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Abstract

We introduce a general method of performing Residual

Network inference and learning in the JPEG transform do-

main that allows the network to consume compressed im-

ages as input. Our formulation leverages the linearity of the

JPEG transform to redefine convolution and batch normal-

ization with a tune-able numerical approximation for ReLu.

The result is mathematically equivalent to the spatial do-

main network up to the ReLu approximation accuracy. A

formulation for image classification and a model conversion

algorithm for spatial domain networks are given as exam-

ples of the method. We show skipping the costly decompres-

sion step allows for faster processing of images with little

to no penalty in the network accuracy.

1. Introduction

The popularization of deep learning since the 2012

AlexNet [15] architecture has led to unprecedented gains

for the field. Many applications that were once academic are

now seeing widespread use of machine learning with suc-

cess. Although the performance of deep neural networks far

exceeds classical methods, there are still some major prob-

lems with the algorithms from a computational standpoint.

Deep networks require massive amounts of data to learn ef-

fectively, especially for complex problems [18]. Further,

the computational and memory demands of deep networks

mean that for many large problems, only large institutions

with GPU clusters can afford to train from scratch, leaving

the average scientist to fine tune pre-trained weights.

This problem has been addressed many times in the lit-

erature. Batch normalization [12] is ubiquitous in modern

networks to accelerate their convergence. Residual learn-

ing [11] allows for much deeper networks to learn effective

mappings without overfitting. Techniques such as pruning

and weight compression [9] are becoming more common-

place. As problems become even larger and more complex,

these techniques are increasingly being relied upon for effi-

cient training and inference.

We approach this problem at the level of the image rep-

resentation. JPEG is the most widespread image file for-

mat. Traditionally, the first step in using JPEGs for machine

learning is to decompress them. We propose to skip this step

and instead reformulate the ResNet architecture to perform

its operations directly on compressed images. The goal is

to produce a new network that is mathematically equivalent

to the spatial domain network, but which operates on com-

pressed images by including the compression transform into

the network weights, which can be done because they are

both linear maps. Because the ReLu function is non-linear,

we develop an approximation technique for it. This is a

general method and, to our knowledge, is the first attempt

at formulating a piecewise linear function in the transform

domain.

The contributions of this work are as follows

1. The general method for expressing convolutional net-

works in the JPEG domain

2. Concrete formulation for residual blocks to perform

classification

3. A model conversion algorithm to apply pretrained spa-

tial domain networks to JPEG images

4. Approximated Spatial Masking: the first general tech-

nique for application of piecewise linear functions in

the transform domain

By skipping the decompression step and by operating on the

compressed format, we show a notable increase in speed for

testing and a marginal speed for training.

2. Prior Work

We review prior work separated into three categories:

compressed domain operations, machine learning in the

compressed domain, and deep learning in the compressed

domain.

2.1. Compressed Domain Operations

The expression of common operations in the compressed

domain was an extremely active area of study in the late 80s

and early 90s, motivated by the lack of computing power to
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quickly decompress, process, and recompress images and

video. For JPEG, Smith and Rowe [25] formulate fast JPEG

compatible algorithms for performing scalar and pixelwise

addition and multiplication. This was extended by Shen and

Sethi [23] to general blockwise operations and by Smith

[24] to arbitrary linear maps. Natarajan and Vasudev [19]

additionally formulate an extremely fast approximate algo-

rithm for scaling JPEG images. For MPEG, Chang et al.

[2] introduce the basic algorithms for manipulating com-

pressed video. Chang and Messerschmitt [3] give a fast

algorithm for decoding motion compensation before DCT

which allows arbitrary video compositing operations to be

performed.

2.2. Machine Learning in the Compressed Domain

Compressed domain machine learning grew out of the

work in the mid 90s. Arman et al. [1] give the basic frame-

work for image processing of compressed images. Feng

and Jiang [5] show how image retrieval can be performed

directly on compressed JPEGs. He et al. [10] extend their

work with a hypothesis testing technique. Wu et al. [30]

formulate the popular SIFT feature extraction in the DCT

domain.

2.3. Deep Learning in the Compressed Domain

Because deep networks are non-linear maps, deep learn-

ing has received limited study in the compressed domain.

