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Abstract

Despite the great success achieved by supervised fully

convolutional models in semantic segmentation, training

the models requires a large amount of labor-intensive work

to generate pixel-level annotations. Recent works exploit

synthetic data to train the model for semantic segmentation,

but the domain adaptation between real and synthetic im-

ages remains a challenging problem. In this work, we pro-

pose a Separated Semantic Feature based domain adapta-

tion network, named SSF-DAN, for semantic segmentation.

First, a Semantic-wise Separable Discriminator (SS-D) is

designed to independently adapt semantic features across

the target and source domains, which addresses the incon-

sistent adaptation issue in the class-wise adversarial learn-

ing. In SS-D, a progressive confidence strategy is included

to achieve a more reliable separation. Then, an efficient

Class-wise Adversarial loss Reweighting module (CA-R) is

introduced to balance the class-wise adversarial learning

process, which leads the generator to focus more on poorly

adapted classes. The presented framework demonstrates ro-

bust performance, superior to state-of-the-art methods on

benchmark datasets.

1. Introduction

Semantic segmentation has been extensively studied due

to its potential utilisation in autonomous driving [10, 40]

and medical image processing [29]. A substantial number

of works based on convolutional neural networks [3, 4, 20–
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Figure 1: Illustration of the traditional class-wise adversar-

ial learning method [6] and ours. Traditional class-wise

adaptation considers all possible class-wise adaptation di-

rections for the features. For unsupervised learning, it is

common that some of these directions are incorrect. Conse-

quently, these incorrect directions will influence the entire

class-wise adaptation direction. In our method, for each fea-

ture, we take the class with highest proportion in its respec-

tive field of the prediction as principal adaptation direction

to separate features for independent adaptation operation. It

prevents the principal adaptation from being affected by the

incorrect adaptation, which keeps the clear classifier bound-

ary among the adapted features.
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22, 41, 44, 45] have been introduced to address the prob-

lem with pixel-wise annotated images. However, building

large-scale and per-pixel labelled datasets for a semantic

segmentation task would require intensive human labor with

adequate expertise. Therefore, exploring economical ap-

proaches for acquiring semantic segmentation-specific data

is appealing, i.e., using synthetic data [11, 28], by which

pixel-level annotations can automatically be generated at

a lower cost. However, synthetic data still suffer from a

substantial domain difference from real-world data, which

results in a dramatic performance drop when applying the

model to real-world scenes. In light of this issue, domain

adaptation techniques have been proposed to close the gap

between the target domain and source domain. Previous

works on domain adaptation techniques [18, 42] attempted

to either minimize the difference between the source and

target feature distributions, or explicitly enforced two data

distributions to be close to each other through adversarial

learning. For image-level classification tasks, features are

aligned across the source and target domains based on a

generative adversarial network [9, 23] such that the adapted

features are able to generalize in both domains. However,

for pixel-level classification tasks such as semantic segmen-

tation, the network needs to extract and encode various vi-

sual features for diverse semantic objects. As mentioned

in [19], a whole-image discriminator for validating the fi-

delity of all regions makes the color/texture of all pixels in

original images easily collapse into a monotonous pattern,

which would severely hinder the capabilities of facilitating

downstream vision perception tasks. We also believe that

the feature distributions for each class should be regarded

differently to take the semantic consistency into consider-

ation in adversarial learning. [6] introduced a joint global

and class-wise adversarial learning framework, but the re-

sult was affected by the inconsistent adaptation as depicted

in Figure 1, which will be further explained in Section 3.3.

Output-space-based adversarial learning has been proposed

by [34] and achieved great success. However, it does not

fully utilize high-dimensional features.

In this paper, we introduce an unsupervised domain

adaptation network via class-wise adversarial learning for

semantic segmentation. We introduce SS-D to evaluate the

feature alignment quality in an independent semantic-wise

manner to bridge the domain gap in each class without caus-

ing the inconsistent adaptation. The segmentation model

and our SS-D are jointly trained in an end-to-end manner,

and no prior knowledge of target domain data is utilized.

SS-D is directly discarded during the test phase.

Our main contributions can be summarized as follows:

• We propose a novel end-to-end framework for seman-

tic segmentation via independent class-wise adversar-

ial learning without any global feature alignment.

• We propose a Semantic-wise Separable Discriminator

(SS-D) to independently adapt separated semantic fea-

tures from the target to source domain with progressive

confidence strategy to address the critical inconsistent

adaptation issue in the class-wise adversarial learning.

• We propose a Class-wise Adversarial loss Reweighting

module (CA-R) to enforce the generator to pay more

attention to those weakly adapted classes.

