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Abstract

Virtual try-on systems under arbitrary human poses have

significant application potential, yet also raise extensive

challenges, such as self-occlusions, heavy misalignment

among different poses, and complex clothes textures. Exist-

ing virtual try-on methods can only transfer clothes given

a fixed human pose, and still show unsatisfactory perfor-

mances, often failing to preserve person identity or texture

details, and with limited pose diversity. This paper makes

the first attempt towards a multi-pose guided virtual try-

on system, which enables clothes to transfer onto a person

with diverse poses. Given an input person image, a de-

sired clothes image, and a desired pose, the proposed Multi-

pose Guided Virtual Try-On Network (MG-VTON) gener-

ates a new person image after fitting the desired clothes into

the person and manipulating the pose. MG-VTON is con-

structed with three stages: 1) a conditional human parsing

network is proposed that matches both the desired pose and

the desired clothes shape; 2) a deep Warping Generative

Adversarial Network (Warp-GAN) that warps the desired

clothes appearance into the synthesized human parsing map

and alleviates the misalignment problem between the input

human pose and the desired one; 3) a refinement render net-

work recovers the texture details of clothes and removes ar-

tifacts, based on multi-pose composition masks. Extensive

experiments on commonly-used datasets and our newly-

collected largest virtual try-on benchmark demonstrate that

our MG-VTON significantly outperforms all state-of-the-

art methods both qualitatively and quantitatively, showing

promising virtual try-on performances.

∗Corresponding author is Jian Yin

Figure 1. Some results of our model. The clothes and poses images

are shown in the first row, while the person images shown in the

first column. The results manipulated by both clothes and pose are

shown in the other columns.

1. Introduction

Virtual try-on, which enables users to try on clothes to

check the size or style in a virtual way, has a huge amount

of commercial value and attracts extensive attention in com-

puter vision. Many virtual try-on systems [13, 38] have

been presented and achieve promising results when the pose

is fixed. However, these approaches usually learn to synthe-

size the image conditioned on clothes only. When given a

different pose, they tend to synthesize blurry images, losing

most of the details and style, as shown in Figure 4.
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Meanwhile, other existing works [22, 29, 45] leverage

3D models and measurements to preserve the body shape

and generate visually realistic results. However, it needs

expert knowledge and huge labor cost to collect the 3D an-

notated data and build the 3D models. When the 3D model

of the person could not be obtained or is not accurate, these

methods would become inapplicable as well. To address

these limitations, we propose a practical try-on task that al-

lows users to control both the clothes and poses without any

3D annotations. Given a person image, a desired clothes,

and a desired pose, we generate the person image that wears

the new clothes with preserved textural appearance, and re-

construct the pose simultaneously, as illustrated in Figure 1.

The challenge of advancing from fixed-pose virtual try-

on to the multi-pose try-on task comes from the fact that

the warping of target clothes and the manipulation of hu-

man pose have to be learned simultaneously. Without

explicitly decomposing the two and modeling the intri-

cate interplay among the appearance, clothes and pose, an

image-based end-to-end solution as in those previous meth-

ods [13, 38, 47] would not be able to disentangle the pose

and appearance space, usually resulting blurry artifacts.

Targeting at the problems mentioned above, we propose

a novel Multi-pose Guided Virtual Try-On Network (MG-

VTON) that can generate a new person image after fitting

both desired clothes into the input image and manipulat-

ing the pose. Our MG-VTON is a multi-stage framework

with generative adversarial learning. Concretely, we design

a pose-clothes-guided human parsing network to estimate a

plausible human parsing of the target image conditioned on

the information from the source image (including the ap-

proximate body shape, the face mask and the hair mask), as

well as the desired clothes and the target pose. The precise

region of the body parts in the source image could guide the

synthesis of human parsing in an effective way. Based on

the synthesized human parsing map, a geometric matching

model is then used to warp the target clothes and seamlessly

fit it onto the person. In addition, we design a deep Warping

Generative Adversarial Network (Warp-GAN) to synthesize

the coarse result, alleviating the large misalignment caused

by the different poses and the diversity of clothes appear-

ance. Finally, we present a refinement network, utilizing

multi-pose composition masks to recover the texture details

and alleviate the artifacts caused by the large misalignment

between the reference pose and the target pose.