Ghosh and Chellappa [7] use a DCT as part of their net-

work’s first layer and show that it speeds up convergence

for training. This is extended by Ulicny et al. [26] to create

separate filters for each DCT basis function. Wu et al. [29]

formulate a deep network for video action recognition that

uses a separate network for i-frames and p-frames. Since the

p-frame network functions on raw motion vectors and error

residuals it is considered compressed domain processing,

although it works in the spatial domain and not the quan-

tized frequency domain as in this work. Wu et al. show

a significant efficiency advantage compared to traditional

3D convolution architectures, which they attribute to the p-

frame data being a minimal representation of the video mo-

tion. Gueguen et al. [8] formulate a traditional ResNet that

operates on DCT coefficients directly instead of pixels, e.g.

the DCT coefficients are fed to the network. They show that

learning converges faster on this input, further motivating

the JPEG representation.

3. Background

We briefly review the JPEG compression/decompression

algorithm [27] and introduce the multilinear method that we

use to formulate our networks [24].

3.1. JPEG Compression

The JPEG compression algorithm is defined as the fol-

lowing steps.

1. Divide the image into 8× 8 blocks

2. Compute the 2D forward Discrete Cosine Transform

(DCT Type 2) of each block

3. Linearize the blocks using a zigzag order to produce a

64 component vector

4. Element-wise divide each vector by a quantization co-

efficient

5. Round the the vector elements to the nearest integer

6. Run-length code and entropy code the vectors

This process is repeated independently for each image

plane. In most cases, the original image is transformed from

the RGB color space to YUV and chroma subsampling is

applied since the human visual system is less sensitive to

small color changes than to small brightness changes [28].

The decompression algorithm is the inverse process. Note

that the rounding step (step 5) must be skipped during de-

compression. This is the step in JPEG compression where

information is lost and is the cause of artifacts in decom-

pressed JPEG images.

The magnitude of the information loss can be tuned us-

ing the quantization coefficients. If a larger coefficient is

applied in step 4, then the result will be closer to 0 which

increases its likelihood of being dropped altogether during

rounding. In this way, the JPEG transform forces sparsity

on the representation, which is why it compresses image

data so well. This is coupled with the tendency of the DCT

to push the magnitude of the coefficients into the upper left

corner (the DC coefficient and the lowest spatial frequency)

resulting in high spatial frequencies being dropped. Not

only do these high spatial frequencies contribute less re-

sponse to the human visual system, but they are also the

optimal set to drop for a least squares reconstruction of the

original image:

Theorem 1 (DCT Least Squares Approximation Theorem).

Given a set of N samples of a signal X = {x0, ...xN}, let

Y = {y0, ...yN} be the DCT coefficients of X . Then, for

any 1 ≤ m ≤ N , the approximation

pm(t) =
1√
n
yo +

√
2

n

m∑

k=1

yk cos

(
k(2t+ 1)π

2n

)
(1)

of X minimizes the least squared error

em =
n∑

i=0

(pm(i)− xi)
2 (2)
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Theorem 1 states that a reconstruction using the m low-

est spatial frequencies is optimal with respect to any other

set of m spatial frequencies. Proof of Theorem 1 is given in

the supplementary material.

3.2. JPEG Linear Map

A key observation of the JPEG algorithm, and the foun-

dation of most compressed domain processing methods [2,

3, 19, 23, 22, 21, 25, 24] is that steps 1-4 of the JPEG

compression algorithm are linear maps, so they can be com-

posed, along with other linear operations, into a single lin-

ear map which performs the operations on the compressed

representation. Step 5, the rounding step, is irreversible and

ignored by decompression. Step 6, the entropy coding, is a

nonlinear map and its form is computed from the data di-

rectly, so it is difficult to work with this representation. We

define the JPEG Transform Domain as the output of Step

4 in the JPEG encoding algorithm. This is a standard con-

vention of compressed domain processing. Inputs to the

algorithms described here will be JPEGs after reversing the

entropy coding.

Formally, we model a single plane image as the type (0,

2) tensor I ∈ H∗ ⊗W ∗ where H and W are vector spaces

and ∗ denotes the dual space. We always use the standard

orthonormal basis for these vector spaces which allows the

free raising and lowering of indices without the use of a

metric tensor. We define the JPEG transform as the type (2,

3) tensor J ∈ H⊗W⊗X∗⊗Y ∗⊗K∗. J represents a linear

map J : H∗ ⊗W ∗ → X∗ ⊗ Y ∗ ⊗K∗ and is computed as

(in Einstein notation)

I ′xyk = Jhw
xykIhw (3)

We say that I ′ is the representation of I in the JPEG trans-

form domain. The indices h,w give pixel position, x, y give

block position, and k gives the offset into the block.