• Our framework achieves new state-of-the-art perfor-

mance on benchmark datasets.

2. Related Work

Semantic Segmentation Due to recent advances in fully

convolutional networks (FCNs), semantic segmentation

has received increasing attention from both academia and

industry. Using FCN for pixel-level classification was

first introduced by Long et al. [22]. Numerous approaches

have subsequently been explored to improve this model.

Dilated convolutions were used in [2, 41] to enlarge the

receptive field of neural networks. A pyramid pooling

module was recently presented in [44] to encode the global

and local context. However, these cutting edge approaches

rely on a significant amount of pixel-level annotated data.

Synthetic datasets based on rendering (e.g., GTA5 [28] and

Synthia [30]) are constructed to alleviate the annotation

issue, since their pixel-level labels can be generated

with a partially automated process. Nevertheless, due to

discrepancies [26] in data distributions, a synthetic dataset

cannot be directly used to train the model for real-world

applications. Consequently, domain adaptation techniques

are appealing to be developed.

Domain adaptation For vision tasks such as im-

age classification, domain adaptation approaches

have been proposed to narrow the domain gap be-

tween the source and target data. By aligning the

feature distributions between the source and target

images [5,8,9,16,23–25,31,32,35,36,38,47], the general-

ization ability of the model will be improved. The domain

adversarial neural network (DANN) was first introduced

by Ganin et al. [8, 9] to transfer the feature distribution.

For pixel-level classification, [15] was the first to apply

adversarial learning in a fully convolutional way to perform

feature adaptation. [37] addressed the task of unsupervised

domain adaptation in semantic segmentation with losses

based on the entropy of the pixel-wise predictions. Another

approach to solve the domain adaptation issue is to apply

a style transfer technique to stylize annotated source

domain images as target domain images. [19] introduced

a Semantic-aware Grad-GAN to transfer personalized

styles for distinct semantic regions in synthetic images to

approximate the real-world distributions based on ground
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truth semantic labels. [27] elaborated a cycle-consistent

adaptation framework based on the style transfer network

Cycle-GAN [46], which combined the cycle-consistent loss

with adversarial loss to minimize both feature and pixel-

level domain gaps. Other methods [6, 15] have focused on

adapting synthetic-to-real or cross-city images by adopting

class-wise adversarial learning. [6] proposed a global and

class-wise adversarial learning framework to adapt road

scene segmenters across diverse cities. Self-training [1, 48]

is an alternative way to perform domain adaptation for

many vision tasks [33, 49]. [49] introduced a CNN-based

self-training framework for domain adaptation in semantic

segmentation that unifies the feature space alignment and

the task itself together under a single, unified loss.

3. Method

3.1. Overview of the Framework

The overall framework is depicted in Figure 2. Our SSF-

DAN consists of three major components: the segmenter

(generator), including G and σ, which transforms the input

image to a high-level feature space and maps the feature

space to the output label space; the SS-D (discriminator) D
for independent class-wise alignment; and the CA-R mod-

ule for reweighting the class-wise adversarial loss.

The image Is from the source domain is first passed to

the segmenter with its annotation Ys to optimize the gener-

ator. Next, the network predicts the semantic segmentation

output Pt for the image It from the target domain. We filter

out pixels with low confidences in the pseudo label Pt by

our progressive confidence strategy, which is explained in

Section 3.3. Then, we separate the semantic features from

the last feature by the downsampled one-hot output (accord-

ing to the mode). Subsequently, we forward these feature

blocks to the corresponding convolutional layers of the dis-

criminator to distinguish whether the input class features

are from the source or target domain. An adversarial loss

on the target prediction makes the network propagate gra-

dients from D to G and enforces G to generate feature dis-

tributions similar to those of the source domain. Note that

the feature blocks for related convolutional layers of SS-D

are semantic-wisely separated to guarantee the independent

adaptation, which is further explained in Section 3.3. Fi-

nally, the CA-R module calculates the class-wise weight

maps Rt and Rs according to Pt and reweights the class-

wise adversarial loss, which is detailed in Section 3.4.

3.2. Objective Function for Domain Adaptation

To close the domain gap between the source and target

data and perform the segmentation task, the objective func-

tion is defined as follows:

L(Is, Ys, It) = Lseg(Is, Ys) + δLadv(Is, It) (1)

where Lseg is the cross-entropy loss of the segmentation

in the source domain; Ladv is the adversarial loss, which

minimizes the gap between the source and target domains;

and δ is the balanced weight of Lseg and Ladv .