To demonstrate our model, we collected a new dataset,

named MPV, by collecting various clothes images and per-

son images with different poses from the same person.

Furthermore, we also conduct experiments on the Deep-

Fashion [48] datasets for evaluation. Following the ob-

ject evaluation protocol [39], we conduct a human subjec-

tive study on the Amazon Mechanical Turk (AMT) plat-

form. Both quantitative and qualitative results indicate that

our method achieves effective performance and high-quality

images with appealing details. The main contributions of

our work are summarized as follows:

• We introduce a novel task of virtual try-on conditioned

on multiple poses, and collect a new dataset that covers

different poses and various clothes.

• We propose a novel Multi-pose Guided Virtual Try-On

Network (MG-VTON) that handles large pose varia-

tions by disentangling the warping of clothes appear-

ance and the pose manipulation in multiple stages.

Specifically, we propose a pose-clothes guided human

parsing network to first synthesize the human parsing

with the desired clothes and pose, which effectively

guides the virtual try-on to achieve reasonable results

via the correct region parts.

• We design a Warp-GAN that integrates human pars-

ing with geometric matching to alleviate blurry issues

caused by the misalignment among different poses.

• A pose-guided refinement network is further proposed

to adaptively controls the composition mask according

to different poses, which learns to recover details and

remove artifacts.

2. Related Work

Generative Adversarial Networks (GANs).

GANs [10] consists of two networks where the dis-

criminator learns to classify between the synthesized

images and the real images while the generator tries to

fool the discriminator. Existing works have studied its

connections with other generative models [15, 28], and

applied the approach in various domains, such as style

transfer [17, 46, 20], image inpainting [42, 12], video

synthesis [6], and text generation [14, 44, 43]. Inspired

by those impressive results of GANs, we also apply the

adversarial loss to exploit a virtual try-on method with

GANs.

Person image synthesis. The skeleton-guided ap-

proach [41] generates person image conditioning on target

skeletons. PG2 [25] applied a coarse-to-fine framework that

consists of a coarse stage and a refined stage. The work [26]

further improved the results with a new decomposition strat-

egy. The deformableGANs [35] and [1, 11, 5] attempted

to alleviate the misalignment problem between different

poses using transformation on the coarse rectangle region

and warped the parts, respectively. [16, 7] added structured

human body constraints in learning the generation model.

V-UNET [8] introduced a variational U-Net [32] to synthe-

size person image by restructuring the shape with stickman

labels. The work [30] applied CycleGAN [46] directly to

manipulate pose. However, all those works fail to preserve
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Figure 2. The overview of the proposed MG-VTON. Stage I: We first decompose the reference image into three binary masks. Then, we

concatenate them with the target clothes and target pose as an input of the conditional parsing network to predict human parsing map. Stage

II: Next, we warp clothes, remove the clothing from the reference image, and concatenate them with the target pose and synthesized parsing

to synthesize the coarse result by using Warp-GAN. Stage III: We finally refine the coarse result with a refinement render, conditioning on

the warped clothes, target pose, and the coarse result.

the textures consistency. The reason behind that is they ig-

nore to consider the interplay among the human parsing,

the clothing, and the pose. The human parsing can guide

the generator to synthesize image in the precise region level

that ensures the coherence of body structure.

Virtual try-on. VITON [13] and CP-VTON [38] all pre-

sented an image-based virtual try-on network, which can

transfer a desired clothes on the person by using a warping

strategy. VITON computed the transformation mapping by

the shape context TPS [2] directly. CP-VTON introduced

a learning method to estimate the transformation parame-

ters. FashionGAN [47] learned to generate new clothes on

the input image of the person conditioned on a sentence

describing the different outfit. However, all of the above

methods synthesized the image of person only on the fixed

pose, which limits the applications in the realistic virtual

try-on simulation. ClothNet [23] presented an image-based

generative model to produce new clothes conditioned on

color. CAGAN [18] proposed a conditional analogy net-

work to synthesize person image conditioned on the paired

of clothes, which limits the practical virtual try-on scenar-

ios. [29, 37] captured the shape of the body automatically.

[34] presented a virtual fitting system that requires the 3D

body shape, which is laborious for collecting the annotation.

