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Abstract

In recent years, several branch-and-bound (BnB) algo-

rithms have been proposed to globally optimize rigid regis-

tration problems. In this paper, we suggest a general frame-

work to improve upon the BnB approach, which we name

Quasi BnB. Quasi BnB replaces the linear lower bounds

used in BnB algorithms with quadratic quasi-lower bounds

which are based on the quadratic behavior of the energy

in the vicinity of the global minimum. While quasi-lower

bounds are not truly lower bounds, the Quasi-BnB algo-

rithm is globally optimal. In fact we prove that it exhibits

linear convergence – it achieves ǫ-accuracy in O(log(1/ǫ))
time while the time complexity of other rigid registration

BnB algorithms is polynomial in 1/ǫ. Our experiments ver-

ify that Quasi-BnB is significantly more efficient than state-

of-the-art BnB algorithms, especially for problems where

high accuracy is desired.

1. Introduction

Rigid registration is a fundamental problem in computer

vision and related fields. The input to this problem are two

similar shapes and the goal is to find the rigid motion that

best aligns the two shapes, as well as a good mapping be-

tween the aligned shapes. There are several different for-

mulations of the rigid registration problem. In this paper

we focus on two popular formulations, the rigid closest

point (rigid-CP) [6] problem which is appropriate for par-

tial matching problems (e.g. where a partial point cloud ob-

tained from a scanning device is mapped to a reconstructed

model), and the rigid-bijective problem [28] which is appli-

cable to full matching problems where it naturally defines a

distance between shapes [3].

Both of these rigid registration formulations optimize an

appropriate energyE(g, π) that depends on the chosen rigid

motion g and a correspondence π between the two given

point clouds. This energy is typically non-convex, however

it is conditionally tractable in that there exist efficient al-
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Figure 1: Comparing the proposed qBnB algorithm and the

BnB algorithm of [21] for rigid bijective problems. The

colored shapes illustrate the alignment and correspondence

maps obtained for a pair of 2D and 3D shapes. The graphs

demonstrate the preferable complexity of our qBnB ap-

proach, dashed lines illustrating the asymptotic behavior de-

rived in our analysis (Theorem 2).

gorithms for globally optimizing for either of its variables

when the other is fixed. This is put to good use by the well-

known iterative closest point (ICP) algorithm [6] that opti-

mizes E using a very efficient alternating approach. It con-

verges, however, to a local minimum and thus it strongly

depends on a good initialization.

Conditional tractability can also be useful for global op-

timization algorithms. For a fixed rigid motion g it is possi-

ble to compute

F (g) = min
π
E(g, π)

and so to optimizeE globally it suffices to optimize F . Fig-

ure 2(a) shows an example function F derived from a 2D

rigid registration problem. The function F is non-convex

and non-differentiable, and the complexity of global opti-

mization algorithms for optimizing F is typically exponen-

tial in the dimension D of the rigid motion space. However,

in many cases of interest D is a small constant and so these

algorithms are in fact tractable. Thus, while high dimen-
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Figure 2: (a) Illustration of the function FCP defined in Sub-

section 3.4 for a 2D registration problem as a function of ro-

tation angle. (b) Quadratic behavior of FCP at a minimum.

(c) The true minimum (d) on the gray interval and a quasi-

lower bound (e) computed using the quadratic behavior near

the global minimum.

sional rigid registration problems can be computationally

hard [13], they are fixed parameter tractable [11].

Branch and bound (BnB) algorithms [10, 33, 25, 21] are

perhaps the only algorithms with a deterministic guarantee

to globally optimize the rigid registration problem. The key

ingredient in BnB algorithms is the ability to give a lower

bound for the value of F in a certain region, based on a

single evaluation of F .

In this paper we introduce the term quasi-lower bound,

which is a lower bound for the value of the function, over

a given region, under the possibly-false assumption that

the region contains a global minimum. While quasi-lower

bounds are not true bounds, the global optimality of qBnB

algorithms is not compromised if lower bounds are replaced

by quasi-lower bounds - leading to algorithms that we name

quasi-BnB (qBnB).

The advantage of quasi-lower bounds is that for condi-

tionally smooth energies (as defined in Definition 1) F ex-

hibits quadratic behavior near the global minimum, and this

can be leveraged to define quadratic quasi-lower bounds, in

contrast with lower bounds that are typically linear. This

leads to much improved bounds, as illustrated in Figure 2,

where the quasi-lower bound (e) is able to provide a bound

that is higher than the true minimal value (d) in the gray

interval, and hence tighter than any lower bound.