The form of J is constructed from the JPEG compression

steps listed in the previous section. Let the linear map B :
H∗ ⊗W ∗ → X∗ ⊗ Y ∗ ⊗M∗ ⊗N∗ be defined as

Bhw
xymn =

{
1 h,w belongs in block x, y at offset m,n

0 otherwise

(4)

then B can be used to break the image represented by I into

blocks of a given size such that the first two indices x, y

index the block position and the last two indices m,n index

the offset into the block.

Next, let the linear map D : M∗ ⊗ N∗ → A∗ ⊗ B∗ be

defined as

Dmn
αβ =

1

4
V (α)V (β) cos

(
(2m+ 1)απ

16

)
cos

(
(2n+ 1)βπ

16

)

(5)

where V (u) is a normalizing scale factor. Then D rep-

resents the 2D discrete forward (and inverse) DCT. Let

Z : A∗ ⊗B∗ → Γ∗ be defined as

Zαβ
γ =

{
1 α, β is at γ under zigzag ordering

0 otherwise
(6)

then Z creates the zigzag ordered vectors. Finally, let S :
Γ∗ → K∗ be

S
γ
k =

1

qk
(7)

where qk is a quantization coefficient. This scales the vector

entries by the quantization coefficients.

With linear maps for each step of the JPEG transform,

we can then create the J tensor described at the beginning

of this section

Jhw
xyk = Bhw

xymnD
mn
αβ Zαβ

γ S
γ
k (8)

The inverse mapping also exists as a tensor J̃ which can

be defined using the same linear maps with the exception of

S. Let S̃ be

S̃k
γ = qk (9)

Then

J̃
xyk
hw = B

xymn
hw Dαβ

mnZ
γ
αβS̃

k
γ (10)

Next consider a linear map C : H∗ ⊗W ∗ → H∗ ⊗W ∗

which performs an arbitrary pixel manipulation on an image

plane I . To apply this mapping to a JPEG image I ′, we first

decompress the image, apply C to the result, then compress

that result to get the final JPEG. Since compressing is an

application of J and decompressing is an application of J̃ ,

we can form a new linear map Ξ : X∗ ⊗ Y ∗ ⊗ K∗ →
X∗ ⊗ Y ∗ ⊗K∗ as

Ξxyk
x′y′k′ = J̃

xyk
hw Chw

h′w′Jh′w′

x′y′k′ (11)

which applies C in the JPEG transform domain. There are

two important points to note about Ξ. The first is that,

although it encapsulates decompression, applying C and

compressing, it uses far fewer operations than doing these

processes separately since the coefficients are multiplied

out. The second is that it is mathematically equivalent to

performing C on the decompressed image and compressing

the result. It is not an approximation.

4. JPEG Domain Residual Networks

The ResNet architecture, consists of blocks of four ba-

sic operations: Convolution (potentially strided), ReLu,

Batch Normalization, and Component-wise addition, with
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the blocks terminating with a global average pooling oper-

ation [11] before a fully connected layer performs the final

classification. Our goal will be to develop JPEG domain

equivalents to these five operations. Network activations

are given as a single tensor holding a batch of multi-channel

images, that is I ∈ N∗ ⊗ P ∗ ⊗H∗ ⊗W ∗.

4.1. Convolution

The convolution operation follows directly from the dis-

cussion in Section 3.2. The convolution operation is a short-

hand notation for a linear map C : N∗⊗P ∗⊗H∗⊗W ∗ →
N∗ ⊗ P ∗ ⊗ H∗ ⊗ W ∗. Since the same operation is ap-

plied to each image in the batch, we can represent C with

a type (3, 3) tensor. The entries of this tensor give the co-

efficient for a given pixel in a given input channel for each

pixel in each output channel. We now develop the algorithm

for representing discrete convolutional filters using this data

structure.

