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Abstract

In object detection, keypoint-based approaches often ex-

perience the drawback of a large number of incorrect object

bounding boxes, arguably due to the lack of an additional

assessment inside cropped regions. This paper presents an

efficient solution that explores the visual patterns within in-

dividual cropped regions with minimal costs. We build our

framework upon a representative one-stage keypoint-based

detector named CornerNet. Our approach, named Center-

Net, detects each object as a triplet, rather than a pair, of

keypoints, which improves both precision and recall. Ac-

cordingly, we design two customized modules, cascade cor-

ner pooling, and center pooling, that enrich information

collected by both the top-left and bottom-right corners and

provide more recognizable information from the central re-

gions. On the MS-COCO dataset, CenterNet achieves an

AP of 47.0%, outperforming all existing one-stage detec-

tors by at least 4.9%. Furthermore, with a faster infer-

ence speed than the top-ranked two-stage detectors, Center-

Net demonstrates a comparable performance to these de-

tectors. Code is available at https://github.com/

Duankaiwen/CenterNet.

1. Introduction

Object detection has been significantly improved with

the help of deep learning, especially convolutional neural

networks [12] (CNNs). In the current era, one of the most

popular flowcharts, the anchor-based flowchart [11, 13, 28,

32, 34], places a set of rectangles with predefined sizes (an-

chors) on an image and regresses the anchors to the de-

sired place with the help of ground-truth objects. These ap-

proaches often require a large number of anchors to ensure a

sufficiently high IoU (intersection over union) rate with the

ground-truth objects, and the size and aspect ratio of each

∗This work was done when the first author was interning at Huawei Noah’s Ark

Lab.
†Qingming Huang and Qi Tian are the first and second corresponding authors of

the paper, respectively.
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Figure 1: In the first row, we visualize the top 100 bound-

ing boxes (according to the MS-COCO dataset standard) of

CornerNet. Ground-truth and predicted objects are marked

in blue and red, respectively. In the second row, we show

that correct predictions can be determined by checking the

central parts of the boxes.

anchor must be manually set. In addition, anchors and the

convolutional features are usually misaligned, which is not

conducive to the bounding box classification task.

To overcome the drawbacks of anchor-based approaches,

a keypoint-based object detection pipeline named Corner-

Net [21] was proposed. This pipeline represents each object

using a pair of corner keypoints, which bypasses the need

for anchor boxes and achieves state-of-the-art one-stage ob-

ject detection accuracy. Nevertheless, the performance of

CornerNet is still restricted by its relatively weak ability to

refer to the global information of an object. That is, be-

cause each object is constructed by a pair of corners, the

algorithm sensitively detects the boundaries of objects with-

out being aware of which pairs of keypoints that should be

grouped into objects. Consequently, as shown in Figure 1,

CornerNet often generates incorrect bounding boxes, most

of which could be easily filtered out with some complemen-

tary information, e.g., the aspect ratio.

To address this issue, we equip CornerNet with the abil-
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ity to perceive the visual patterns within each proposed re-

gion, enabling it to identify the correctness of each bound-

ing box by itself. In this paper, we present a low-cost yet ef-

fective solution named CenterNet, which explores the cen-

tral part of a proposal, i.e., the region that is close to the

geometric center of a box, with one extra keypoint. We in-

tuit that if a predicted bounding box has a high IoU with

the ground-truth box, then the probability that the center

keypoint in the central region of the bounding box will be

predicted as the same class is high, and vice versa. Thus,

during inference, after a proposal is generated as a pair of

corner keypoints, we determine if the proposal is indeed an

object by checking if there is a center keypoint of the same

class falling within its central region. The idea, as shown in

Figure 1, is to use a triplet, instead of a pair, of keypoints to

represent each object.

Accordingly, to improve the detection of center key-

points and corners, we propose two strategies to enrich cen-

ter and corner information, respectively. The first strategy

is center pooling, which is used in the branch for predict-

ing center keypoints. Center pooling helps the center key-

points obtain more recognizable visual patterns within ob-

jects, which makes it easier to perceive the central part of

a proposal. We achieve this by obtaining the maximum

summed response in both the horizontal and vertical di-

rections of the center keypoint on a feature map for cen-

ter keypoint prediction. The second strategy is cascade

corner pooling, which equips the original corner pooling

module [21] with the ability to perceive internal informa-

tion. We achieve this by obtaining the maximum summed

response in both the boundary and internal directions of ob-

jects on a feature map for corner prediction. Empirically,

we verify this two-directional pooling method is more sta-

ble, i.e., more robust to feature-level noises, which would

contribute to the improvement of both precision and recall.

We evaluate the proposed CenterNet on the MS-COCO

dataset [26], one of the most popular benchmarks for large-

scale object detection. CenterNet, which incorporates both

center pooling and cascade corner pooling, reports an AP of

47.0% on the test-dev set, outperforming all existing one-

stage detectors by a large margin. With an average inference

time of 270ms using a 52-layer hourglass backbone [30]

per image and 340ms using a 104-layer hourglass back-

bone [30] per image, CenterNet is quite efficient yet closely

matches the state-of-the-art performance of the other two-

stage detectors.