In this paper, we introduce an effective method for learning

to synthesize image with the new outfit on the person in dif-

ferent poses through adversarial learning.

3. MG-VTON

We propose a novel Multi-pose Guided Virtual Try-On

Network (MG-VTON) that learns to synthesize the new per-

son image for virtual try-on by manipulating both clothes

and pose. Given an input person image, a desired clothes,

and a desired pose, the proposed MG-VTON aims to pro-

duce a new image of the person by manipulating the de-

sired clothes and poses. Inspired by the coarse-to-fine

idea [13, 25], we adopt an outline-coarse-fine strategy that

divides this task into three subtasks, including the condi-

tional parsing learning, the Warp-GAN, and the refinement

render. The Figure 2 illustrates the overview of MG-VTON.

We first apply the pose estimator [4] to estimate the pose.

Then, we encode the pose as 18 heatmaps, which is filled

with ones in a circle with radius 4 pixels and zeros else-

where. A human parser [9] is used to predict the human

parsing which is utilized to extract the binary mask of the

face, the hair, and the shape of the body. Following VI-

TON [13], we downsample the shape of the body to a lower

resolution (16×12) and directly resize it to the original res-

olution (256 × 192), which helps to alleviate the artifacts

caused by the variety of the body shape.

3.1. Conditional Parsing Learning

To preserve the structural coherence of the person im-

age while manipulating both clothes and the pose, we de-

sign a pose-clothes-guided human parsing network, condi-

tioned on the image of clothes, the pose heatmap, the ap-

proximated shape of the body, the mask of the face, and the

mask of hair. As shown in Figure 4, the baseline methods

failed to preserve some parts of the person (e.g., the color

of the trousers and the style of hair.) because they fed the

person image and clothes image into the model directly. In

this work, we leverage the human parsing maps to address

those problems, which can help the generator to synthesize

the high-quality image on parts-level.

Formally, given an input image of person I , an input im-

age of clothes C, and the target pose P , this stage learns to

predict the human parsing map S
′

t conditioned on clothes C

and the pose P . As shown in Figure 3 (a), we first extract

the hair mask Mh, the face mask Mf , the body shape Mb,

and the target pose P by using a human parser [9] and a

pose estimator [4], respectively. We then concatenate them

with the image of clothes as the input of the conditional

parsing network. The inference of S
′

t can be formulated as

9028



Figure 3. The network architecture of the proposed MG-VTON. (a)(b): The conditional parsing learning module consists of a pose-

clothes-guided network that predicts the human parsing, which helps to generate high-quality person image. (c)(d): The Warp-GAN learns

to generate a realistic image by using a warping features strategy due to the misalignment caused by the diversity of pose. (e): The

refinement render network learns the pose-guided composition mask that enhances the visual quality of the synthesized image. (f): The

geometric matching network learns to estimate the transformation mapping conditioned on the body shape and clothes mask.

maximizing the posterior probability:

p(S
′

t|(Mh,Mf ,Mb, C, P )) = G(Mh,Mf ,Mb, C, P ).
(1)

We adopt a ResNet-like network as the generator G to build

the conditional parsing model. We adopt the discriminator

D directly from the pix2pixHD [39]. We apply the L1 loss

for further improving the performance, which is advanta-

geous for generating more smooth results [41]. Inspired by

the LIP [9], we apply the pixel-wise softmax loss to encour-

age the generator to synthesize high-quality human parsing

maps. Therefore, we formulated the problem of conditional

parsing learning as:

min
G

max
D

F (G,D)

= EM,C,P∼pdata
[log(1−D(G(M,C, P ),M,C, P ))]

+ ESt,M,C,P∼pdata
[logD(St,M,C, P )]

+ ESt,M,C,P∼pdata
[‖St −G(M,C, P )‖1]

+ ESt,M,C,P∼pdata
[Lparsing(St, G(M,C, P ))],

(2)

where M denotes the concatenation of Mh,Mf , and Mb.

The loss Lparsing denotes the pixel-wise softmax loss [9].

The St denotes the ground truth human parsing. The pdata

represents the distributions of the real data.