A naive algorithm can simply copy randomly initialized

convolution weights into this larger structure following the

formula for convolution and then apply the JPEG compres-

sion and decompression tensors to the result. However, this

is difficult to parallelize and incurs additional memory over-

head to store the spatial domain operation. A more effi-

cient algorithm would produce the JPEG domain operation

directly and be easy to express as a compute kernel for a

GPU. Start by considering the JPEG decompression tensor

J̃ . Note that since J̃ ∈ X ⊗ Y ⊗ K ⊗ H∗ ⊗ W ∗ the last

two indices of J̃ form single channel image under our im-

age model (e.g. the last two indices are in H∗⊗W ∗). If the

convolution can be applied to this ”image”, then the result-

ing map would decompress and convolve simultaneously.

We can formulate a new tensor Ĵ ∈ N ⊗H∗ ⊗W ∗ by re-

shaping J̃ and treating this as a batch of images 1. Then,

given randomly initialized filter weights, K computing

Ĉb = K ⋆ Ĵb (12)

where ⋆ indicates the convolution operation and Ĵb indexes

Ĵ in the batch dimension, gives us the desired map. After

reshaping Ĉ back to the original shape of J̃ to give C̃, the

full compressed domain operation can be expressed as

Ξpxyk
p′x′y′k′ = C̃

pxyk
p′hwJ

hw
x′y′k′ (13)

where p and p′ index the input and output channels of the

image respectively. This algorithm skips the overhead of

computing the spatial domain map explicitly and depends

only on the batch convolution operation which is available

in all GPU accelerated deep learning libraries. Further, the

1Consider as a concrete example using 32 × 32 images. Then J̃ is of

shape 4× 4× 64× 32× 32 and the described reshaping gives Ĵ of shape

1024×1×32×32 which can be treated as a batch of size 1024 of 32×32

images for convolution.

(a) Original image (b) True ReLu

(c) ReLu using direct

approximation

(d) ReLu using ASM

approximation

Figure 1: Example of ASM ReLu on an 8× 8 block. Green

pixels are negative, red pixels are positive, and blue pixels

are zero. 6 spatial frequencies are used for both approxima-

tions. Note that the direct approximation fails to preserve

positive pixel values.

map can be precomputed to speed up inference by avoid-

ing repeated applications of the convolution. At training

time, the gradient of the compression and decompression

operators is computed and used to find the gradient of the

original convolution filter with respect to the previous lay-

ers error, then the map Ξ is updated using the new filter. So,

while inference efficiency of the convolution operation is

greatly improved, training efficiency is limited by the more

complex update. We show in Section 5.4 that the training

throughput is still higher than the equivalent spatial domain

model.

4.2. ReLu

Computing ReLu in the JPEG domain is not as straight-

forward since ReLu is a non-linear function. Recall that the

ReLu function is given by

r(x) =

{
x x > 0

0 x ≤ 0
(14)

We begin by defining the ReLu in the DCT domain and

show how it can be trivially extended to the JPEG transform

domain. To do this, we develop a general approximation

technique called Approximated Spatial Masking that can

apply any piecewise linear function to JPEG compressed

3487



images.

To develop this technique we must balance two seem-

ingly competing criteria. The first is that we want to use

the JPEG transform domain, since it has a computational

advantage over the spatial domain. The second is that we

want to compute a non-linear function which is incompat-

ible with the JPEG transform. Can we balance these two

constraints by sacrificing a third criterion? Consider an ap-

proximation of the spatial domain image that uses only a

subset of the DCT coefficients. Computing this is fast, since

it does not use the full set of coefficients, and gives us a

spatial domain representation which is compatible with the

non-linearity. What we sacrifice is accuracy. The accuracy-

speed tradeoff is tunable to the problem by changing the

size of the set of coefficients.

By Theorem 1 we use the lowest m frequencies for an

optimal reconstruction. For the 8×8 DCT used in the JPEG

algorithm, this gives 15 spatial frequencies total (numbered

0 to 14). We can then fix a maximum number of spatial

frequencies k and use all coefficients φ such that φ ≤ k as

our approximation.

If we now compute the piecewise linear function on this

approximation directly there are two major problems. The

first is that, although the form of the approximation is mo-

tivated by a least squares minimization, it is by no means

guaranteed to reproduce the original values of any of the

pixels. The second is that this gives the value of the function

in the spatial domain, and to continue using a JPEG domain

network we would need to compress the result which adds

computational overhead.