2. Related Work

Object detection involves locating and classifying ob-

jects. In the deep learning era, powered by deep convo-

lutional neural networks, object detection approaches can

be roughly categorized into two main types of pipelines,

namely, two-stage approaches and one-stage approaches.

Two-stage approaches divide the object detection task into

two stages: extract RoIs (Region of Interesting) and then

classify and regress the RoIs.

R-CNN [12] uses a selective search method [45] to locate

RoIs in the input images and uses a DCN-based region-wise

classifier to classify the RoIs independently. SPP-Net [14]

and Fast-RCNN [11] improve R-CNNs by extracting RoIs

from the feature maps. Faster-RCNN [34] is allowed to be

trained end to end by introducing RPN (region proposal net-

work). RPN can generate RoIs by regressing the anchor

boxes. Later, the anchor boxes are widely used in the object

detection task. Mask-RCNN [13] adds a mask prediction

branch on Faster-RCNN and can thereby detect objects and

predict their masks at the same time. R-FCN [6] replaces

fully connected layers with position-sensitive score maps

to improve the detection of objects. Cascade R-CNN [4]

addresses the problem of overfitting at training and quality

mismatch at inference by training a sequence of detectors

with increasing IoU thresholds. keypoint-based object de-

tection approaches [43, 29, 50, 49] are proposed to avoid the

disadvantages of the use of anchor boxes and bounding box

regression. Other meaningful works are proposed for dif-

ferent problems in object detection, e.g., a [52, 22] focus on

the architecture design, a [1, 10, 37, 47] focus on the con-

textual relationship, and a [23, 3] focus on the multi-scale

unification.

One-stage approaches remove the RoI extraction process

and directly classify and regress the candidate anchor boxes.

YOLO [32] uses fewer anchor boxes than other ap-

proaches (divide the input image into an S × S grid) to

perform regression and classification. YOLOv2 [33] im-

proves the performance by using more anchor boxes and a

new bounding box regression method. SSD [28] places an-

chor boxes densely over an input image and uses features

from different convolutional layers to regress and classify

the anchor boxes. DSSD [9] introduces a deconvolution

module into SSD to combine low- and high-level features.

While R-SSD [18] uses pooling and deconvolution opera-

tions in different feature layers to combine low-level and

high-level features. RON [20] proposes a reverse connec-

tion and an objectness prior to extract multiscale features

effectively. RefineDet [48] refines the locations and sizes of

the anchor boxes twice, exploiting the merits of both one-

stage and two-stage approaches. CornerNet [21] is another

keypoint-based approach that directly detects an object us-

ing a pair of corners. Although CornerNet achieves high

performance, it still has room for improvement.

3. Our Approach

3.1. Baseline and Motivation

This paper uses CornerNet [21] as the baseline. For

detecting corners, CornerNet produces two heatmaps: a
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Figure 2: Architecture of CenterNet. A convolutional backbone network applies cascade corner pooling and center pooling to

output two corner heatmaps and a center keypoint heatmap, respectively. Similar to CornerNet, a pair of detected corners and

the similar embeddings are used to detect a potential bounding box. Then the detected center keypoints are used to determine

the final bounding boxes.

Method FD FD5 FD25 FD50 FDS FDM FDL

CornerNet 37.8 32.7 36.8 43.8 60.3 33.2 25.1

Table 1: False discovery rates (%) of CornerNet. The false

discovery rate reflects the distribution of incorrect bound-

ing boxes. The results suggest that the incorrect bounding

boxes account for a large proportion of all bounding boxes.

heatmap of the top-left corners and a heatmap of the

bottom-right corners. The heatmaps represent the locations

of keypoints of different categories and assign a confidence

score to each keypoint. In addition, CornerNet also pre-

dicts the embedding and a group of offsets for each corner.

The embeddings are used to identify whether two corners

are from the same object. The offsets learn to remap the

corners from the heatmaps to the input image. To generate

object bounding boxes, top-k left-top corners and bottom-

right corners are selected from the heatmaps according to

their scores. Then, the distance of the embedding vectors

of a pair of corners is calculated to determine if the paired

corners belong to the same object. An object bounding box

is generated if the distance is less than a threshold. The

bounding box is assigned a confidence score equal to the

average scores of the corner pair.