3.2. Warp­GAN

Since the misalignment of pixels would lead to generate

the blurry results [35], we introduce a deep Warping Gen-

erative Adversarial Network (Warp-GAN) warps the de-

sired clothes appearance into the synthesized human pars-

ing map, which alleviates the misalignment problem be-

tween the input human pose and desired human pose. Dif-

ferent from deformableGANs [35] and [1], we warp the

feature map from the bottleneck layer by using both the

affine and TPS (Thin-Plate Spline) [3] transformation rather

than process the pixel directly by using affine only. Thanks

to the generalization capacity of [31], we directly use the

pre-trained model of [31] to estimate the transformation

mapping between the reference parsing and the synthesized

parsing. We then warp the w/o clothes reference image by

using this transformation mapping.

As illustrated in Figure 3 (c) and (d), the proposed

deep warping network consists of the Warp-GAN generator

Gwarp and the Warp-GAN discriminator Dwarp. We use the

geometric matching module to warp clothes image, as de-

scribed in the section 3.4. Formally, we take warped clothes

image Cw, w/o clothes reference image Iw/o clothes, the tar-

get pose P , and the synthesized human parsing S
′

t as in-

put of the Warp-GAN generator and synthesize the result

Î = Gwarp(Cw, Iw/o clothes, P, S
′

t). Inspired by [19, 13, 24],

we apply a perceptual loss to measure the distances between

high-level features in the pre-trained model, which en-

courages generator to synthesize high-quality and realistic-

looking images. We formulate the perceptual loss as:

Lperceptual(Î , I) =

n∑

i=0

αi‖φi(Î)− φi(I)‖1, (3)

where φi(I) denotes the i-th (i = 0, 1, 2, 3, 4) layer fea-
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ture map in pre-trained network φ of ground truth image I .

We use the pre-trained VGG19 [36] as φ and weightedly

sum the L1 norms of last five layer feature maps in φ to

represent perceptual losses between images. The αi con-

trols the weight of loss for each layer. Besides, following

pixp2pixHD [39], the feature map at different scales from

different layers of discriminator enhance the performance

of image synthesis, we also introduce a feature loss and for-

mulate it as:

Lfeature(Î , I) =

n∑

i=0

γi‖Fi(Î)− Fi(I)‖1, (4)

where Fi(I) represent the i-th (i = 0, 1, 2) layer feature

map of the trained Dwarp. The γi denotes the weight of L1

loss for corresponding layer.

Furthermore, we also apply the adversarial loss Ladv [10,

27] and L1 loss L1 [41] to improve the performance. We

design a weight sum losses as the loss of Gwarp, which en-

courages the Gwarp to synthesize realistic and natural images

in different aspects. We formulate it as:

LGwarp
= λ1Ladv + λ2Lperceptual + λ3Lfeature + λ4L1, (5)

where λi (i = 1, 2, 3, 4) denotes the weight of correspond-

ing loss, respectively.

3.3. Refinement Render

In the coarse stage, the identification information and the

shape of the person can be preserved, but the texture details

are lost due to the complexity of the clothes image. Pasting

the warped clothes onto the target person directly may lead

to generate the artifacts. Learning the composition mask

between the warped clothes image and the coarse results

also generates the artifacts [13, 38] due to the diversity of

pose. To solve the above issues, we present a refinement

render utilizing multi-pose composition masks to recover

the texture details and remove some artifacts.

Formally, we define Cw as an image of warped clothes

obtained by geometric matching learning module, Î as a

coarse result generated by the Warp-GAN, P as the target

pose heatmap, and Gp as the generator of the refinement

render. As illustrated in Figure 3 (e), taking Cw, Î , and

P as input, the Gp learns to predict a towards multi-pose

composition mask and synthesize the rendered result. We

formulate the result of the refinement render as:

Îp = Gp(Cw, Î, P )⊙ Cw + (1−Gp(Cw, Î, P ))⊙ Î , (6)

where ⊙ denotes the element-wise matrix multiplication.

We also adopt the perceptual loss to enhance the perfor-

mance that the objective function of Gp can be written as:

Lp = µ1Lperceptual(Îp, I) + µ2‖1−Gp(Cw, Î, P )‖1, (7)

where µ1 denotes the weight of perceptual loss and µ2 de-

notes the weight of the mask loss.