To solve the first problem we examine the intervals that

the linear pieces fall into. The larger these intervals are, the

more likely we are to have produced a value in the correct

interval 2 in our approximation. Further, since the lowest

k frequencies minimize the least squared error, the higher

the frequency, the less likely it is to push a pixel value out

of the correct range. With this motivation, we can produce

a binary mask for each piece of the function. The linear

pieces can then be applied directly to the DCT coefficients,

and then multiplied by their masks and summed to give the

final result. This preserves all pixel values. The only errors

would be in the mask which would result in the wrong linear

piece being applied. This is the fundamental idea behind the

Approximated Spatial Masking (ASM) technique.

The final problem is that we now have a mask in the

spatial domain, but the original image is in the DCT do-

main. There is a well known algorithm for pixelwise multi-

plication of two DCT images [25], but it would require the

mask to also be in the DCT domain. Fortunately, there is

a straightforward solution that is a result of the multilinear

2For example if the original pixel value was 0.7 and the approximate

value is 0.5, then the approximation is in the correct interval for ReLU

(≥ 0) but its value is incorrect.

analysis given in Section 3.2. Consider the bilinear map

H : A∗ ⊗B∗ ×M∗ ⊗N∗ → A∗ ⊗B∗ (15)

that takes a DCT block, F , and a spatial mask G, and pro-

duces the masked DCT block by pixelwise multiplication.

Our task will be to derive the form of H . We proceed by

construction. The steps of such an algorithm naively would

be

1. Take the inverse DCT of F: Imn = Dαβ
mnFαβ

2. Pixelwise multiply: I ′mn = ImnGmn

3. Take the DCT of I ′: F ′
α′β′ = Dmn

α′β′I ′mn.

Since these three steps are linear or bilinear maps, they can

be combined

F ′
α′β′ = Fαβ [Dmn

αβ Dmn
α′β′ ]Gmn (16)

Giving the final bilinear map H as

H
αβmn
α′β′ = DαβmnDmn

α′β′ (17)

We call H the Harmonic Mixing Tensor since it gives all

the spatial frequency permutations that we need. H can be

precomputed to speed up computation.

To use this technique to compute the ReLu function, con-

sider this alternative formulation

nnm(x) =

{
1 x > 0

0 x ≤ 0
(18)

We call the function nnm(x) the nonnegative mask of x.

This is our binary mask for ASM. We express the ReLu

function as

r(x) = nnm(x)x (19)

This new function can be computed efficiently from fewer

spatial frequencies with much higher accuracy since only

the sign of the original function needs to be correct. Fig-

ure 1 gives an example of this algorithm on a random block

and compares it to computing ReLu on the approximation

directly. Note that in the ASM image the pixel values of

all positive pixels are preserved, the only errors are in the

mask. In the direct approximation, however, none of the

pixel values are preserved and it suffers from masking er-

rors. The magnitude of the error is tested in Section 5.3 and

pseudocode for the ASM algorithm is given in the supple-

mentary material.

To extend this method from the DCT domain to the JPEG

transform domain, the rest of the missing JPEG tensor can

simply be applied as follows:

Hkmn
k′ = Zk

γ S̃
γ
αβD

αβmnDmn
α′β′S

α′β′

γ′ Z
γ′

k′ (20)

Since the operation is the same for each block, and there are

no interactions between blocks, the blocking tensor B can

be skipped.
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4.3. Batch Normalization

Batch normalization [12] has a simple and efficient for-

mulation in the JPEG domain. Recall that batch normaliza-

tion defines two learnable parameters: γ and β. A given

feature map I is first centered and then normalized over the

batch, then scaled by γ and translated by β. The full for-

mula is

BN(I) = γ
I − E[I]√
Var[I]

+ β (21)

So to define the batch normalization operation in the JPEG

domain, we need four parts: the mean, the variance, scalar

multiplication and scalar addition. Again, we first derive the

result in the DCT domain and trivially extend to the JPEG

transform domain.

We start with the sample mean. Observe, from the defi-

nition of the DCT, the first DCT coefficient is given by

D00 =
1

2
√
2N

N∑

x=0

N∑

y=0

Ixy (22)

In other words, the (0,0) DCT coefficient is proportional

to the mean of the block. Further, since the DCT basis is

orthonormal, we can be sure that the remaining DCT coeffi-

cients do not depend on the mean. This means that to center

the image we need only set the (0,0) DCT coefficient to 0.

For tracking the running mean, we simply read this value.

Note that this is a much more efficient operation than the

mean computation in the spatial domain.

