can achieve better performance for

both initially hard-to-transfer classes and easy-to-transfer

classes. 2) The ablation studies of PL, SRT and SP verify

that previously-learned experience and pseudo labels play a

significant role when comparing with [15, 30, 33, 17].

5. Conclusion

In this paper, we explore a new semantic lesions repre-

sentation transfer model for weakly-supervised endoscopic

lesions segmentation. More specifically, a pseudo pixel

label generator is presented to progressively mine more

samples from target data into training set, which incorpo-

rates super-pixel priors and class balance to prevent dom-

inance of well-to-transfer categories. We also align the

dynamically-searched feature centroids for each class of

different datasets with previously-learned features. Exper-

iments on our built dataset and several benchmark datasets

show the effectiveness and superiority of our model.
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