3.3. Semanticwise Separable Discriminator

Although the idea of performing class-wise adaptation

has been proposed in [6], we argue that this kind of class-

wise alignment is inconsistent because their multiple class-

wise discriminators are not independent in terms of the re-

sponding area in the last feature, which severely limits the

potential capability of class-wise adversarial learning.

[6] introduces the “soft” class-wise weight map W c
soft

and takes each grid in it as an instance. c represents the

class. The grid is calculated based on the class proportion

among all pixels in its respective field on the output pre-

dicted label. W c
soft is multiplied to the output of each dis-

criminator to calculate the class-wise adversarial loss. Each

discriminator individually focuses on the distinct seman-

tic regions of the entire feature, according to the receptive

fields of all nonzero pixels in its related W c
soft. It is com-

mon that there are overlaps in these regions of different dis-

criminators.

For the features extracted from one class object, these

overlaps are caused by incorrect nonzero predictions. Con-

sequently, such features may respond to multiple discrimi-

nators and be inconsistently adapted. Specifically, the gra-

dients of the weights related to the true object class k in the

generator is defined as follows:

∇
W

γ(k)
G

= ∂Lk

∂W
γ(k)
G

+
∑

i∈C,i 6=k

∂Li

∂W
γ(k)
G

(2)

where W
γ(k)
G is the set of weights responding to class k in

the generator and γ(k) represents the set related to class

k. Li is the loss of the class i discriminator. C represents

all classes. For independent class-wise adaptation, ∇
W

γ(k)
G

should be equal to the first part in (2), while the second part

introduced by W c
soft in [6] is a noise term, which will result

in the inconsistent adaptation. For some features extracted

from the boundary regions with more than one class object,

W c
soft will enforce the generator to adapt the features to

diverse feature spaces. Nevertheless, it is difficult for the

generator to adapt such features to corresponding multiple

feature spaces simultaneously, which may also cause the in-

consistent adaptation or destroy the existing alignment.

In supervised learning, it is better to utilize the “soft” la-

bel which obtains more information for training the model.

However, for unsupervised domain adaptation, the reliabil-

ity of the information can not be guaranteed. Even if some

of the information is sufficiently reliable, the generator will

still lack the adversarial capability to tackle the multiple

discriminators simultaneously. Therefore, the key point in

the unsupervised class-wise adversarial learning is to make

984



Source Domain 
Is 

Target Domain
It

Ф

Shared

SS-D (Discriminator)

Segmenter (Generator)

SSF-DAN

F
c
F
c

σG

Ground TruthPrediction
(Pseudo Label)

0/1

Rs

Rt

hh
w

w
CA-R

Last
Feature (h,w,C)

h

Separable
Feature

Downsample C
lass-w

ise A
verage

Progressive
Confidence

Strategy

(H,W,C)

Ф

Figure 2: The overview of SSF-DAN. Images in the source and target domains are randomly selected and passed through the

generator to get output predictions. For the source prediction, a segmentation loss is computed based on the source ground

truth. We separate semantic features from the last feature according to the downsampled pseudo label and pass them to spe-

cific convolutional layers in our SS-D. Then SS-D distinguishes whether the class-wise features are from the source or target

domain. An adversarial loss is calculated on the target prediction and is back-propagated to the segmenter. CA-R module is

applied to reweight the class-wise adversarial loss based on the target prediction. The progressive confidence strategy is used

for more reliable pseudo label. Φ and ⊕ represent the semantic-wise separation and the channel-wise summation operation.

the class-wise adaptation process independent to prevent it

from being affected by ambiguous information.

Compared with state-of-the-art class-wise adaptation

approaches [6, 15], our improvements are as follows: (a)

We separate different semantic features from the entire

feature space according to the downsampled pseudo label

to make the class-wise adaptation independent. As depicted

in Figure 1, most of the features will be adapted to their

principal class-wise feature space without being affected by

the incorrect information. (b) The progressive confidence

strategy will also decrease the incorrect adaptation during

the adaptation process. Note that our method assumes

that target samples with higher prediction probability have

better prediction accuracy [49].

Class-wise adversarial learning. Figure 2 presents

an illustration of the proposed SS-D. The segmentation

cross-entropy loss defined in (1) is formulated as follows:

Lseg(Is, Ys) = −
∑

H,W

∑

c∈C

Y
(H,W,C)
s log(P

(H,W,C)
s )

(3)

where Ys is the ground-truth annotations for images from

the source domain; Ps = σ(Fs) = σ(G(Is)) is the seg-

mentation output; Fs is the last feature map; and σ is

the decoder including the convolution, upsample and soft-

max operations. After forwarding the source domain im-

age and calculating the segmentation loss, the target do-

main images are forwarded to G, and the prediction is

Pt = σ(Ft) = σ(G(It)). We denote Mt and Ms as the

final one-hot outputs of Pt and Ps and separate the class

masks M c
t and M c

s from Mt and Ms by the class channel.