The tightness of quasi-lower bounds yields substantial

benefits in terms of complexity –we show that the complex-

ity of achieving an ǫ-optimal solution using BnB is at best

∼ ǫ−D/2. In contrast, under some weak assumptions, the

complexity of the qBnB algorithm is ∼ log(1/ǫ), that is, it

achieves a linear convergence rate (in the sense of [7]). Our

experiments (e.g. Figure 1) verify these theoretical results,

and show that qBnB can be considerably more efficient than

state-of-the-art BnB algorithms, especially in the presence

of high noise or when high accuracy is required. The code

used for producing the results in this paper will be made

available online.

2. Related Work

We focus on global optimization methods for rigid reg-

istration. For other aspects of the rigid registration problem

we refer the reader to surveys such as [30].

A variety of methods from the global optimization tool-

box have been used to address the rigid registration prob-

lem, including Monte Carlo [19], RANSAC based [2], parti-

cle filtering [29], particle swarming [32], convex relaxations

[22, 20], and graduated non-convexity [35]. Unlike BnB al-

gorithms, none of these algorithms come with a determinis-

tic guarantee for global convergence.

In [25, 23, 9] BnB algorithms for rigid matching in 2D

are suggested. In [16] an algorithm for rigid matching in 3D

is proposed, based on a combination of matching rotation-

invariant descriptors and BnB. In [21] a BnB algorithm for

a modified bijective matching objective in 3D is suggested,

based on Lipschitz optimization.

In [33, 34] the Go-ICP algorithm for rigid matching in

3D is suggested. Their algorithm searches the 6D transfor-

mation space very efficiently in the low noise regime, al-

though it can be slow in the high noise regime. A branch

and bound procedure for the rigid matching energy of [9]

in 3D is proposed in [10, 24]. For this energy they suggest

various speedups that are not available for the classic maxi-

mum likelihood objective considered in ICP.

The qBnB approach we propose here can boost the con-

vergence of any of the methods above which consider con-

ditionally smooth objective, such as [33, 25, 21], by simply

replacing their first order lower bound with an appropriate

second order quasi-lower bound. However it is not directly

applicable for optimizing objectives which are not condi-

tionally smooth such as the geometric matching objective

of [10, 9].

BnB algorithms with quadratic lower bounds have been

proposed for smooth unconstrained optimization [15], and

for camera pose estimation [18]. The latter approach ob-

tains quadratic lower bounds by jointly optimizing over a

linear approximation of a rotation, and the remaining vari-

ables; This approach does not straightforwardly apply to

our scenario. In contrast, our qBnB approach only requires

solving optimization problems with a fixed rotation.

[26] show that ICP achieves linear converge rate, and

suggest alternative second order methods with super-linear

convergence rate. These algorithms only converge to a local

minimum, whereas our algorithm is shown to exhibit linear

convergence to the global minimum.

3. Method

3.1. Problem statement

We consider the application of the quasi BnB framework

as described in Section 1 to the problem of rigid alignment

of point clouds. This problem has several variants, and in
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this paper we will focus on two of them that we will refer to

as the rigid-closest-point (rigid-CP) problem and the rigid-

bijective problem. We also wish to focus on the common

structure of problems for which our quasi BnB framework

is applicable, which we will name in this paper D-quasi-

optimizable. We begin by defining D-quasi-optimizable

problems.

Consider optimization problems of the form

min
x∈RD,y∈Y

E(x, y), (1)

where Y is a finite set. Denote the cube centered at x with

half-edge length h by Ch(x).

Definition 1. We say that an optimization problem of the

form (1) is D-quasi-optimizable in a cube C0 = Ch0
(x0) if

it satisfies the following conditions:

1. Existence of a minimizer: There exists a minimizer

(x∗, y∗) of E such that x∗ ∈ C0.

2. D-tractability: For fixed x, minimizing E(x, ·) over Y
can be performed in polynomial time.

3. Conditional smoothness For fixed y ∈ Y , the function

E(·, y) is in C∞(Rd).

We now turn to defining the rigid-CP and rigid-

bijective problems and explaining why they are D-quasi-

optimizable.

