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Abstract

Deep generative models come with the promise to learn
an explainable representation for visual objects that allows
image sampling, synthesis, and selective modification. The
main challenge is to learn to properly model the indepen-
dent latent characteristics of an object, especially its ap-
pearance and pose. We present a novel approach that learns
disentangled representations of these characteristics and
explains them individually. Training requires only pairs
of images depicting the same object appearance, but no
pose annotations. We propose an additional classifier that
estimates the minimal amount of regularization required
to enforce disentanglement. Thus both representations to-
gether can completely explain an image while being inde-
pendent of each other. Previous methods based on adver-
sarial approaches fail to enforce this independence, while
methods based on variational approaches lead to uninfor-
mative representations. In experiments on diverse object
categories, the approach successfully recombines pose and
appearance to reconstruct and retarget novel synthesized
images. We achieve significant improvements over state-
of-the-art methods which utilize the same level of supervi-
sion, and reach performances comparable to those of pose-
supervised approaches. However, we can handle the vast
body of articulated object classes for which no pose mod-
els/annotations are available.

1. Introduction

Supervised end-to-end training on large volumes of
tediously labelled data has tremendously propelled deep
learning [28]. The discriminative learning paradigm has en-
abled to train deep network architectures with millions of
parameters to address important computer vision tasks such
as image categorization [48], object detection [44], and seg-
mentation [46]. The network architectures underlying these
discriminative models have become increasingly complex

[49] and have tremendously increased in depth [17] to yield
great improvements in performance. However, the ability to
explain these models and their decisions suffers due to this
discriminative end-to-end training setup [57, 52, 42].
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Figure 1. Without annotations about pose, we disentangle images
into two independent factors: pose and appearance. Starting from
a query image (top left), we can extract and visualize its pose rep-
resentation (top row), and retrieve images based on their pose sim-
ilarity. The visualizations (Sec. 4.2) in the first row show that pose
is learned accurately and contains no information about appear-
ance. Similarly, appearance is visualized in the first column. Be-
cause our representations are both independent and informative,
we can recombine arbitrary combinations to synthesize what an
appearance would look like in a specific pose. More results can be
found at https://compvis.github.io/robust-disentangling.

far appearances

= |
h"' Hﬁ 4 [ = @.,{

hﬂbb & Slaml
e 2 =

Consequently, there has recently been a rapidly increas-
ing interest in deep generative models [26, 45, 14, 55].
These aim for a complete description of data in terms of
a joint distribution and can, in a natural way, synthesize im-
ages from a learned representation. Thus, besides explain-
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Figure 2. First row: pose target. First column: appearance tar-
get. Because our method does not require keypoint-annotations
or class information, it can be readily applied on video datasets
[22, 13]. Besides intra-species analogies, our approach can also
imagine inter-species analogies: How does a cow look like in a
pose specified by a horse?

ing the joint distribution of all data, they provide a powerful
tool to visualize and explain complex models [7].

However, while already simple probabilistic models may
produce convincing image samples, their ability to describe
the data is lacking. For instance, great progress in image
synthesis and interpolation between different instances of
an object category (e.g., young versus old faces) has been
achieved [54, 30, 18]. But these models explain all the dif-
ferences between instances as a change of appearance. Con-
sequently, changes in posture, viewpoint, articulation and
the like (subsequently simply denoted as pose) are blended
with changes in color or texture.

To address the different characteristics of pose and ap-
pearance, many recent approaches started to rely on exist-
ing discriminative pose detectors. While these models show
good results on disentangled image generation, their appli-
cability is limited to domains with existing, robust pose de-
tectors. This introduces two problems: The output of the
pose detector introduces a bias into the notion of what con-
stitutes pose, and labeling large scale datasets for each new
category of objects to be explained is unfeasible. How can
we learn pose and appearance without these problems?

The task naturally calls for two encoders [10, 15, 40]
to extract representations of appearance and pose, and a
decoder to reconstruct an image from them. To train the
model, one encoder infers the pose from the image to be
reconstructed; the other encoder infers the appearance from
another image showing the same appearance. Without fur-
ther constraints, the reconstruction task alone produces a
degenerate solution [16, 51, 40]: The pose encoding con-

Figure 3. Graphical models describing the dependencies within a)
a simple latent variable model b) a complete model of disentangled
factors c) the same model with unobserved zs3. p describes the
generative process; ¢ describes a variational approximation of the
inference process.

tains all the information—including appearance—and the
decoder ignores the appearance representation. In this case,
the model collapses to an autoencoder and avoiding this is
the main goal of disentanglement.