Next, to get the variance, we use the following theorem:

Theorem 2 (The DCT Mean-Variance Theorem). Given a

set of samples of a signal X such that E[X] = 0, let Y be

the DCT coefficients of X . Then

Var[X] = E[Y 2] (23)

Intuitively this makes sense because the (0,0) coefficient

represents the mean, the remaining DCT coefficients are es-

sentially spatial oscillations around the mean, which should

define the variance. Proof of this theorem is given in the

supplementary material.

To apply γ and the variance, we use scalar multiplica-

tion. Since JPEG is linear, this is unchanged

J(γI) = γJ(I) (24)

For scalar addition to apply β, note that since the (0,0) coef-

ficient is the mean, and adding β to every pixel in the image

is equivalent to raising the mean by β, we can simply add β

to the (0,0) coefficient.

To extend this to JPEG is simple. The proportionality

constant for the (0,0) coefficient is 1

2
√
2×8

= 1

8
. For this

reason, many quantization matrices use 8 as the (0,0) quan-

tization coefficient. This means that the 0th block entry for

DCT Coefficients

Global Average Pooling Vector

Figure 2: Global average pooling. The 0th coefficient of

each block can be used directly with no computation.

a block does not need any proportionality constant, it stores

exactly the mean. So for adding β, we can simply set the

0th position to β without performing additional operations.

The other operations are unaffected.

4.4. Component­wise Addition

Component-wise addition is the simplest formulation in

our network. This is a well known result detailed in [2, 21,

23, 25] among others. Since the JPEG transform, J , is a

linear map, for two images F and G, we have

J(F +G) = J(F ) + J(G) (25)

meaning that we can simply perform a component-wise ad-

dition of the JPEG compressed results with no need for fur-

ther processing.

4.5. Global Average Pooling

Global average pooling also has a simple formulation in

JPEG domain. Recall from the discussion of Batch Normal-

ization (Section 4.3) that the 0th element of the block after

quantization is equal to the mean of the block. Then this

element can be extracted channel-wise from each block and

the global average pooling result is the channel-wise mean

of these elements.

Furthermore, our network architecture for classification

will always reduce the input images to a single block, which

can then have its mean extracted and reported as the global

average pooling result directly. Note the efficiency of this

process: rather than channel-wise averaging in a spatial do-

main network, we simply have an unconditional read oper-

ation, one per channel. This is illustrated in Figure 2.

4.6. Model Conversion

The previous sections described how to build the ResNet

component operations in the JPEG domain. While this

implies straightforward algorithms for both inference and

learning on JPEGs, we can also convert pre-trained models
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Input: T X 1 X 32 X 32

Res Block 1: 16 Filters, No 
Downsampling

Output: (T X 16 X 32 X 32)

Res Block 2: 32 Filters, 
Downsampling

Output: T X 32 X 16 X 16

Res Block 3: 64 Filters, 
Downsampling

Output: T X 64 X 8 X 8 
(single JPEG block)

Global Average Pooling
Output: T X 64

Fully Connected: 64 to 
10/100

Output: T X 10/100

Figure 3: Simple network architecture. T indicates the

batch size.

for JPEG inference. This allows any model that was trained

on spatial domain images to benefit from our algorithms at

inference time. Consider Equation 12. In this equation, K

holds the randomly initialized convolution filter. By instead

using pretrained spatial weights for K, the convoltion will

work as expected on JPEGs. Similarly, pretrained α, β, µ, σ

for batch normalization can be provided. By doing this for

each layer in a pretrained network, the network will operate

on JPEGs. The only caveat is that the ReLu approximation

accuracy can effect the final performance of the network

since the weights were not trained to cope with it. This is

tested in Section 5.3.

5. Experiments

We give experimental evidence for the efficacy of our

method, starting with a discussion of the architectures we

use and the datasets. We use model conversion as a san-

ity check, ensuring that the JPEG model with exact ReLu

matches exactly the testing accuracy of a spatial domain

model. Next we show how the ReLu approximation ac-

curacy effects overall network performance. We conclude

by showing the training and testing time advantage of our

method.

5.1. Network Architectures and Datasets

Since we are concerned with reproducing the inference

results of spatial domain networks, we choose the MNIST

[16] and CIFAR-10/100 [14] datasets since they are easy to

work with. The MNIST images are padded to 32 × 32 to

ensure an even number of JPEG blocks. Our network ar-

chitecture is shown in Figure 3. The classification network

consists of three residual blocks with the final two perform-

ing downsampling so that the final feature map consists of a

single JPEG block. The goal of this architecture is not to get

high accuracy, but rather to serve as a point of comparison

for the spatial and JPEG algorithms.