The input to the rigid-CP problem are two point clouds

P = {p1, . . . , pn} and Q = {q1, . . . , qm} in R
d where we

assume d = 3 or d = 2. We assume the point clouds are

normalized to be in [−1, 1]d and have zero mean. Our goal

is to find a rigid motion that aligns the points as-well-as-

possible. Namely, denoting the group of (orientation pre-

serving) rigid motions SO(d) × R
d by GCP, and denoting

by ΠCP the collection of all functions π : P → Q, our goal

is to solve the minimization problem

min
(R,t)∈GCP

π∈ΠCP

ECP(R, t, π) =
1

n

n
∑

i=1

‖Rpi + t− qπ(i)‖2 (2)

Following [33, 21] we simplify the domain of (2) by using

the exponential map: We use s to denote the intrinsic di-

mension of SO(d). For a vector r ∈ R
s, we define [r] to be

the unique d×d skew-symmetric matrix ([r]T =−[r]) whose

entries under the diagonal are given by r. By applying the

matrix exponential to [r] we get a matrix

Rr = exp([r]) ∈ SO(d).

Every rotation can be represented as Rr for some r in the

closed ball Bπ(0) and so (2) can be reduced to the problem

min
(r,t)∈Rs×Rd,π∈ΠCP

ECP(Rr, t, π). (3)

Our next step is to identify a cube C0 in R
s × R

d in which

ECP must have a global minimum. For the rotation compo-

nent we can take the cube Cπ(0) that bounds the ballBπ(0) .

For the translation component, we note that if (R∗, π∗, t∗) is

a minimizer of E, then the optimal translation is the differ-

ence between the average ofR∗pi, which is zero by assump-

tion, and the average of qπ(i), which will be in the unit cube.

Thus there exists a minimizer (r∗, t∗, π∗) such that (r∗, t∗)
is in Cπ(0) × C1(0). This shows that (3) satisfies the first

condition for being D-quasi-optimizable, where x = (r, t),
y = π and D = s + d (i.e., D = 6 or 3 for 3D and 2D

problems respectively).

D-tractability follows from the fact that the optimal map-

pings π minimizing ECP(R, t, ·) for fixed R, t are just the

mappings that take each rigidly transformed pointRpi+t to

its closest point in Q, hence the term rigid-CP. Conditional

smoothness is obvious.

The rigid bijective problem is similar to rigid-CP, but fo-

cuses on the case n = m, and only allows mappings be-

tween P and Q that are bijective (i.e., permutations). We

denote this set of mappings by Πbi. In this scenario opti-

mizing for π while holding the rigid transformation compo-

nent fixed is tractable, but more computationally intensive

than rigid-CP since it requires solving a linear assignment

problem. On the other hand, in this scenario the optimal

translation is always t∗ = 0, since the mean of the points

pi and qπ(i) is zero. Therefore we can reduce our problem

to lower-dimensional optimization over Gbi = SO(d). As

before, we use the exponential map to reparameterize the

problem as

min
r∈Rs,π∈Πbi

Ebi(Rr, π) =
1

n

∑

i

‖Rrpi − qπ(i)‖2 (4)

It follows from our discussion above that this optimiza-

tion problem is D-quasi-optimizable over Cπ(0) with x =
r, y = π and D = s (i.e., D = 3 or 1 for 3D and 2D

problems respectively).

3.2. Optimizing quasioptimizable functions

BnB algorithms. D-tractability implies that we can re-

duce (1) to the equivalent problem of minimizing the D-

dimensional function

F (x) = min
y∈Y

E(x, y). (5)

BnB algorithms for rigid registration and related problems

are typically based on the ability to show that for δ > 0 and

x1, x2 ∈ C0 satisfying ‖x1 − x2‖ ≤ δ,

F (x1)− F (x2) ≤ ∆(δ) (6)

where ∆(·) is a function of the form

∆(δ) = Lδ +O(δ2). (7)
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Using a bound of this form F can be bounded from below

in a cube Chi
(xi) by evaluating F (xi) and noting that the

distance of any x in the cube from xi is at most
√
Dhi, and

thus (6) implies that F (x) is larger than

lbi ≡ F (xi)−∆(
√
Dhi). (8)

In the appendix we show that any F arising from aD-quasi-

optimizable optimization problem is Lipschitz and thus a

bound of the form (7) always exists. We note that to ap-

ply a BnB algorithm to a specific problem it is necessary to

explicitly compute a valid bounding function ∆(·).
Based on the lower bound (8), a simple breadth-first-

search (BFS) BnB algorithm starts from a coarse partition-

ing of C0 into sub-cubes Chi
(xi), and then evaluates F at

each of the xi. Each such evaluation gives a global upper

bound ubi = F (xi) for the minimum F ∗, and a local lower

bound lbi for the minimum in the cube as defined in (8).