There are two principle approaches to disentanglement.
Variational approaches [24, 16] utilize a stochastic repre-
sentations that is regularized towards a prior distribution
with the Kullback-Leibler (KL) divergence. This regular-
ization penalizes information in the representation and—for
large regularization weights—encourages disentanglement
[20]. However, both entangled and disentangled content in
the representation is penalized by the same amount. Dis-
entanglement therefore comes at the price of uninformative
representations: Reconstructions are blurry and the repre-
sentations cannot explain the complete image.

Adversarial approaches [10, 15, 30] to disentanglement
have the potential to provide a more fine-grained regular-
ization. In these approaches a discriminator estimates en-
tanglement and its gradients are used to guide the rep-
resentations directly towards disentanglement. Therefore,
they come with the promise to selectively penalize noth-
ing but entangled content. However, we identify as the key
problem that the encoder, having access to the discrimina-
tor’s gradients, learns to produce entangled representations
which are classified as disentangled. In contrast to adversar-
ial attacks on image classifiers [53], in our case, the attack
happens at the level of representations instead of images and
implies that one cannot rely on adversarial approaches di-
rectly.

Our contribution is an approach for making adversar-
ial approaches robust to overpowering without being af-
fected by uninformative representations. We use a sec-
ond classifie—whose gradients are never provided to the
encoder—to detect overpowering: A large difference in
both entanglement estimates implies that the first classifier
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Ir 0.1255 0.1254 0.0919 0.1258 0.1225
oy 0.1239 0.8727 0.1247 0.4096 0.1201
Lrec 3.9350 2.9818 3.9615 3.2504 3.5279

Table 1. First row: Pose targets. Second row: Pose visualizations. First column: Appearance targets. Enforcing a MI constraint of
e = 0.125 in eq. (5): a) leads to lossy representations. Pose is not accurately captured, leading to blurry synthesis results and high
reconstruction loss. b) T indicates successful disentanglement but 7" reveals high entanglement. Visualizations show that pose contains
complete appearance information and the transfer task fails. ¢) Same problems as a) because disentanglement relies again on the variational
approach. d) Improved compared to b) but still fails at the transfer task. e) Our adaptive combination achieves disentanglement and accurate
pose representations. We obtain the lowest reconstruction error of all the methods which can enforce the disentanglement constraint (shaded

green). See also Sec. 4.2.

is being tricked by the encoder. However, to achieve disen-
tangled representations, we cannot directly utilize feedback
from the second classifier, because this would reveal its gra-
dients to the encoder and make it vulnerable to being over-
powered, too. Instead, we use it indirectly to estimate the
weight of a KL regularization term—we increase it when
overpowering is detected and decrease it otherwise. This
way, disentanglement comes from the first classifer, which
is controlled by the second.

2. Disentanglement in probabilistic models
2.1. Latent variable models

Let z denote an image from an unknown data distribu-
tion py(x). Probabilistic approaches to image synthesis
approximate the unknown distribution using a model distri-
bution p(x). To fit this distribution to the data distribution,
the maximum log-likelihood of data samples is maximized:

ml?x Ezr\sz (z) logp(x) (1)

The distribution p can then be sampled to synthesize new
images. To model p, latent variable models assume that
images are generated due to an underlying latent variable z
which is not observed. The full model distribution

p(x, z) = p(z]z)p(2) )

is then specified in terms of the factors p(x|z), which are
typically parameterized by a function class such as neural

networks, and the factor p(z) which specifies a prior on the
latent variable, typically given by a simple distribution like
a normal distribution.

A Generative Adversarial Network (GAN) [14] learns
such a model using density ratio estimation. The training
algorithm can be described as a two player game: A classi-
fier tries to distinguish between generated and real images; a
generator tries to generate images that are indistinguishable
from real images. Because no inference process is learned,
they cannot explain existing images.

The Variational Autoencoder (VAE) [26, 45] learns a la-
tent variable model using variational inference and the repa-
rameterization trick. The structure of the joint p(x, z) and
the corresponding encoder distribution ¢(z|x) is shown in
Fig. 3a. Variational inference involves a KL regularization
of q(z|x) towards the prior p(z) and VAEs choose ¢ such
that it can be computed efficiently, e.g. Gaussian parameter-
izations [26, 45] or normalizing flows [25]. To increase the
flexibility of encoder distributions, [41] uses an adversar-
ial approach that requires only samples to compute the KL
regularization. Similar to GANSs, it involves a two player
game. This time, a classifier has to distinguish between la-
tent codes sampled from the prior and those sampled from
the encoder distribution, and the second player is the en-
coder.