3.4. Geometric matching learning

Inspired by [31], we adopt the convolutional neural net-

work to learn the transformation parameters, including fea-

ture extracting layers, feature matching layers, and the

transformation parameters estimating layers. As shown in

Figure 3 (f), we take the mask of the clothes image and the

mask of body shape as input which is first passed through

the feature extracting layers. Then, we predict the corre-

lation map by using the matching layers. Finally, we ap-

ply a regression network to estimate the TPS (Thin-Plate

Spline) [3] transformation parameters for the clothes image

directly based on the correlation map.

Formally, given an input image of clothes C and its mask

Cmask, following the stage of conditional parsing learning,

we obtain the approximated body shape Mb and the syn-

thesized clothes mask Ĉmask from the synthesized human

parsing. This subtask aims to learn the transformation map-

ping function T with parameter θ for warping the input im-

age of clothes C. Due to the unseen of synthesized clothes

but have the synthesized clothes mask, we learn the map-

ping between the original clothes mask Cmask and the syn-

thesized clothes mask Ĉmask obey body shape Mb. Thus,

we formulate the objective function of the geometric match-

ing learning as:

Lgeo matching(θ) = ‖Tθ(Cmask)− Ĉmask‖1, (8)

Therefore, the warped clothes Cw can be formulated as

Cw = Tθ(C), which is helpful for addressing the problem

of misalignment and learning the composition mask in the

above subsection 3.2 and subsection 3.3.

4. Experiments

In this section, we first make visual comparisons with

other methods and then discuss the results quantitatively.

We also conduct the human perceptual study and the abla-

tion study, and further train our model on our newly col-

lected dataset MPV test it on the Deepfashion to verify the

generation capacity.

4.1. Datasets

Since each person image in the dataset used in VI-

TON [13] and CP-VTON [38] only has one fixed pose, we

collected the new dataset from the internet, named MPV,

which contains 35,687 person images and 13,524 clothes

images. Each person image in MPV has different poses.

The image is in the resolution of 256× 192. We extract the

62,780 three-tuples of the same person in the same clothes

but with different poses. We further divide them into the

train set and the test set with 52,236 and 10,544 three-tuples,

respectively. Note that we shuffle the test set with different

clothes and diverse pose for quality evaluation. DeepFash-

ion [48] only has the pairs of the same person in different
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Figure 4. Visual comparison with different methods on MPV dataset. Note that the previous methods cannot preserve the identity of the

trousers and the head. DeformableGAN + CP-VTON is the model where we first use DeformableGAN [35] to change the pose and then

use CP-VTON [38] to wear clothes. Please zoom in for best view.

poses but lacks of the image of clothes. To verify the gener-

alization capacity of the proposed model, we extract 10,000

pairs from DeepFashion and randomly select clothes image

from the test set of the MPV for testing.

4.2. Evaluation Metrics

We apply three measures to evaluate the proposed model,

including subjective and objective metrics: 1) We perform

pairwise A/B tests deployed on the Amazon Mechanical

Turk (AMT) platform for human perceptual study. 2) we

use Structural SIMilarity (SSIM) [40] to measure the simi-

larity between the synthesized image and ground truth im-

age. In this work, we take the target image (the same person

wearing the same clothes) as the ground truth image used to

compare with the synthesized image for computing SSIM.

3) We use Inception Score (IS) [33] to measure the quality

of the generated images, which is a conventional method to

verify the performances for image generation.

4.3. Implementation Details

Setting. We train the conditional parsing network, Warp-

GAN, refinement render, and geometric matching network

for 200, 15, 5, 35 epochs, respectively, using ADAM op-

timizer [21], with the batch size of 40, learning rate of

0.0002, β1 = 0.5, β2 = 0.999. We use two NVIDIA Ti-

tan XP GPUs and Pytorch platform on Ubuntu 14.04.

Architecture. As shown in Figure 3, each generator

of MG-VTON is a ResNet-like network, which consists of

three downsample layers, three upsample layers, and nine

residual blocks, each block has three convolutional layers

with 3x3 filter kernels followed by the bath-norm layer and

Relu activation function. For the discriminator, we apply

the same architecture as pix2pixHD [39], which can han-

dle the feature map in different scale with different layers.