At each step the algorithm keeps track of the best global

upper bound found so far, which we denote by ub, and on

the global lower bound lb that is defined as the smallest lo-

cal lower bound found in this partition. Now for every i,
If lbi > ub then F is not minimized in Chi

(xi) and this

cube can be excluded from the search. The BnB algorithm

then refines the partition into smaller cubes for cubes that

have not yet been eliminated, and this process is contin-

ued until ub − lb < ǫ. This is the BnB strategy used in

[33, 25, 21, 23, 9] for rigid registration problems, though

these papers vary in the search strategy they employ, the

rigid energy the consider, the bound (6) they compute, and

other aspects.

Quasi-BnB. The qBnB algorithm we suggest in this pa-

per is based on two observations: The first is that though

non-differentiable, F resembles a smooth function in that

its behavior near minimizers is quadratic, and in fact F can

be bounded in the cube C0 by a quadratic function centered

at a global minimizer.

Lemma 1.

If x∗ ∈ C0 is a global minimizer of F , then there exists

C > 0 such that

F (x)− F (x∗) ≤ C‖x− x∗‖2, ∀x ∈ C0 (9)

Proof. Assume (x∗, y∗) is a global minimizer of E, Let

Nx,y be the operator norm of the Hessian of the function

E(·, y) at a point x, and let C be the maximum of 2Nx,y

over C0×Y . Since the first order approximation of E(·, y∗)
at x∗ vanishes, we obtain

F (x)− F (x∗) ≤ E(x, y∗)− E(x∗, y∗) (10)

≤ C‖x− x∗‖2

Let us assume that we have an explicit quadratic bound

of the general form (10), up to possibly allowing higher

order terms. That is, if x∗ is a global minimizer, and

x, x∗ ∈ C0 satisfy ‖x− x∗‖ ≤ δ, then

F (x)− F (x∗) ≤ ∆∗(δ) (11)

where ∆∗ is a function of the form

∆∗(δ) = Cδ2 +O(δ3) (12)

In Subsection 3.4 we give an explicit computation of ∆∗ for

rigid-bijective and rigid-CP problems.

Using a bound of the form (11), F can be bounded from

below in a cube Chi
(xi) which contains a global minimizer

x∗ by evaluating F (xi) and noting that since x∗ is in the

cube, its distance from xi is at most
√
Dhi, and thus (11)

implies that the minimum F (x∗) is larger than

qlbi ≡ F (xi)−∆∗(
√
Dhi). (13)

Note that qlbi is well defined for any cube Chi
(xi), even if

the cube does not contain a minimizer. However it is only

guaranteed to be a true lower bound for the value of F in

Chi
(xi) if the cube contains a global minimizer. For this

reason we call qlbi a quasi-lower bound.

The second observation the qBnB algorithm is based on

is that the linear lower bounds (8) in the BnB algorithm can

be replaced by quadratic quasi lower bounds (13) to obtain

what we refer to as the qBnB algorithm (qBnB), without

compromising the global optimality of the algorithm. To

see this is indeed true we need to convince ourselves that if a

given cube Chi
(xi) contains a global minimum x∗, then the

cube will not be discarded by the qBnB algorithm. Indeed

if Chi
(xi) contains a global minimum then qlbi is a true

lower bound for the minimal value of F in the cube, which

in this case is exactly the minimum of the function, so for

any given upper bound ub,

qlbi ≤ F (x∗) ≤ ub

and so the cube will not be removed. For more details on

global optimality we refer the interested reader to the proof

of Theorem 2 which includes a formal proof of global opti-

mality.