In Table 1, we provide a detailed analysis of Corner-

Net. We calculate the FD1 (false discovery) rate of Cor-

nerNet on the MS-COCO validation dataset, defined as the

proportion of incorrect bounding boxes. The quantitative

results demonstrate that the incorrect bounding boxes ac-

count for a large proportion of all bounding boxes even at

low IoU thresholds, e.g., CornerNet obtains a 32.7% FD

rate at IoU = 0.05. This means, 32.7 out of every 100 ob-

ject bounding boxes have an IoU lower than 0.05 with the

ground-truth. The FD rate of the small incorrect bound-

ing boxes, with a value of 60.3%, is even higher, than that

1FD = 1 − AP, where AP denotes the average precision at

IoU = [0.05 : 0.05 : 0.5] on the MS-COCO dataset. Additionally, FDi =
1 − APi, where APi denotes the average precision at IoU = i/100, FDscale =
1 − APscale, where scale = {small,medium, large}, denotes the scale of the

object.

of larger bounding boxes. One of the possible reasons for

this result is that CornerNet cannot assess the regions inside

the bounding boxes. One potential method to make Corner-

Net [21] perceive the visual patterns in bounding boxes is to

adapt CornerNet into a two-stage detector, which uses the

RoI pooling [11] to assess the visual patterns in bounding

boxes. However, such a paradigm is known to be computa-

tionally expensive.

In this paper, we propose a highly efficient alternative

called CenterNet to explore the visual patterns within each

bounding box. For object detection, our approach uses a

triplet, rather than a pair, of keypoints. By doing so, our

approach still keeps a one-stage detector, but partially in-

herits the functionality of RoI pooling. Our approach only

considers the center information, and the cost is minimal.

In addition, we further introduce the visual patterns within

objects into the keypoint detection process by using center

pooling and cascade corner pooling.

3.2. Object Detection as Keypoint Triplets

The overall network architecture is shown in Figure 2.

We represent each object using a center keypoint and a pair

of corners. Specifically, we embed a heatmap for the cen-

ter keypoints on the basis of CornerNet and predict the off-

sets of the center keypoints. Then, we use the method pro-

posed in CornerNet [21] to generate top-k bounding boxes.

However, to effectively filter out incorrect bounding boxes,

we leverage the detected center keypoints and conduct the

following procedure: (1) select top-k center keypoints ac-

cording to their scores; (2) use the corresponding offsets to

remap these center keypoints to the input image; (3) define a

central region for each bounding box and check whether the

central region contains center keypoints. Note that the class

labels of the checked center keypoints should be the same

as the class label that of the bounding box; (4) if a center

keypoint is detected in the central region, we preserve the

bounding box. The score of the bounding box is replaced

by the average scores of the triple points, i.e., the top-left
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n=3
(tlx, tly)

(ctlx, ctly)

(cbrx, cbry)

(brx, bry)

(a)

n=5
(tlx, tly)

(ctlx, ctly)

(cbrx, cbry)

(brx, bry)

(b)

Figure 3: (a) The central region when n = 3. (b) The cen-

tral region when n = 5. The solid rectangles denote the

predicted bounding boxes and the shaded regions denote the

scalable central regions.

corner, the bottom-right corner, and the center keypoint. If

there are no center keypoints detected in the central region,

the bounding box will be removed.

The size of the central region in the bounding box affects

the detection results. For example, small central regions

lead to a low recall rate for small bounding boxes, while

large central regions lead to a low precision for large bound-

ing boxes. Therefore, we propose a scale-aware central re-

gion to adaptively fit the size of bounding boxes. The scale-

aware central region tends to generate a relatively large cen-

tral region for a small bounding box and a relatively small

central region for a large bounding box. Let tlx and tly de-

note the coordinates of the top-left corner of i and brx and

bry denote the coordinates of the bottom-right corner of i.

Define a central region j. Let ctlx and ctly denote the coor-

dinates of the top-left corner of j and cbrx and cbry denote

the coordinates of the bottom-right corner of j. Then tlx,

tly, brx, bry, ctlx, ctly, cbrx and cbry should satisfy the

following relationship:


















































ctlx =
(n+ 1)tlx + (n− 1)brx

2n

ctly =
(n+ 1)tly + (n− 1)bry

2n

cbrx =
(n− 1)tlx + (n+ 1)brx

2n

cbry =
(n− 1)tly + (n+ 1)bry

2n

(1)

where n is odd and determines the scale of the central re-

gion j. In this paper, n is set to be 3 and 5 for the scales of

bounding boxes less than and greater than 150, respectively.

Figure 3 shows two central regions when n = 3 and n = 5,

respectively. According to Equation (1), we can determine a

scale-aware central region and then check whether the cen-

tral region contains center keypoints.

3.3. Enriching Center and Corner Information

Center pooling. The geometric centers of objects do not

always convey very recognizable visual patterns (e.g., the

human head contains strong visual patterns, but the center

keypoint is often in the middle of the human body). To ad-

dress this issue, we propose center pooling to capture richer

and more recognizable visual patterns. Figure 4(a) shows

max

max

max

max

(a) (b) (c)

Figure 4: (a) Center pooling takes the maximum values in

both horizontal and vertical directions. (b) Corner pooling

only takes the maximum values in boundary directions. (c)

Cascade corner pooling takes the maximum values in both

boundary directions and internal directions of objects.

the principle of center pooling. The detailed process of cen-

ter pooling is as follows: the backbone outputs a feature

map and to determine whether a pixel in the feature map

is a center keypoint, we need to find the maximum value

in both the horizontal and vertical directions and add these

values together. By doing so, center pooling helps improve

the detection of center keypoints.