However, images are the product of two independent fac-
tors, pose m and appearance «. There are both variational
[20] and adversarial approaches [21] that try to discover
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Figure 4. Left: synthesizing a new image 2 that exhibits the apperance of x1 and pose of x3. Right: training our generative model using
pairs of images with same/different appearance. T and T” estimate the mutual information between 7 and .. The gradients of 7" are used
to guide disentanglement, while T” detects overpowering of T and estimates  to counteract it.

such disentangled factors without any additional source of
information. But simply assuming that m and « are differ-
ent components of z, i.e. z = (7, «) is problematic because
the prior p(z) cannot model the individual contribution of
pose and appearance without inductive biases [36, 51]. The
resulting models fall short in comparison to approaches that
can leverage additional information [16, 27]. Thus, to learn
a model in which the generative process is described by
p(z|m, @) we need additional information.

2.2. Pose supervised disentangling

The common assumption of many recent works on dis-
entangled image generation, e.g., [38, 39, 12, 2, 50, 11], is
the observability of 7, which is derived from a pretrained
model for keypoint detection. While this representation of
m works quite well, it is limited to domains where robust
keypoint detectors are available and sidesteps the learning
task of disentangling the two latent factors 7, cv. Instead, let
us assume for a moment that we can observe samples of im-
age triplets (1, z2, x3) with the constraints that (i) z1, xo
have the same appearance, (ii) x2, 3 share the same pose,
and (iii) x1, 3 have neither pose nor shape in common. Let
pr(x1,x2,x3) denote this unknown joint distribution. We
model each of the three images as being generated by a pro-
cess of the form p(z|m, &) (which is assumed to be the same
for all three images). Because x1, o share appearance and
T2, T3 share pose, only four instead of six latent variables
are required to explain how these triplets are generated. Let
m,  denote the shared pose and appearance explaining x5
and let 7/, o/ denote additional realizations of pose and ap-
pearance explaining x; and x3, respectively. The marginal
distributions underlying 7 and 7’ are assumed to be the
same and so are the marginal distributions of « and «'. If, as
assumed in [43, 29], we could observe the complete triplet
(z1,x2,x3), a simple inference mechanism would infer «

from z; and 7 from x3 as depicted in Fig. 3b. Unfortu-
nately, the assumption that xo, 3 share the same pose but
not appearance is essentially equivalent to the assumption
that a keypoint estimator is implicitly available. Then pairs
Z9, x3 could be found by comparison of keypoints. Without
this information we have to further reduce assumptions on
the data and essentially train without x3.

2.3. Disentangling without pose-annotations

Without access to x3, we must rely on x5 to infer 7 as
shown in Fig. 3c. The maximum likelihood objective for
p(xa|m, @) leads to a reconstruction loss, and without con-
straints on 7 it encourages a degenerate solution where all
information about x5 is encoded in 7 [40, 16], i.e. 7 also
encodes information about « instead of being independent
of it.

[24] assumes the availability of labels for o and uses a
conditional variant of the VAE, which results in a KL reg-
ularization of ¢(m|x2) towards a prior and thus a constraint
on 7. To improve image generations with swapped « and
m, [40] adds an adversarial constraint on generated images.
It encourages the preservation of characteristics of «, i.e.
it combines the conditional VAE with a conditional GAN
similar to [3]. [51] also utilize this GAN constraint but they
only require pairs x1, 3 instead of labels for «, and instead
of using the KL term to constrain 7, they severely reduce
its dimensionality. As pointed out by [16], these GAN con-
straints only encourage the decoder to ignore information
about « in 7 instead of disentangling o and 7. [16] pro-
poses a cycle-consistent VAE which adds a cyclic loss to
the VAE objective. [37] directly models 7 as keypoints.
All of these methods rely on the same basic principle for
disentanglement: Constraining the amount of information
in m. Indeed, the VAE objective implements a variational
approximation of the information bottleneck [!]. In con-
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Figure 5. Generated images using examples from the norb dataset
[31]. First row: images used as appearance target, second: visual-
izing the inferred appearance o marginalized over all poses. First
column: images used as pose target, second: pose marginalized
over all appearances. Remaining entries: decodings for different
combinations of pose and appearance.

trast, we utilize this variational information bottleneck only
to counteract overpowering, an issue that affects the follow-
ing methods.