A simple BFS qBnB algorithm for optimizing D-

quasi-optimizable functions, for a given quasi-lower bound

∆∗(δ), is provided in Algorithm 1. We note that this algo-

rithm also exploits the fact that for a collection of cubes Lg

partitioning C0,

lb = min{qlbi| Chi
(xi) ∈ Lg}

is a true lower bound for the global minimum, since one of

the cubes in Lg must contain a global minimizer and hence

the quasi-lower bound for this cube will be lower than the

global minimum.
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input : Required accuracy ǫ
output: ǫ-optimal solution x∗
ub←∞, lb← −∞, g ← 0;

Put C0 = Ch0
(x0) into the list Lg ;

while ub− lb > ǫ do

forall Chi
(xi) ∈ Lg do

Compute F (xi);

ubi ← F (xi), qlbi ← F (xi)−∆∗(
√
Dhi);

if ubi < ub then

ub← ubi;
x∗ ← xi;

end

end

lb = min{qlbi| Chi
(xi) ∈ Lg} ;

forall Chi
(xi) ∈ Lg do

if qlbi ≤ ub then

subdivide Chi
(xi) into 2D sub-cubes

with half-edge length hi/2 and insert

into Lg+1

end

end

g ← g + 1;

end

Algorithm 1: BFS qBnB

3.3. Complexity

Theorem 2 (below, proof in appendix) provides com-

plexity bounds for the qBnB algorithm with a quadratic

∆∗(δ), as in Algorithm 1, and for a similar BnB algo-

rithm, where ∆∗ is replaced by a Lipschitz bound ∆(δ).
We denote the number ofF -evaluations in the algorithms by

nqBnB and nBnB respectively. We consider the limit where

the prescribed accuracy ǫ tends to zero and all other param-

eters of the problem are held fixed:

Theorem 2. There exist positive constants C1, . . . , C4,

such that

C1ǫ
−D/2 ≤ nBnB ≤ C2ǫ

−D. (14)

nqBnB ≤ C3ǫ
−D/2. (15)

Furthermore, if E has a finite number of minimizers

(x∗ℓ , y
∗
ℓ )

N
ℓ=1, and the Hessian of E(·, y∗ℓ ) is strictly positive

definite for all ℓ, then

nqBnB ≤ C4 log2(1/ǫ). (16)

3.4. Computing quasilower bounds

To conclude our discussion we now need to state explicit

quadratic quasi-lower bounds for the rigid-CP and rigid-

bijective problems. We denote by FCP and Fbi the func-

tions obtained by applying (5) to ECP and Ebi.

Rigid bijective quasi-lower bounds. For k ∈ N, let ψk

denote the truncated Taylor expansion of ex,

ψk(x) = ex −
k−1
∑

j=0

xj

j!
(17)

Theorem 3. Let δ > 0, r ∈ R
D and r∗ be a global mini-

mizer of Fbi, and assume ‖r − r∗‖ ≤ δ. Let σP , σQ denote

the Frobenius norm of the matrices whose columns are the

points in P and Q respectively. Then ∆∗(δ) is given by

Fbi(r)− Fbi(r∗) ≤ ∆∗(δ) ≡
2

n
σPσQ ψ2(δ) (18)

Proof. Let us consider the case where r∗ = 0, so (Id, π∗)
minimizes Ebi for some appropriate π∗. Note that for all

R, π,

Ebi(R, π) =
1

n

[

σ2
P + σ2

Q − 2
∑

i

〈Rpi, qπ(i)〉
]

(19)

it follows that

Fbi(r)− Fbi(0) ≤ Ebi(Rr, π∗)− Ebi(Id, π∗)

(∗)
= − 2

n

n
∑

i=1

∞
∑

k=2

〈 1
k!
[r]kpi, qπ(i)〉

≤ 2

n

n
∑

i=1

∞
∑

k=2

1

k!
‖[r]‖kop‖pi‖‖qπ∗(i)‖

≤ 2

n
ψ2(‖[r]‖op)σPσQ.

To obtain the equality (∗) note that r∗ = 0 minimizes

Ebi(·, π∗) and so the first order approximation of this func-

tion vanishes. In the appendix we show that ‖[r]‖op ≤ ‖r‖
which concludes the proof for the case r∗ = 0, and then use

this case to prove the theorem for general r∗.

Based on this quasi-lower bound, our algorithm for op-

timizing the rigid-bijective problem is just Algorithm 1,

where as stated in Subsection 3.1 we take x = r, y =
π, Ch0

(x0) = Cπ(0), and we use ∆∗ defined in (18).

Rigid CP quasi-lower bounds. For the rigid-CP problem

we obtain the following quasi-lower bound that we prove in

the appendix.