Cascade corner pooling. Corners are often outside objects,

which lack local appearance features. CornerNet [21] uses

corner pooling to address this issue. The principle of cor-

ner pooling is shown in Figure 4(b). Corner pooling aims

to find the maximum values on the boundary directions to

determine corners. However, this makes corners sensitive

to edges. To address this problem, we need to enable cor-

ners to extract features from central regions of the object.

The principle of cascade corner pooling is presented in Fig-

ure 4(c). Cascade corner pooling first looks along a bound-

ary to find a maximum boundary value and then looks in-

side the box along with the location of the boundary maxi-

mum value2 to find an internal maximum value; finally, the

two maximum values are added together. By cascade corner

pooling, the corners obtain both the boundary information

and the visual patterns of objects.

Both center pooling and the cascade corner pooling can

be easily achieved by applying the corner pooling [21] in

different directions. Figure 5(a) shows the structure of the

center pooling module. To take a maximum value in a spe-

cific direction, e.g., the horizontal direction, we only need to

connect the left pooling and the right pooling in sequence.

Figure 5(b) shows the structure of a cascade top corner pool-

ing module, in which the white rectangle denotes a 3 × 3

convolution followed by batch normalization. Compared

with the top corner pooling in CornerNet [21], a left corner

pooling is added before the top corner pooling.

3.4. Training and Inference

Training. Our method is implemented in Pytorch [31] and

the network is trained from scratch. The resolution of the

2For the topmost, leftmost, bottommost and rightmost boundary, look vertically

towards the bottom, horizontally towards the right, vertically towards the top and

horizontally towards the left, respectively.
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Figure 5: The structures of the center pooling module (a)

and the cascade top corner pooling module (b). We achieve

center pooling and cascade corner pooling by combining

corner pooling in different directions.

input image is 511 × 511, leading to heatmaps of the size

128×128. We use the data augmentation strategy presented

in [21] to train a robust model. Adam [19] is used to opti-

mize the training loss:

L = Lco
det + Lce

det + αLco
pull + βLco

push + γ (Lco
off + Lce

off), (2)

where Lco
det and Lce

det denote the focal losses, which are used

to train the network to detect corners and center keypoints,

respectively. Lco
pull is a “pull” loss for corners, which is used

to minimize the distance of the embedding vectors that be-

longs to the same objects. Lco
push is a “push” loss for cor-

ners that is used to maximize the distance of the embedding

vectors that belong to different objects. Lco
off and Lce

off are ℓ1-

losses [11], which are used to train the network to predict

the offsets of corners and center keypoints, respectively. α,

β and γ denote the weights for corresponding losses and

are set to 0.1, 0.1 and 1, respectively. Ldet, Lpull, Lpush

and Loff are all defined in CornerNet, and we suggest re-

ferring to [21] for details. We train CenterNet on 8 Tesla

V100 (32GB) GPUs and use a batch size of 48. The maxi-

mum number of iterations is 480K. We use a learning rate

of 2.5×10−4 for the first 450K iterations and then continue

training 30K iterations with a rate of 2.5× 10−5.

Inference. Following [21], for the single-scale testing, we

input both the original and horizontally flipped images with

the original resolutions into the network. For multi-scale

testing, we input both the original and horizontally flipped

images with resolutions of 0.6, 1, 1.2, 1.5 and 1.8. We se-

lect top 70 center keypoints, top 70 top-left corners and top

70 bottom-right corners from the heatmaps to detect the

bounding boxes. We flip the bounding boxes detected in

the horizontally flipped images and mix them into the orig-

inal bounding boxes. Soft-nms [2] is used to remove the

redundant bounding boxes. We finally select the top 100

bounding boxes according to their scores as the final detec-

tion results.

4. Experiments

4.1. Dataset, Metrics and Baseline

We evaluate our method on the MS-COCO dataset [26].

This dataset contains 80 categories and more than 1.5 mil-

lion object instances. A large number of small objects

makes it a very challenging dataset. We use the ‘train-

val35k’ set [16] (i.e., 80K training images and 35K val-

idation images) for training and testing the results on the

test-dev set. We use another 5K images in the validation set

to perform ablation studies and visualization experiments.

The MS-COCO dataset [26] uses AP and AR metrics to

characterize the performance of a detector. AP represents

the average precision rate, which is computed over ten dif-

ferent IoU thresholds (i.e., 0.5 : 0.05 : 0.95) and all cat-

egories. AR represents the maximum recall rate, which is

computed over a fixed number of detections (i.e., 1, 10 and

100 ) per image and averaged over all categories and the

ten different IoU thresholds. Additionally, AP and AR can

be used to evaluate the performance under different object

scales, including small objects (area < 322), medium ob-

jects (322 < area < 962) and large objects (area > 962).