Note that P, Y,M ∈ R
H×W×C and F ∈ R

h×w×n, where

n represents the feature channels. Ft is multiplied by the

downsampled M c
t channel-wise to obtain the semantic fea-

ture block F c
t . In other words, we preserve the value in the

region of interest and set the other region to zero for each se-

mantic feature block. Then, each feature block is forwarded

to the related convolutional layers of our SS-D. Finally, all

class outputs are summed into a single-channel output, and

the output is compared with an all-zero tensor to calculate

Ladv in (1), which is defined as follows:

Ladv = −
∑

h,w

∑

c∈C

log(1−Dc(F c
t )

(h,w,1)) (4)

where Dc represents the specific convolution operation of

class c in our SS-D. This adversarial loss is optimized for

cheating the discriminator by maximizing the probability of

the target prediction being considered as the source one.

After the generation process, the generator’s parameters

are frozen. We forward F c
t and F c

s to our SS-D using a

cross-entropy loss Ld for the source and target classes. The

loss function is defined as follows:

Ld = −
∑

h,w

∑

c∈C

[(1− α)log(1−Dc(F c)(h,w,1))

+αlog(Dc(F c)(h,w,1))]
(5)
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where α = 0 if the sample is drawn from the source do-

main and α = 1 for a sample from the target domain. We

optimize the following min-max criterion:

max
D

min
G

L(Is, Ys, It) (6)

The goal of our framework is to minimize the segmentation

loss in G for source images while maximizing the prob-

ability of target predictions being considered as source ones.

Progressive confidence strategy for the more reli-

able pseudo label. At the beginning of training, the

confidences of the pseudo labels in each class are low

and not sufficiently reliable for training. The confidences

increase gradually with the training process, and more

reliable pixels in the label can be used. To maintain the

reliability of the pseudo label during the whole training

process, we set a hyperparameter ρ to control the proportion

of pixels preserved in the pseudo label. Specifically, M is

multiplied by P in an element-wise manner, and the result

can be separated by the class channel to obtain the class-

wise confidence map Ac. In each Ac, all the confidence

values are sorted in descending order. Thus, we can filter

out unreliable predicted pixels with low confidences in

each class according to ρ. ρ is varying progressively from

low to high during the training process:

ρ =

{

ǫ/ε if ǫ/ε < ρupper
ρupper else

(7)

where ε is the total iteration step and ǫ is the current one.

ρupper is the upper bound of the preserved labels’ propor-

tion. Experiments show that ρupper = 0.8 performs the

best. The comparison of different ρupper is shown in Figure

4. The more reliable class-wise confidence map Ac∗ and

mask M c∗ are obtained as follows:

Ac∗ = µ(Ac, ρ)
M c∗ = µ(M c, ρ)

(8)

where µ(·, ρ) is the operation to filter out low-confidence

pixels by the progressive strategy with current ρ. The loss

from the filtered pixels is removed by M c∗.

3.4. Classwise Adversarial Loss Reweighting

The parameters of different convolutional layers for the

discriminator are updated independently, whereas the pa-

rameters of the generator are not. Although the capability

of the discriminator is improved due to our class-wise adap-

tation method, it is much more difficult for the generator to

fool the better discriminator. Since we assume that target

samples with higher prediction probability have better pre-

diction accuracy, those classes with higher prediction prob-

ability are well adapted and predicted. To make the genera-

tor focus on poorly adapted classes to balance the class-wise

adversarial learning process, we propose the CA-R module

to adaptively reweight the adversarial learning loss based on

Ac
t . The class-wise reweight value τ ct is defined as follows:

τ ct =

√

N c/
Nc
∑

i=0

Ac
t
∗ (9)

N c is the nonzero pixel number of Ac
t
∗, and i is the index

of these pixels. First we use τ ct to replace the nonzero val-

ues of the related class masks M c
t
∗ and M c

s
∗. Then, we

merge the results into one channel and downsample them to

match the discriminator’s output size to obtain the reweight

maps Rt and Rs, as shown in Figure 2. Rt and Rs serve as

the weights of the adversarial loss in the target and source

domains. Our CA-R decreases the weights of the loss for

those classes with higher average confidence, so the gener-

ator will pay more attention to poorly adapted classes.