5.2. Model Conversion

For this first experiment, we show empirically that the

JPEG formulation is mathematically equivalent to the spa-

tial domain network. To show this, we train 100 spatial

domain models on each of the three datasets and give their

mean testing accuracies. We then use model conversion to

transform the pretrained models to the JPEG domain and

give the mean testing accuracies of the JPEG models. The

images are losslessly JPEG compressed for input to the

JPEG networks and the exact (15 spatial frequency) ReLu

formulation is used. The result of this test is given in Table

1. Since the accuracy difference between the networks is

extremely small, the deviation is also included.

Dataset Spatial JPEG Deviation

MNIST 0.988 0.988 2.999e-06

CIFAR10 0.725 0.725 9e-06

CIFAR100 0.385 0.385 1e-06

Table 1: Model conversion accuracies. Spatial and JPEG

testing accuracies are the same to within floating point error.

5.3. ReLu Approximation Accuracy

Next, we examine the impact of the ReLu approxima-

tion. We start by examining the raw error on individual 8×8
blocks. For this test, we take random 4 × 4 pixel blocks in

the range [−1, 1] and scale them to 8× 8 using a box filter.

Fully random 8 × 8 blocks do not accurately represent the

statistics of real images and are known to be a worst case

for the DCT transform. The 4 × 4 blocks allow for a large

random sample size while still approximating real image

statistics. We take 10 million blocks and compute the aver-

age RMSE of our ASM technique and compare it to com-

puting ReLu directly on the approximation (APX). This test

is repeated for all one to fifteen spatial frequencies. The re-

sult, shown in Figure 4a shows that our ASM method gives

a better approximation (lower RMSE) through the range of

spatial frequencies.

This test provides a strong motivation for the ASM

method, so we move on to testing it in the model conver-

sion setting. For this test, we again train 100 spatial do-

main models and then perform model conversion with the

ReLu layers ranging from 1-15 spatial frequencies. We

again compare our ASM method with the APX method.

The result is given in Figure 4b. Again the ASM method

outperforms the APX method.

As a final test, we show that if the models are trained

in the JPEG domain, the CNN weights will actually learn

to cope with the approximation and fewer spatial frequen-

cies are required for good accuracy. The result in Figure

4c shows that the ASM method again outperforms the APX

method and that the network weights have learned to cope

with the approximation.
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Figure 4: ReLu accuracy results.
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for the ReLu approximation allow-
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5.4. Efficiency of Training and Testing

Finally, we show the throughput for training and testing.

For this we test on all three datasets by training and testing

a spatial model and training and testing a JPEG model and

measuring the time taken. This is then converted to an aver-

age throughput measurement. The experiment is performed

on an NVIDIA Pascal GPU with a batch size of 40 images.

The results, shown in Figure 5, show that the JPEG model is

able to outperform the spatial model in all cases, but that the

performance on training is still limited. This is caused by

the more complex gradient created by the convolution and

ReLu operations. At inference time, however, performance
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Figure 5: Throughput. The JPEG model has a more com-

plex gradient which limits speed improvement during train-

ing. Inference, however, sees considerably higher through-

put.

is greatly improved over the spatial model.

6. Conclusion and Future Work

In this work we showed how to formulate deep residual

learning in the JPEG transform domain, and that it provides

a notable performance benefit in terms of processing time

per image. Our method expresses convolutions as linear

maps [24] and introduces a novel approximation technique

for ReLu. We showed that the approximation can achieve

highly performant results with little impact on classification

accuracy.

Future work should focus on two main points. The first is

efficiency of representation. Our linear maps take up more

space than spatial domain convolutions. This makes it hard

to scale the networks to datasets with large image sizes.

Secondly, library support in commodity deep learning li-

braries for some of the features required by this algorithm

are lacking. As of this writing, true sparse tensor support is

missing in all of PyTorch [20], TensorFlow [17], and Caffe

[13], with these tensors being represented as coordinate lists

which are known to be highly non-performant. Addition-

ally, the einsum function for evaluating multilinear ex-

pressions is not fully optimized in these libraries when com-

pared to the speed of convolutions in libraries like CuDNN

[4], though we make use of the opt einsum [6] tool to

partially mitigate this.
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