Our baseline is CornerNet [21]. We use the stacked hour-

glass network [30] with 52 and 104 layers as the backbone

– the latter has two hourglass modules while the former has

only one. All modifications to the hourglass architecture,

made by [21], are preserved. In addition, to show that our

approach generalizes to other network architectures, we in-

vestigate another backbone named HRNet [40, 41], which

enjoys the ability to maintain high-resolution representa-

tions throughout feature extraction.

4.2. Comparisons with State­of­the­art Detectors

Table 2 shows a comparison with state-of-the-art detec-

tors on the MS-COCO test-dev set. Compared with the

baseline CornerNet [21], the proposed CenterNet achieves

a remarkable improvement. For example, CenterNet511-

52 (which means that the resolution of input images is

511 × 511 and the backbone is Hourglass-52) reports a

single-scale testing AP of 41.6%, an improvement of 3.8%

over 37.8%, and a multi-scale testing AP of 43.5%, an im-

provement of 4.1% over 39.4%, achieved by CornerNet

under the same setting. When using the deeper backbone

(i.e., Hourglass-104), the AP improvement over CornerNet

are 4.4% (from 40.5% to 44.9%) and 4.9% (from 42.1%

to 47.0%) under the single-scale and multi-scale testing,

respectively. We also replace the backbone with HRNet-

W64 [40, 41], which reports APs of 44.0% and 45.6% at

single-scale and multi-scale settings, respectively. These re-

sults demonstrate the effectiveness of CenterNet.

In addition, the greatest comes from small objects. For

instance, CenterNet511-52 improves the AP for small ob-

jects by 5.5% (single-scale) and by 6.4% (multi-scale). For

the backbone Hourglass-104, the improvements are 6.2%

(single-scale) and 8.1% (multi-scale), respectively. This

benefit stems from the center information modeled by the

center keypoints: the smaller the scale of an incorrect

bounding box, the lower the probability that a center key-
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Method Backbone Train input Test input AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

Two-stage:

DeNet [43] ResNet-101 [15] 512×512 512×512 33.8 53.4 36.1 12.3 36.1 50.8 29.6 42.6 43.5 19.2 46.9 64.3

CoupleNet [52] ResNet-101 ori. ori. 34.4 54.8 37.2 13.4 38.1 50.8 30.0 45.0 46.4 20.7 53.1 68.5

Faster R-CNN by G-RMI [17] Inception-ResNet-v2 [42] ∼ 1000×600 ∼ 1000×600 34.7 55.5 36.7 13.5 38.1 52.0 - - - - - -

Faster R-CNN +++ [15] ResNet-101 ∼ 1000×600 ∼ 1000×600 34.9 55.7 37.4 15.6 38.7 50.9 - - - - - -

Faster R-CNN w/ FPN [24] ResNet-101 ∼ 1000×600 ∼ 1000×600 36.2 59.1 39.0 18.2 39.0 48.2 - - - - - -

Faster R-CNN w/ TDM [38] Inception-ResNet-v2 - - 36.8 57.7 39.2 16.2 39.8 52.1 31.6 49.3 51.9 28.1 56.6 71.1

D-FCN [7] Aligned-Inception-ResNet ∼ 1000×600 ∼ 1000×600 37.5 58.0 - 19.4 40.1 52.5 - - - - - -

Regionlets [46] ResNet-101 ∼ 1000×600 ∼ 1000×600 39.3 59.8 - 21.7 43.7 50.9 - - - - - -

Soft-NMS [2] Aligned-Inception-ResNet ∼ 1300×800 ∼ 1300×800 40.9 62.8 - 23.3 43.6 53.3 - - - - - -

Fitness R-CNN [44] ResNet-101 512×512 1024×1024 41.8 60.9 44.9 21.5 45.0 57.5 - - - - - -

Grid R-CNN w/ FPN [29] ResNeXt-101 ∼ 1300×800 ∼ 1300×800 43.2 63.0 46.6 25.1 46.5 55.2 - - - - - -

D-RFCN + SNIP (multi-scale) [39] DPN-98 [5] ∼ 2000×1200 ∼ 2000×1200 45.7 67.3 51.1 29.3 48.8 57.1 - - - - - -

PANet (multi-scale) [27] ResNeXt-101 ∼ 1400×840 ∼ 1400×840 47.4 67.2 51.8 30.1 51.7 60.0 - - - - - -

One-stage:

YOLOv2 [33] DarkNet-19 544×544 544×544 21.6 44.0 19.2 5.0 22.4 35.5 20.7 31.6 33.3 9.8 36.5 54.4