3.5. Network Architecture

Segmentation Network Inspired by [34], we adopt the

DeepLab-v2 [3] framework with ResNet-101 [13] model

pretrained on ImageNet [7] as our segmentation baseline

network. Similar to [3, 41], the last classification layer is

removed, and the strides of the last two convolution layers

are modified from 2 to 1, which makes the resolution of

the output feature maps one-eighth of the input image

size. Dilated convolution layers are applied [41] in conv4

and conv5 layers with strides of 2 and 4, respectively,

to enlarge the receptive field. After the last layer, atrous

spatial pyramid pooling (ASPP) [3] is utilized as the final

classifier. Finally, an upsampling layer is applied along

with the softmax output to match the size of the input image.

Discriminator Our SS-D uses an FCN architecture.

Each class-wise convolution module consists of 5 convo-

lutional layers. The kernel sizes are 1, 3, 3, 3, 3 and the

numbers of channels are 2048, 1024, 512, 256, 128, 1.

Each convolutional layer is followed by a leaky ReLU [12]

parameterized by 0.2, except for the last layer.

4. Experiments

4.1. Datasets and Experimental Setup

Datasets Our segmentation network is trained on two

source datasets, GTA5 and Synthia, and the models are eval-

uated on the target dataset, Cityscapes. Experiments are

also performed on the Cross-City dataset [6]. We train the

model on one city (Cityscapes) with supervision and adapt

the model to another city without any supervision.

Cityscapes is a real-world dataset that contains street

scenes of 50 different cities, totalling 5000 pixel-level-

annotated images. The dataset is divided into a training set

with 2993 images, a validation set with 503 images and a
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Table 1: Results of adapting GTA5 to Cityscapes. We compare our results with those of state-of-the-art approaches with

VGG-16 and DeepLab-V2 based models. The first row of each method (source only) represents the model without adaptation.

Method Base Net road sidewalk building wall fence pole light sign veg terrain sky person rider car truck bus train mbike bike mIoU

Source only Dilation-Frontend 31.9 18.9 47.7 7.4 3.1 16.0 10.4 1.0 76.5 13.0 58.9 36.0 1.0 67.1 9.5 3.7 0.0 0.0 0.0 21.2

FCNs Wild [15] [41] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

Source only FCN8s-VGG16 18.1 6.8 64.1 7.3 8.7 21.0 14.9 16.8 45.9 2.4 64.4 41.6 17.5 55.3 8.4 5.0 6.9 4.3 13.8 22.3

Curr. DA [43] [22] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 16.6 28.9

Source only FCN8s-VGG16 26.0 14.9 65.1 5.5 12.9 8.9 6.0 2.5 70.0 2.9 47.0 24.5 0.0 40.0 12.1 1.5 0.0 0.0 0.0 17.9

CyCADA [14] [22] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

Source only DeepLab-v2 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaptSegNet [34] [17] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

FCN8s-VGG16 64.0 22.1 68.6 13.3 8.7 19.9 15.5 5.9 74.9 13.4 37.0 37.7 10.3 48.2 6.1 1.2 1.8 10.8 2.9 24.3

Source only [22] 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9

CBST [49] ResNet-38 70.0 23.7 67.8 15.4 18.1 40.2 41.9 25.3 78.8 11.7 31.4 62.9 29.8 60.1 21.5 26.8 7.7 28.1 12.0 35.4

[39] 86.8 46.7 76.9 26.3 24.8 42.0 46.0 38.6 80.7 15.7 48.0 57.3 27.9 78.2 24.5 49.6 17.7 25.5 45.1 45.2

FCN8s-VGG16 64.0 22.1 68.6 13.3 8.7 19.9 15.5 5.9 74.9 13.4 37.0 37.7 10.3 48.2 6.1 1.2 1.8 10.8 2.9 24.3

Source only [22] 88.7 32.1 79.5 29.9 22.0 23.8 21.7 10.7 80.8 29.8 72.5 49.5 16.1 82.1 23.2 18.1 3.5 24.4 8.1 37.7

Ours DeepLab-v2 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

[17] 90.3 38.9 81.7 24.8 22.9 30.5 37.0 21.2 84.8 38.8 76.9 58.8 30.7 85.7 30.6 38.1 5.9 28.3 36.9 45.4

Table 2: Results of adapting Synthia to Cityscapes.