Theorem 4. Let (r∗, t∗) be a minimizer of FCP, and let

(r, t) ∈ R
s × R

d, and δ1, δ2 > 0 which satisfy ‖r − r∗‖ ≤
δ1and‖t − t∗‖ ≤ δ2. Let f∗ be some upper bound for the

global minimum of FCP. Then

FCP(r, t)− FCP(r∗, t∗) ≤ ∆∗(δ1, δ2) (20)
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Figure 3: Comparison of the dependence of qBnB and Go-

ICP on the error tolerance (a) and noise level (b).

where

∆∗(δ1, δ2) =
1

n

[

2ψ2(δ1)(σ
2
P + σP

√

nf∗)

+ 2δ2ψ1(δ1)
∑

i

‖pi‖+ nδ22

]

(21)

Using this quasi-lower bound the most straightforward

way to construct a qBnB algorithm is by using Algorithm 1

setting x = (r, t), y = π and using the initial cube

Cπ(0)×C1(0) as described in Subsection 3.1 and the bound

∆∗(δ1, δ2) from (21). However, to enable simple compari-

son with the Go-ICP algorithm [33] we use their BnB ar-

chitecture, wherein two nested BnB are used – an outer

BnB for the rotation component and a separate inner BnB

for the translation component. The quadratic quasi-lower

bounds for these BnBs can be computed by setting δ2 = 0
or δ1 = 0, respectively. Further details are provided in the

supplementary material.

4. Results

Evaluation of qBnB for rigid-CP. We evaluate the per-

formance of the proposed qBnB algorithm for the rigid-CP

problem. We compare with Go-ICP [33], a state-of-the-art

approach for global minimization of this problem. Our im-

plementation is based on a modified version of the Go-ICP

code, which utilizes a nested BnB (see section 3.4) and an

efficient approximate CP computation (see implementation

details below).

We ran both algorithms on synthetic rigid-CP problems

that were generated by uniformly sampling n points on the

unit cube to formP , and then applying a random rigid trans-

formation and Gaussian noise with std σ to formQ. Finally

P andQ are translated so that they have zero mean and then

scaled by mini,j{‖pi‖−1
∞ , ‖qj‖−1

∞ } so that they both reside

in the unit cube.

Figure 3 shows comparisons performed with varying (a)

prescribed accuracy and (b) noise. Both algorithms are

comparable in the low noise/low accuracy regime. This is

consistent with [33] that report better performance in the

Go-ICP 4.1K 5.2× 106 108

Q-BnB 2K 1.6× 106 1.4×
1×

106

σ = 0.01 σ = 0.05 σ = 0.1

Figure 4: Registration of a noisy scan of the Stanford bunny

to the full 3D model at three different noise levels. The

bottom row shows the number of FCP evaluations Go-ICP

and qBnB required to perform the registrations.

regime where the optimal energy E∗ is lower than the er-

ror tolerance ǫ. In contrast, when accuracy or noise are

increased, the complexity of the Go-ICP algorithm grows

rapidly, while the complexity of qBnB stabilizes at an al-

most constant number of ≈106 function evaluations. This

results is consistent with the complexity analysis of Theo-

rem 2.

In Figure 3(a) we took n = 50, σ = 0.05, and pre-

scribed accuracy ǫ varying between 10−1 and 10−6, and in

Figure 3(b) we took n = 100, ǫ = 10−3 and σ varying be-

tween 0 and 0.5. Each data point in the graph represents an

average over 100 instances with the same parameters. We

exclude results for Go-ICP with ǫ < 10−4 or σ > 0.2 due

to excessive run-time (over six hours). The maximal run-

time of our algorithm over all experiments presented was 9
minutes.

Figure 4 exemplifies the applicability of our algorithm

for solving larger rigid-CP problems. We used our algo-

rithm and Go-ICP to register 500 points sampled from the

Stanford bunny [31] to a full 3D model consisting of nearly

36K vertices. Both methods are global, thus they obtained

the same results up to small indiscernible differences; there-

fore, we only show our alignments, as well as the evaluation

counts of both algorithms. As in Figure 3(b), qBnB is more

efficient than Go-ICP, especially in the high noise regime.

For noise level of σ = 0.1 our algorithm required under 7
minutes, whereas Go-ICP took over 6 hours to complete.