DSOD300 [35] DS/64-192-48-1 300×300 300×300 29.3 47.3 30.6 9.4 31.5 47.0 27.3 40.7 43.0 16.7 47.1 65.0

GRP-DSOD320 [36] DS/64-192-48-1 320×320 320×320 30.0 47.9 31.8 10.9 33.6 46.3 28.0 42.1 44.5 18.8 49.1 65.0

SSD513 [28] ResNet-101 513×513 513×513 31.2 50.4 33.3 10.2 34.5 49.8 28.3 42.1 44.4 17.6 49.2 65.8

DSSD513 [9] ResNet-101 513×513 513×513 33.2 53.3 35.2 13.0 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4

RefineDet512 (single-scale) [48] ResNet-101 512×512 512×512 36.4 57.5 39.5 16.6 39.9 51.4 - - - - - -

CornerNet511 (single-scale) [21] Hourglass-52 511×511 ori. 37.8 53.7 40.1 17.0 39.0 50.5 33.9 52.3 57.0 35.0 59.3 74.7

RetinaNet800 [25] ResNet-101 800×800 800×800 39.1 59.1 42.3 21.8 42.7 50.2 - - - - - -

CornerNet511 (multi-scale) [21] Hourglass-52 511×511 ≤1.5× 39.4 54.9 42.3 18.9 41.2 52.7 35.0 53.5 57.7 36.1 60.1 75.1

CornerNet511 (single-scale) [21] Hourglass-104 511×511 ori. 40.5 56.5 43.1 19.4 42.7 53.9 35.3 54.3 59.1 37.4 61.9 76.9

RefineDet512 (multi-scale) [48] ResNet-101 512×512 ≤2.25× 41.8 62.9 45.7 25.6 45.1 54.1

CornerNet511 (multi-scale) [21] Hourglass-104 511×511 ≤1.5× 42.1 57.8 45.3 20.8 44.8 56.7 36.4 55.7 60.0 38.5 62.7 77.4

CenterNet511 (single-scale) Hourglass-52 511×511 ori. 41.6 59.4 44.2 22.5 43.1 54.1 34.8 55.7 60.1 38.6 63.3 76.9

CenterNet511 (single-scale) HRNet-W64 [41] 511×511 ori. 44.0 62.6 47.1 23.0 47.3 57.8 35.4 56.9 61.7 38.3 66.2 79.6

CenterNet511 (single-scale) Hourglass-104 511×511 ori. 44.9 62.4 48.1 25.6 47.4 57.4 36.1 58.4 63.3 41.3 67.1 80.2

CenterNet511 (multi-scale) Hourglass-52 511×511 ≤1.8× 43.5 61.3 46.7 25.3 45.3 55.0 36.0 57.2 61.3 41.4 64.0 76.3

CenterNet511 (multi-scale) HRNet-W64 511×511 ≤1.8× 46.3 64.7 49.8 26.6 49.6 59.3 36.8 58.6 62.9 42.1 66.9 79.0

CenterNet511 (multi-scale) Hourglass-104 511×511 ≤1.8× 47.0 64.5 50.7 28.9 49.9 58.9 37.5 60.3 64.8 45.1 68.3 79.7

Table 2: Performance comparison (%) with the state-of-the-art methods on the MS-COCO test-dev dataset. CenterNet

outperforms all existing one-stage detectors by a large margin and ranks among the top of state-of-the-art two-stage detectors.

point can be detected in the central region. Figure 6(a) and

Figure 6(b) show qualitative comparisons that demonstrate

the effectiveness of CenterNet in reducing small incorrect

bounding boxes.

CenterNet also leads to a large improvement in reduc-

ing medium and large incorrect bounding boxes. As Ta-

ble 2 shows, CenterNet511-104 improves the single-scale

testing AP by 4.7% (from 42.7% to 47.4%) and 3.5% (from

53.9% to 57.4%) for medium and large bounding boxes,

respectively. Figure 6(c) and Figure 6(d) show qualitative

comparisons of the reduction of medium and large incor-

rect bounding boxes. Notably, the AR is also significantly

improved, with the best performance achieved with multi-

scale testing. This is because our approach removes many

incorrect bounding boxes, which is equivalent to improv-

ing the confidence of those bounding boxes with accurate

locations but relatively low scores.

Compared to other one-stage approaches, CenterNet511-

52 reports a 41.6% single-scale testing AP. This value is

already better than the APs of deeper models (e.g., Reti-

naNet800 [25] and RefineDet [48]). The best performance

of CenterNet is an AP 47.0%, dramatically surpassing all

the published one-stage approaches to our best knowledge.

Finally, the performance of CenterNet is also compet-

itive with those of two-stage approaches, e.g., the single-

scale testing AP of CenterNet511-52 is comparable to the

two-stage approach Fitness R-CNN [44] (41.6% vs. 41.8%)

and that of CenterNet511-104 is comparable to D-RFCN

+ SNIP [39] (44.9% vs. 45.7%). Nevertheless, two-stage

approaches usually use high-resolution input images (e.g.,

∼ 1000 × 600), which significantly improves the detection

accuracy, especially for small objects. The multi-scale test-

ing AP of 47.0% achieved by CenterNet511-104 closely

matches the state-of-the-art AP of 47.4% achieved by the

two-stage detector PANet [27]. We present qualitative de-

tection results in Figure 7.