Method Base Net road sidewalk building light sign veg sky person rider car bus mbike bike mIoU

Source only Dilation-Frontend 6.4 17.7 29.7 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 20.2

FCNs Wild [15] [41] 11.5 19.6 30.8 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 22.1

Source only FCN8s-VGG16 5.6 11.2 59.6 8.0 5.3 72.4 75.6 35.1 9.0 23.6 4.5 0.5 18.0 27.6

Curr. DA [43] [22] 65.2 26.1 74.9 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 34.8

Source only DeepLab-v2 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6

AdaptSegNet [34] [17] 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7

FCN8s-VGG16 17.2 19.7 47.3 3.0 9.1 71.8 78.3 37.6 4.7 42.2 9.0 0.1 0.9 26.2

Source only [22] 69.6 28.7 69.5 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 36.1

CBST [49] ResNet-38 32.6 21.5 46.5 4.8 13.1 70.8 60.3 56.6 3.5 74.1 20.4 8.9 13.1 33.6

[39] 53.6 23.7 75.0 23.5 26.3 84.8 74.7 67.2 17.5 84.5 28.4 15.2 55.8 48.4

FCN8s-VGG16 17.2 19.7 47.3 3.0 9.1 71.8 78.3 37.6 4.7 42.2 9.0 0.1 0.9 26.2

Source only [22] 87.1 36.5 79.7 13.5 7.8 81.2 76.7 50.1 12.7 78.0 35.0 4.6 1.6 43.4

Ours DeepLab-v2 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6

[17] 84.6 41.7 80.8 11.5 14.7 80.8 85.3 57.5 21.6 82.0 36.0 19.3 34.5 50.0

test set with 1531 images as well as 20021 auxiliary images.

34 distinct categories are contained in the dataset.

GTA5 is rendered from a computer game (Grand Theft

Auto V): It contains 24966 high-resolution images, auto-

matically annotated into 19 classes. The annotations are

fully compatible with those of Cityscapes; thus, all 19 of

the official training classes are used in our experiments.

Synthia is a large-scale synthetic dataset automatically

generated for the semantic segmentation of urban scenes.

As in [10, 15], we utilize Synthia-Rand-Cityscapes, a sub-

set that contains 9400 images paired with Cityscapes, shar-

ing 12 common classes, one void class and some unnamed

classes. The synthetic images do not correspond to any of

the real cities covered by Cityscapes.

NTHU is a real-world dataset with small domain gaps

between cities. The dataset contains 4 different cities, and

there are 100 image-annotation pairs for 13 classes shared

with Cityscapes in each city and 3200 images without

annotations. Following [6], we use the Cityscapes training

set as the source domain and adapt the model to each target

city in Cross-City using 3200 images without annotations.

Another 100 annotated images are utilized for evaluation.

Experimental setup Following [34], we use the

Cityscapes validation set as the test set. 500 valida-

tion images are randomly selected from the training set to

monitor the convergence of the networks. During training,

we randomly sample minibatches from the source images

paired with their labels and the target images.

4.2. Implementation Details

For fair comparison with other methods, in addition to

ResNet-101, we use FCN8s-VGG16 as our base network

in GTAV to Cityscapes and Synthia to Cityscapes. In the

cross-city setting, ResNet-101 is used as the base network

to show the state-of-the-art performance. Our network is

implemented using the PyTorch framework and tested on a

P100 GPU with 16 GB of memory. For the semantic seg-

mentation network, we use the stochastic gradient descent

(SGD) optimizer with Nesterov acceleration. The momen-

tum is 0.9, and the weight decay is 1e-4. The initial learning

rate is set as 2.5 × 1e-4 and is decreased using polynomial

decay with a power of 0.9 as mentioned in [3]. For our

SS-D, we use the Adam optimizer with the learning rate as

1e-4 and the same polynomial decay as the segmentation

network. The momentum is set as 0.9. δ in (1) is set to
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Target Image Ground Truth Before Adaptation Soft Class-wise + Global SS-D SS-D + CA-R

Figure 3: Example results of the adapted segmentation for GTA5-to-Cityscapes. For each Cityscapes image, we show the

result before adaptation, the result based on the method used in [6] (Soft Class-wise + Global), the result based on our SS-D

and on our full approach (SS-D + CA-R).

Table 3: Results of adapting Cityscapes to the Cross-City dataset. We apply the DeepLab-V2 architecture as in [34] and

compare the results among state-of-the-art approaches. The first row of each method represents the model without adaptation.