Similar to [41] for variational inference, [10] utilizes an
adversarial approach for disentanglement: A classifier has
to predict if a pair (7, n’) was inferred from two images
of the same video sequence or different video sequences.
[15] assumes that « is given in the form of class labels, and
[30, 18] are specialized to images of faces and assume that
« is given in the form of facial attributes but they utilize the
same principle: A classifier has to predict « from 7. Besides
differences in the precise objectives used for the classifiers,
all of these methods implement again an information bottle-
neck as in [4]. Compared to variational approximations of
the bottleneck, they have the advantage that only informa-
tion about « in 7 is penalized. However, applications of ad-
versarial approaches have been limited to synthetic datasets
or facial datasets with little to no pose variations. We show
that overpowering prevents their direct application to real
world datasets and show how to turn them into robust meth-
ods for disentanglement. Our approach can recombine pose
and appearance of any two images, while previous models
for unsupervised image-to-image translation require seper-
ate training for each appearance [23, 32] and cannot transfer
to unseen appearances [8].

3. Approach
3.1. Constrained maximum-likelihood learning

We want to learn a probabilistic model of images that
explains the observed image x5 in terms of two disentangled
representations 7, . This requires a model for the decoder
distribution conditioned on the two representations,

p(x2|m, @) (3)

Figure 6. Generated images on the PKU Vehicle ID [33] dataset.
First row: pose targets. First column: appearance targets.

and an encoder model p(7, «|x1, x2) to infer 7 and « from
the data. As shown in Fig. 3c, we estimate 7 with an en-
coder network E(z2) from z2 and o with an encoder net-
work E,(x1) from z1. A decoder network D(m, o) which
takes 7 and « as inputs reconstructs the image according to
p(a2|m, ).

Learning the weights of these networks depends on a
constrained optimization problem. To ensure that m and
« describe the images well, we maximize the conditional
likelihood as formulated in Eq. (4), which corresponds to
a reconstruction loss. To avoid a trivial solution where 7
encodes all of the information of x5, we formulate the dis-
entanglement constraint (5), such that our full optimization
problem reads

max Em,mz logp(xQ |7T7 a) 4
p
subject to I(m, ) < ¢ 5)

Here, € is a small constant and I (7, ) denotes the mutual
information [9] defined as

(7, @) = KL(p(m, @) |p(m)p(a)). (6)

Computing (6) is difficult [4] and to derive an algorithm for
the solution of the optimization problem above, we must re-
sort to approximations. Subsequently, we first derive two
different estimates on the mutual information. The first one
provides an upper bound, but, alas, it always overestimates
it severely. A second estimate is then introduced which
provides accurate estimates. However, to enforce the con-
straint in (5), we require gradients of the estimate and, as
we will see, this enables the encoder to perform an adver-
sarial attack on the estimate, such that it heavily underes-
timates the true mutual information. In Sec. 3.4, we show
how to combine both estimates to obtain our method for ro-
bust maximum-likelihood learning under mutual informa-
tion constraints. Thereafter, we describe the algorithm used
to implement the method.
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3.2. A variational upper bound on the mutual in-
formation

Ideally, we would like to obtain an upper bound on the
MI in (6) to be able to enforce the constraint (5). Because
we estimate 7 from x5 and « from x1, we have the Markov-
Chain m — x9 — « with

pla, 22, m) = pazz)p(@2|m)p(T) (7
which implies the data processing inequality [9]:
I(m, o) < I(m,x2). (8)

The right hand side of this inequality can now be easily esti-
mated with a variational marginal r(7) [1]. Indeed, for any
density r with respect to ™ we have the bound

I(m, @) < B, KL(p(7|22)[r(7)). ©)

Modeling both p(7|z2) and r(7) as Gaussian distributions,
we can evaluate the right hand side analytically. Unfortu-
nately, this bound is too loose for our purposes. The condi-
tion KL(p(r|z2)|r(7)) = 0 implies I (7, z2) = 0 and thus
7 would be completely uninformative.

3.3. Fine-grained estimation of mutual information

A different estimate of mutual information can be ob-
tained with the help of density estimation [41, 4]. The KL-
divergence of two densities is closely related to the associ-
ated classification problem: Let T'(7, ) be a classifier that
maps a pair (7, ) to a real number which represents the log
probability that the pair is a sample from the joint distribu-
tion p(m, «). Denote by o(t) = (1 + e~*)~! the sigmoid
function. The maximum likelihood objective for this classi-
fication task reads

max Er,a)wp(r,a) 10g o (T'(m, @)+ (10)
Ernp(m).anp(a) 108(1 —a(T(m,a))).  (11)

The optimal solution T of this problem satisfies
I(w,a) = ]E(ma)wp(ma)T*(ﬂ'aa)- (12)

When T is implemented as a neural network, we obtain
a differentiable estimate of I(m, &) which can be used to
enforce the desired constraint during learning of g(7|z2).
For a given classifier 7" we write Iy = Ip(ma) =
Er a~p(r,a)T(m, c) for the resulting estimate.