4.3. Incorrect Bounding Box Reduction

The AP [26] metric reflects how many high quality ob-

ject bounding boxes (usually IoU > 0.5) a network can pre-

dict, but cannot directly reflect how many incorrect object

bounding boxes (usually IoU ≪ 0.5) a network generates.

The FD rate is a suitable metric that reflects the proportion

of incorrect bounding boxes. Table 3 shows the FD rates

for CornerNet and CenterNet. CornerNet generates many

incorrect bounding boxes even at the IoU = 0.05 thresh-

old, i.e., CornerNet511-52 and CornerNet511-104 obtain

35.2% and 32.7% FD rates, respectively. On the other hand,

CornerNet generates more small incorrect bounding boxes

than medium and large incorrect bounding boxes, with

FD values of 62.5% for CornerNet511-52 and 60.3% for

CornerNet511-104, respectively. Our CenterNet decreases

the FD rates at all criteria by exploring the central regions.

Specifically, the FD rates for small bounding boxes decrease

the most, with decreases of 9.5% by CenterNet511-52 and

9.6% by CenterNet511-104. This is also the reason why the

AP improvement for small objects is more prominent than

that for medium and large objects.
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Figure 6: (a) and (b) show that the small incorrect bounding boxes are significantly reduced by the modeling center infor-

mation. (c) and (d) show that the center information works to reduce the medium and large incorrect bounding boxes. (e)

shows the results of the detection of the center keypoints without/with center pooling. (f) shows the results of the detection

of corners with corner pooling and cascade corner pooling. The blue boxes above denote the ground-truth. The red boxes

and dots denote the predicted bounding boxes and keypoints, respectively.
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Figure 7: Qualitative detection results on the MS-COCO validation dataset. Only detections with scores higher than 0.5 are

shown.

Method FD FD5 FD25 FD50 FDS FDM FDL

CornerNet511-52 40.4 35.2 39.4 46.7 62.5 36.9 28.0

CenterNet511-52 35.1 30.7 34.2 40.8 53.0 31.3 24.4

CornerNet511-104 37.8 32.7 36.8 43.8 60.3 33.2 25.1

CenterNet511-104 32.4 28.2 31.6 37.5 50.7 27.1 23.0

Table 3: Comparison of the false discovery rates (%) of Cor-

nerNet and CenterNet on the MS-COCO validation dataset.

The results suggest that CenterNet avoids a large number

of incorrect bounding boxes, especially for small incorrect

bounding boxes.

4.4. Inference Speed

The proposed CenterNet explores the visual patterns

within each proposed region with minimal costs. To en-

sure a fair comparison, we test the inference speed of

both CornerNet [21] and CenterNet on an NVIDIA Tesla

P100 GPU. We determine that the average inference time

of CornerNet511-104 is 300ms per image and that of

CenterNet511-104 is 340ms per image. Meanwhile, us-

ing the Hourglass-52 backbone can speed up the inference

speed. Our CenterNet511-52 takes an average of 270ms to

process each image, which is faster and more accurate than

CornerNet511-104.

4.5. Ablation Study

Our work contributes three components to object detec-

tion, namely, central region exploration, center pooling, and

cascade corner pooling. To analyze the contribution of each

individual component, an ablation study is given here. The

baseline is CornerNet511-52 [21]. We add the three com-

ponents to the baseline one by one and follow the default

parameter setting detailed in Section 4.1. The results are

given in Table 4.

Central region exploration. To understand the importance

of central region exploration (see CRE in the table), we add

a center heatmap branch to the baseline and use a triplet

of keypoints to detect the bounding boxes. For center key-

point detection, we only use conventional convolutions. As

presented in the third row in Table 4, we improve the AP

by 2.3% (from 37.6% to 39.9%). However, we find that the

improvement for small objects (that is 4.6%) is more signif-

icant than that for other object scales. The improvement for

large objects is almost negligible (from 52.2% to 52.3%).

This is not surprising, because compared to large objects,

small objects are more likely to benefit from being filtered

by center keypoints.

Center pooling. To demonstrate the effectiveness of the

proposed center pooling, we add the center pooling module

to the network (see CTP in the table). The fourth row in

Table 4 shows that center pooling improves the AP by 0.9%

(from 39.9% to 40.8%). Notably, with the help of center

pooling, we increase the AP for large objects by 1.4% (from

52.2% to 53.6%), which is a much higher improvement than

that of conventional convolutions (i.e., 1.4% vs. 0.1%). this

demonstrates that our center pooling is effective in detect-
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CRE CTP CCP AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

37.6 53.3 40.0 18.5 39.6 52.2 33.7 52.2 56.7 37.2 60.0 74.0

X 38.3 54.2 40.5 18.6 40.5 52.2 34.0 53.0 57.9 36.6 60.8 75.8

X 39.9 57.7 42.3 23.1 42.3 52.3 33.8 54.2 58.5 38.7 62.4 74.4

X X 40.8 58.6 43.6 23.6 43.6 53.6 33.9 54.5 59.0 39.0 63.2 74.7

X X X 41.3 59.2 43.9 23.6 43.8 55.8 34.5 55.0 59.2 39.1 63.5 75.1

Table 4: Ablation study on the major components of CenterNet511-52 on the MS-COCO validation dataset. The CRE denotes

central region exploration, the CTP denotes center pooling, and the CCP denotes cascade corner pooling.