City Method road sidewalk building light sign veg sky person rider car bus mbike bike mIoU

Rome

Source Dilation-Frontend 77.7 21.9 83.5 0.1 10.7 78.9 88.1 21.6 10.0 67.2 30.4 6.1 0.6 38.2

CrossCityAdapt [6] 79.5 29.3 84.5 0.0 22.2 80.6 82.8 29.5 13.0 71.7 37.5 25.9 1.0 42.9

DeepLab-V2 83.9 34.3 87.7 13.0 41.9 84.6 92.5 37.7 22.4 80.8 38.1 39.1 5.3 50.9

AdaptSegNet [34] 83.9 34.2 88.3 18.8 40.2 86.2 93.1 47.8 21.7 80.9 47.8 48.3 8.6 53.8

Source Resnet-38 86.0 21.4 81.5 14.3 47.4 82.9 59.8 30.8 20.9 83.1 20.2 40.0 5.6 45.7

CBST [49] 87.1 43.9 89.7 14.8 47.7 85.4 90.3 45.4 26.6 85.4 20.5 49.8 10.3 53.6

DeepLab-V2 83.9 34.3 87.7 13.0 41.9 84.6 92.5 37.7 22.4 80.8 38.1 39.1 5.3 50.9

Ours 84.2 38.4 87.4 23.4 43.0 85.6 88.2 50.2 23.7 80.6 38.1 51.6 8.6 54.1

Rio

Source Dilation-Frontend 69.0 31.8 77.0 4.7 3.7 71.8 80.8 38.2 8.0 61.2 38.9 11.5 3.4 38.5

CrossCityAdapt [6] 74.2 43.9 79.0 2.4 7.5 77.8 69.5 39.3 10.3 67.9 41.2 27.9 10.9 42.5

DeepLab-V2 76.6 47.3 82.5 12.6 22.5 77.9 86.5 43.0 19.8 74.5 36.8 29.4 16.7 48.2

AdaptSegNet [34] 76.2 44.7 84.6 9.3 25.5 81.8 87.3 55.3 32.7 74.3 28.9 43.0 27.6 51.6

Source Resnet-38 80.6 36.0 81.8 21.0 33.1 79.0 64.7 36.0 21.0 73.1 33.6 22.5 7.8 45.4

CBST [49] 84.3 55.2 85.4 19.6 30.1 80.5 77.9 55.2 28.6 79.7 33.2 37.6 11.5 52.2

DeepLab-V2 76.6 47.3 82.5 12.6 22.5 77.9 86.5 43.0 19.8 74.5 36.8 29.4 16.7 48.2

Ours 74.2 43.7 82.5 10.3 21.7 79.4 86.7 55.9 36.1 74.9 33.7 52.6 33.7 52.7

Tokyo

Source Dilation-Frontend 81.2 26.7 71.7 8.7 5.6 73.2 75.7 39.3 14.9 57.6 19.0 1.6 33.8 39.2

CrossCityAdapt [6] 83.4 35.4 72.8 12.3 12.7 77.4 64.3 42.7 21.5 64.1 20.8 8.9 40.3 42.8

DeepLab-V2 82.9 31.3 78.7 14.2 24.5 81.6 89.2 48.6 33.3 70.5 7.7 11.5 45.9 47.7

AdaptSegNet [34] 81.5 26.0 77.8 17.8 26.8 82.7 90.9 55.8 38.0 72.1 4.2 24.5 50.8 49.9

Source Resnet-38 83.8 26.4 73.0 6.5 27.0 80.5 46.6 35.6 22.8 71.3 4.2 10.5 36.1 40.3

CBST [49] 85.2 33.6 80.4 8.3 31.1 83.9 78.2 53.2 28.9 72.7 4.4 27.0 47.0 48.8

DeepLab-V2 82.9 31.3 78.7 14.2 24.5 81.6 89.2 48.6 33.3 70.5 7.7 11.5 45.9 47.7

Ours 82.1 27.4 78.0 18.4 26.6 83.0 90.8 57.1 35.8 72.0 4.6 27.3 52.8 50.4

Taipei

Source Dilation-Frontend 77.2 20.9 76.0 5.9 4.3 60.3 81.4 10.9 11.0 54.9 32.6 15.3 5.2 35.1

CrossCityAdapt [6] 78.6 28.6 80.0 13.1 7.6 68.2 82.1 16.8 9.4 60.4 34.0 26.5 9.9 39.6

DeepLab-V2 83.5 33.4 86.6 12.7 16.4 77.0 92.1 17.6 13.7 70.7 37.7 44.4 18.5 46.5

AdaptSegNet [34] 81.7 29.5 85.2 26.4 15.6 76.7 91.7 31.0 12.5 71.5 41.1 47.3 27.7 49.1

Source Resnet-38 84.9 26.0 80.1 8.3 28.0 73.9 54.4 18.9 26.8 71.6 26.0 48.2 14.7 43.2

CBST [49] 86.1 35.2 84.2 15.0 22.2 75.6 74.9 22.7 33.1 78.0 37.6 58.0 30.9 50.3

DeepLab-V2 83.5 33.4 86.6 12.7 16.4 77.0 92.1 17.6 13.7 70.7 37.7 44.4 18.5 46.5

Ours 84.5 35.3 86.4 17.7 16.9 77.7 91.3 31.8 22.3 73.7 41.1 55.9 28.5 51.0

0.001 for GTA5, Synthia, and to 0.0005 for Cross-City.