Each discriminator contains four downsample layers which

include InstanceNorm and LeakyReLU activation function.

4.4. Baselines

VITON [13] and CP-VTON [38] are the state-of-the-

art image-based virtual try-on methods which assume the

pose of the person is fixed. They all used warped clothes

image to improve the visual quality, but lack of the abil-

ity to generate image under arbitrary poses. In particular,

VTION directly applied shape context matching [2] to com-

pute the transformation mapping. CP-VTON borrowed the

idea from [31] to estimate the transformation mapping us-

ing a convolutional network. Furthermore, we incorporate

a state-of-the-art method DeformableGAN [35] with CP-

VTON form other two baseline: DeformableGAN + CP-

VTON and CP-VTON + DeformableGAN. Deformable-

GAN + CP-VTON first applys a pose-guided network De-

formableGAN to convert the person in the reference im-

age to the desired pose, then applys a virtual try-on net-

work CP-VTON to try on the desired clothes. On the con-

trary, CP-VTON + DeformableGAN first uses CP-VTON

to try on, then changes the pose by DeformableGAN. To

obtain fairness, we first enriched the input of the VITON,

CP-VTON, and DeformableGAN. Then, we retrained the

VITON, CP-VTON, and DeformableGAN on MPV dataset

with the same splits (train set and test set) as our model.

4.5. Quantitative Results

We conduct experiments on two benchmarks and com-

pare against two recent related works using two widely used

metrics SSIM and IS to verify the performance of the image

synthesis, summarized in Table. 2. Higher scores are better.

The results show that our proposed methods significantly

achieve higher scores and consistently outperform all base-

lines on both datasets thanks to the cooperation of our con-

ditional parsing generator, Warp-GAN, and the refinement
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Table 1. Human study on MPV and DeepFashion. Each cell lists the percentage where our MG-VTON is preferred over the other method.

VITON CP-VTON DeformableGAN CP-VTON MG-VTON MG-VTON MG-VTON

+ CP-VTON + DeformableGAN (w/o Parsing) (w/o Render) (w/o Mask)

MPV 83.1% 85.9% 89.2% 99.6% 98.5% 82.4% 84.6%

DeepFashion 88.9% 83.3% 93.2% 99.2% 99.0% 84.6% 75.5%

Table 2. Comparisons on MPV and DeepFashion.

MPV DeepFashion

Model SSIM IS IS

VITON [13] 0.6395 2.394 ± 0.205 2.302 ± 0.116

CP-VTON [38] 0.7054 2.519 ± 0.107 1.977 ± 0.266

DeformableGAN + CP-VTON 0.6935 3.354 ± 0.047 3.130 ± 0.054

CP-VTON + DeformableGAN 0.7151 2.746 ± 0.068 2.649 ± 0.047

MG-VTON (w/o Parsing) 0.7539 2.578 ± 0.116 2.556 ± 0.056

MG-VTON (w/o Render) 0.7544 2.694 ± 0.119 2.813 ± 0.047

MG-VTON (w/o Mask) 0.7332 3.309 ± 0.137 3.368 ± 0.055

MG-VTON (Ours) 0.7442 3.154 ± 0.142 3.030 ± 0.057

Figure 5. Effect of the quality of human parsing. The quality of

human parsing significantly affects the quality of the synthesized

image in the virtual try-on task.

Figure 6. Some results from our model trained on MPV and tested

on DeepFashion, which synthesizes the realistic image and cap-

tures the desired pose and clothes well.

render. Note that the MG-VTON (w/o Render) achieves

the best SSIM score, and the DeformableGAN + CP-VTON

achieves the best IS score, but they obtain worse visual qual-

ity results and achieve lower scores in AMT study compare

with MG-VTON (ours), as illustrated in the Table 1 and Fig-

ure 7. As shown in Figure 4, MG-VTON (ours) synthesizes

more realistic-looking results than MG-VTON (w/o Ren-

der), but the latter achieve higher SSIM score, which also

can be observed in [19]. Hence, we believe that the pro-

posed MG-VTON can generate high-quality person image

for multi-pose virtual try-on with convincing results.