Method AP AP50 AP75 APS APM APL

CenterNet511-52 w/o GT 41.3 59.2 43.9 23.6 43.8 55.8

CenterNet511-52 w/ GT 56.5 78.3 61.4 39.1 60.3 70.3

CenterNet511-104 w/o GT 44.8 62.4 48.2 25.9 48.9 58.8

CenterNet511-104 w/ GT 58.1 78.4 63.9 40.4 63.0 72.1

Table 5: Error analysis of center keypoints using ground-

truth values. We replace the predicted center keypoints with

the ground-truth, and the results suggest that there is still

room for improvement in the detection of center keypoints.

ing the center keypoints of objects, especially for large ob-

jects. Our explanation for this result is that center pooling

can extract rich internal visual patterns, and larger objects

contain more accessible internal visual patterns than smaller

objects. Figure 6(e) shows the results of the detection of

center keypoints without/with center pooling. We can see

that conventional convolution fails to locate the center key-

point of the cow, but with center pooling, the center key-

point is successfully located.

Cascade corner pooling. We replace corner pooling [21]

with cascade corner pooling to detect corners (see CCP in

the table). The second row in Table 4 shows the results of

the test on the basis of CornerNet511-52. We find that cas-

cade corner pooling improves the AP by 0.7% (from 37.6%

to 38.3%). The last row shows the results of the test on

the basis of CenterNet511-52, which improves the AP by

0.5% (from 40.8% to 41.3%). The results of the second

row show that there is almost no change in the AP for large

objects (i.e., 52.2% vs. 52.2%), but the AR is improved by

1.8% (from 74.0% to 75.8%). This suggests that cascade

corner pooling can detect an increased number of objects

due to the rich internal visual patterns of large objects, but

visual patterns that are too rich may interfere with the per-

ception of the boundary information, leading to many in-

accurate bounding boxes. After equipping with our Cen-

terNet, the inaccurate bounding boxes are effectively sup-

pressed, which improves the AP for large objects by 2.2%

(from 53.6% to 55.8%). Figure 6(f) shows the results of cor-

ner detection with corner pooling or cascade corner pooling.

As shown in the figure, cascade corner pooling successfully

locates a pair of corners on the left side of the cat image,

while corner pooling fails to locate these corners.

4.6. Error Analysis

The exploration of visual patterns within each bounding

box depends on the center keypoints. In other words, once

a center keypoint is missed, the proposed CenterNet misses

the visual patterns within the bounding box. To understand

the importance of center keypoints, we replace the predicted

center keypoints with the ground-truth values and evalu-

ate the performance on the MS-COCO validation dataset.

Table 5 shows that using the ground-truth center keypoints

improves the AP from 41.3% to 56.5% for CenterNet511-

52 and from 44.8% to 58.1% for CenterNet511-104. The

APs for small, medium and large objects are improved

by 15.5%, 16.5%, and 14.5% for CenterNet511-52 and

14.5%, 14.1%, and 13.3% for CenterNet511-104, respec-

tively. Since using ground-truth center keypoints largely

boosts detection AP, we believe there is still room for im-

provement by detecting center keypoints more accurately.

We also investigated the PASCAL VOC 2007 dataset [8].

CenterNet-52 reports single-scale and multi-scale testing

APs of 81.9% and 83.6%, and the numbers of CenterNet-

104 are 83.3% and 84.5%, respectively. All these re-

sults outperform the corresponding models of CornerNet-52

(77.5%, 80.1%) and CornerNet-104 (80.7% and 81.6%).

5. Conclusions

In this paper, we propose CenterNet, which detects ob-

jects using a triplet, including one center keypoint and two

corners. Our approach addresses the inability of Corner-

Net to assess the inside of cropped regions by exploring the

visual patterns within each proposed region with minimal

costs. This is a common defect of all one-stage approaches.

As one-stage approaches remove the RoI extraction pro-

cess, they cannot consider the internal information within

cropped regions.

An intuitive explanation of our contribution is that

we equip a one-stage detector with the ability of two-

stage approaches, with the addition of an efficient dis-

criminator. We believe that our idea of adding an extra

branch for the center keypoint can potentially be general-

ized to other existing one-stage approaches (e.g., SSD [28]).

Furthermore, some advanced training strategies [51] can be

used to improve performance. This objective will be the

subject of our future work.
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