4.3. Comparison with Stateoftheart Methods

Table 1 and 2 show the comparisons with state-of-the-

art domain adaptation methods for semantic segmentation

respectively on the GTA5 ⇒ Cityscape and the Synthia ⇒

Cityscape setting. The performance of our method is su-

perior to the cutting edge adversarial learning methods in

almost all classes, as clearly demonstrated in Table 1 and

2. Compared with the state-of-the-art self-training method
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[49], although we are slightly weaker in some small object

classes, “SSF-DAN” has a better overall performance. For

those regions which are difficult to distinguish (e.g., the sky

and building), “SSF-DAN” outperforms other methods by

considerable margins. As shown in Table 3, for small do-

main adaptation across real-world cities, our method also

outperforms state-of-the-art methods.

4.4. Ablation Studies

We investigate the effectiveness of the different modules

of our method. We perform ablation experiments on the

GTA5 ⇒ Cityscape setting. We also utilize annotated

ground truths in the Cityscapes dataset to train the model as

the oracle results to measure how much the gap between the

fully supervised model and the adapted model is narrowed.

Effectiveness of the SS-D. To verify the improvement

of our class-wise adaptation, we perform a comparison

with the state-of-the-art class-wise adaptation method [6].

The experimental results for different settings are shown

in Table 4. The first row shows the result without adap-

tation. The second to fourth rows show the results with

only global feature alignment, “soft” weight maps based

class-wise alignment, and both as utilized in [6]. Our

SS-D† (SS-D without progressive confidence strategy)

outperforms “soft” class-wise (with global) alignment by

6.5%, which demonstrates that independent adaptation is

much more important than adaptation considering of all

possible classes in the unsupervised class-wise adaptation.

To assess the impact of global feature adaptation on our

class-wise adaptation, we further add the global alignment

to our SS-D†. The results are slightly affected by the global

alignment due to the introduction of inconsistent adapta-

tion. The progressive confidence strategy contributes 2.8%

mIoU gain in our SS-D. Note that we set ρupper = 0.8 in

our progressive strategy. We also conducted the experiment

which fixes ρ = ρupper during the whole adaptation process

to further verify the impact of our progressive strategy.

These experimental comparisons under different ρupper
settings are shown in Figure 4. More ablation experiments

are detailed in our supplementary material.

Effectiveness of the CA-R module. As shown in

Table 4, our CA-R module improves upon the results

with only SS-D by 3.2%, which demonstrates that such

adaptive class-wise balance strategy could improve the

overall performance in the class-wise domain adaptation

for semantic segmentation tasks.

Figure 3 presents some example results for the adapted

segmentation. Substantial improvement is observed when

we utilize our SS-D instead of the “soft” class-wise (with

global) alignment method. We can see that each class region

is clean and accurate due to our advanced method. The CA-

Figure 4: The comparison of using different ρupper in our

SS-D. Results of adapting GTA5 to Cityscapes.

R module further improves the accuracy of the classes that

are often weakly adapted (e.g., sign and light) due to the

balance of the class-wise adaptation process.

Finally, as depicted in Figure 3, our model still has lim-

ited capability to distinguish dense and tiny objects. This

issue is worth considering and left for future work.

Table 4: Ablation study for different settings. Results of

adapting GTA5 to Cityscapes based on ResNet-101.

Method Adapt Oracle mIoU Gap

without adaptation 36.6 65.1 -28.5

global 39.3 65.1 -25.8

“soft” class-wise 38.0 65.1 -27.1

“soft” class-wise + global 40.2 65.1 -24.9

SS-D† 42.8 65.1 -22.3

SS-D† + global 42.6 65.1 -22.5

SS-D 44.0 65.1 -21.1

SS-D + CA-R 45.4 65.1 -19.7

5. Conclusion

In this paper, we tackle the domain adaptation problem

for semantic segmentation via independent class-wise ad-

versarial learning. We investigate an SS-D to address the

critical issue of inconsistent adaptation and present a CA-R

module to balance the class-wise adversarial learning pro-

cess. Experimental results demonstrate that our approach

outperforms the state-of-the-arts by considerable margins.

With regard to some scenes with dense and small objects,

our model has limited capability to distinguish them. In the

future work, we plan to investigate this problem and extend

our approach to more applications.
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