4.6. Qualitative Results

We perform visual comparisons of the proposed method

with VITON [13], CP-VTON [38], DeformableGAN + CP-

VTON, CP-VTON + DeformableGAN, , MG-VTON (w/o

Parsing), MG-VTON (w/o Render), and MG-VTON (w/o

Mask), illustrated in Figure 4, which shows that our model

generates reasonable results with convincing details. Al-

though the baseline methods have synthesized a few details

of clothes, it is far from the practice towards multi-pose vir-

tual try-on scenario. In particular, they fail to preserve the

identity and the textures of the clothing. Besides, the cloth-

ing of the lower-body also cannot be preserved while the

clothing of upper-body is replaced. Furthermore, the base-

line methods cannot synthesize the hairstyle and face well

that result in blurry images. The reasons behind are that

they overlook the high-level semantics of the reference im-

age and the relationship between the reference image and

target pose in the virtual try-on task. Different from them,

we adopt clothes and pose guided network to generate the

target human parsing, which is helpful to alleviate the prob-

lem that lower-body clothing and hairstyle cannot be pre-

served. In addition, we also design a deep warping network

with an adversarial loss carefully to solve the issue that the

identity cannot be preserved. Furthermore, we capture the

interplay of among the poses and present a multi-pose based

refined network that learns to erase the noises and artifacts.

4.7. Human Perceptual Study

We perform a human study on MPV and Deepfash-

ion [48] to evaluate the visual quality of the generated im-

age. Similar to pix2pixHD [39], we deployed the A/B tests

on the Amazon Mechanical Turk (AMT) platform. There

are 1,600 images with size 256×192. We have shown three

images for reference (reference image, clothes, pose) and

two synthesized images with the option for picking. The

workers are given two choices with unlimited time to pick

the one image looks more realistic and natural, considering
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Figure 7. Ablation study on MPV dataset. Zoom in for details.

Figure 8. Effect of clothes and pose for the human parsing, which

is manipulating by the pose and the clothes.

how well target clothes and pose are captured and whether

the identity and the appearance of the person are preserved.

Specifically, the workers are shown the reference image, tar-

get clothes, target pose, and the shuffled image pairs. We

collected 8,000 comparisons from 100 unique workers. As

illustrated in Table 1, the image synthesized by our model

obtained higher human evaluation scores and indicate the

high-quality results compare to the baseline methods.

4.8. Ablation Study

We conduct an ablation study to analyze the important

parts of our method. Observed from Table. 2, MG-VTON

(w/o Mask) achieves the best scores. However, as shown in

Figure 4, it may inevitably generate artifacts. In Figure 7

and Figure 4, we further evaluate the effect of the compo-

nents of our MG-VTON that human parsing, the multi-pose

composition mask loss, the perceptual loss, and the pose

in the refinement render stage, and the warping module in

Warp-GAN are important to enhance the performance.

We also conduct an experiment to verify the effect of the

human parsing in our MG-VTON. As shown in Figure 5,

there is a positive correlation between the quality of the hu-

man parsing with that of the result. We further to verify the

effect of the synthesized human parsing by manipulating

the desired pose and clothes, as illustrated in Figure 8. We

manipulate the human parsing instead of the person image

directly, and we can synthesize the person image in an eas-

ier and more effective way. Furthermore, we introduce an

experiment that trained on our collected dataset MPV and

test on the DeepFashion dataset to verify the generalization

of the proposed model. As the Figure 6 shown, our model

captures the target pose and clothes well.

5. Conclusions

In this work, we make the first attempt to investigate

the multi-pose guided virtual try-on system, which enables

clothes transferred onto a person image under different

poses. We propose an MG-VTON that generates a new

person image after fitting the desired clothes into the in-

put image and manipulating human poses. Our MG-VTON

decomposes the virtual try-on task into three stages, incor-

porates a human parsing model is to guide the image synthe-

sis, a Warp-GAN learns to synthesize the realistic image by

alleviating misalignment caused by different pose, and a re-

finement renders recovers the texture details. We construct

a new dataset for the multi-pose guided virtual try-on task

covering person images with more poses and clothes diver-

sity. Experiments demonstrate that our MG-VTON signifi-

cantly outperforms existing methods both qualitatively and

quantitatively with promising performances.
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