Evaluation of qBnB for rigid-bijective. We compare our

qBnB algorithm for the rigid bijective problem with the

BFS version of the BnB algorithm proposed in [21]. This al-

gorithm modifies the standard ℓ2 energy we study here, and

globally optimizes it over the same feasible setGbi×Πbi. in

Figure 1 we examined the performance of both algorithms

on the problem of registering 2D frog silhouettes [12] and

3D chair meshes [17], sampled at 50 points, with accuracy

set at ǫ = 10−6. Both algorithms returned identical results,

which are visualized on the top of Figure 1. However qBnB

took 0.5 and 6.5 seconds to solve the 2D and 3D problems

1633



2

2.5

3

3.5

10
-3

1.5

Figure 5: The top row shows the alignment computed by qBnB between the first tooth on the left and all remaining teeth.

The matrix on the right shows all pairwise distances computed for the teeth. The bottom row shows the analogous result for

Auto3dgm [8], a local alignment algorithm used in biological morphology.

respectively, while [18] required 11 seconds to solve the 2D

problem, and did not converge to the required accuracy for

the 3D problem after 107 evaluations (over 1 hour). The

graphs in Figure 1 show the number of evaluations the al-

gorithms performs in each depth level of the BFS. In both

cases qBnB required significantly less evaluations than [21],

and furthermore we note that asymptotically qBnB requires

a constant number of evaluations at each depth, while [21]

requires∼ 2Dg/2 iterations at depth g, as shown by the log-

scale asymptotes in the figure. This illustrates the theoreti-

cal results of Theorem 2: As for BnB algorithms ǫ ∼ 2−g ,

they require ∼ ǫ−D/2 evaluations. In contrast, the depen-

dence of qBnB on g ∼ log(1/ǫ) is linear.

Application to biological morphology. Biological mor-

phology is concerned with the geometry of anatomical

shapes. In this context, Auto3dgm [8, 27] is a popular al-

gorithm that seeks for a plausible, consistent alignment of a

collection of scanned morphological shapes. It is based on

solving the rigid bijective matching problem between pairs

of shapes, and on a global step that synchronizes the rota-

tions. The rigid bijective matching problem is solved us-

ing an alternating ICP-like algorithm, initialized from each

of the 23 rotations that align the principal axes of the two

shapes. This results in 8 possible solutions, from which the

solution with best energy is selected. In this application,

reflections are typically allowed, and our algorithm can be

easily extended to this case as O(d) is just a disjoint union

of two copies of SO(d).

Figure 5 compares the performance of qBnB to the pair-

wise matching algorithm of Auto3dgm for aligning a chal-

lenging collection of ten almost-symmetric teeth of spider

monkeys (Ateles) from [1]. Details on the data for this

experiment can be found in Appendix C. Each bone sur-

face is sampled at 200 points using farthest point sampling.

The pairwise energy between all pairs, and the alignment

computed between the first tooth and all remaining teeth is

shown for qBnB (top) and Auto3dgm (bottom). We see that

qBnB obtains lower energy solutions and more plausible

alignments which have been verified as semantically cor-

rect by biological experts. This comes at the cost of higher

complexity (2− 5 minutes as opposed to ∼ 3 seconds).

Implementation details. The qBnB algorithm for rigid-

CP was implemented in C++, based on the implementation

of [33]. The algorithm for rigid-bijective matching was im-

plemented in Matlab; We solved for the bijective mapping

used the excellent MEX implementation of [4] for the auc-

tion algorithm [5]. Timings were measured using a Intel

3.10GHz CPU.

For the optimization of large scale rigid-CP with mod-

erate accuracy ǫ = 10−3 as in Figure 3(b) and Figure 4,

we followed the implementation of GoICP [33] and used

the 3D Euclidean distance transform (DT) from [14] with a

300×300×300 grid; this provides a very fast approximation

of the closest point computation, compared with the stan-

dard (accurate) KD-tree based computation. For evaluating

the complexity as a function of accuracy in Figure 3(a), we

used both GoICP and qBnB without DT transform.

5. Future work and conclusions

We presented the qBnB framework for globally optimiz-

ing D-quasi-optimizable functions, and demonstrated the-

oretically and empirically the advantage of this framework

over existing BnB algorithm. Future challenges include ap-

plying the qBnB framework to other rigid registration prob-

lems that can handle outliers better than the standard ℓ2 en-

ergy, as well as using this framework for global optimiza-

tion of D-quasi-optimizable functions in other knowledge

domains.
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