3.4. Robust combination of variational and adver-
sarial estimation

If we replace the constraint I(7, ) < ¢ in (5) with a
constraint on the estimate I(7, @) < €, we observe a new
type of adversarial attack: The encoder is able to overpower
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Figure 7. Distribution of average reconstruction error on the sprites
dataset [43]. We evaluate against the provided ground truth.

the classifier 7": it can learn a distribution p(7|«) such that
T cannot differentiate pairs (7, ) sampled from the joint
from those sampled from the marginals. However, a seper-
ately trained classifier 77, whose gradients are not provided
to the encoder, can still classify them (see Fig. 1). In other
words, in an adversarial setting we consistently observe the
situation Iy (7w, ) < I(m,«), i.e., we underestimate the
mutual information between 7 and «. To obtain a guaran-
teed upper bound on the mutual information, we must uti-
lize the variational upper bound. As we have seen before,
we must be careful to enforce not too strict bounds on it.
Thus, we formulate our new objective as

maXEa:l,:rz logp(;v2|7r,a) (13)
2

subject to Ip(m, o) < e (14)

KL(p(r|z2)|r(m)) < C, (15)

where C' has to be adaptively estimated based on the detec-
tion of adversarial attacks of the encoder against 7. The
main idea is to compare the classification performance of
T against an independently trained classifier. If there is a
large performance gap, we cannot rely on the estimate of T’
(it has been overpowered) and must decrease C'. The next
section describes the approach.

3.5. Robust disentanglement despite encoder over-
powering

To obtain a training signal for our networks, we must
transform problem (13) into an unconstrained problem
which can be optimized by gradient ascent. Let us first con-
sider the constraint (15) on the KL term. For a given C,
there exists a Lagrange multiplier v > 0 such that the prob-
lem can be written equivalently as

IngxIEgphw2 log p(x2|m, o) — yKL(p(r|xz2)|r(7)) (16)

subject to Ip(m, ) < e. a7
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Figure 8. Generated images on the BBC Pose dataset [0] dataset.
First row: pose target. First column: appearance target. An ani-
mated version can be found in the supplementary.

Thus, we can directly estimate ~ instead of C. Ide-
ally, v should be very small and only active in situations
were Ir(m, ) underestimates the mutual information. To
achieve this, we train a second classifier 7" based on the
same objective (10). It is crucial that its estimate I (7, &)
is never directly provided as a signal to the encoder. We
merely compare the estimates of 7" and 7" and if IT < I7/,
we increase . Hence, we update v in each optimization
step based on the proportional gain I7» — Ir and bias it to-
wards zero with a small constant b,

Ye+1 = max{0, v, + I, (I — It —b,)}, (18)

where [, can be considered the learning rate of .

For the remaining constraint (17) on I (7, o), we utilize
an Augmented Lagrangian Approach [56]. After switching
from maximization to minimization, the complete uncon-
strained loss function £ for training the network is

L = Lrec + Ly + Ly, (19)

where L, is the reconstruction loss given by the negative
likelihood

£rec = _Ew1,w2 logp(x2|7r, a)7 (20)
Lyp the penalty associated with the variational upper bound
Lyvp = v KL(p(7|z2)|r(r)), 2D

and Ly the loss used to enforce the the constraint (17)
based on an estimated Lagrange multiplier A > 0 and a
penalty parameter p > 0

=

A2
T2

Ml —e)+ 4(Ir—€? iflp—e> -2
Lyvg =
else
(22)

Figure 9. Generated images on the NTU dataset [47]. First row:
pose target. First column: appearance target. An animated version
can be found in the supplementary.

The update rule for A is
)\t+1 = maX{O, )\t + /J/(IT - 6)} (23)

Fig. 4 outlines our network architecture during training
and inference. We perform the optimization over mini-
batches and alternate between the training of the classifiers
T and T" (according to the objective defined in (10)), and
the training of the generative model. The loss for the net-
works D and FE, is given by L. and F is optimized with
respect to the full loss £. After each step, v and A are up-
dated according to (18) and (23), respectively.

4. Experiments
4.1. Comparison to state-of-the-art

In Fig. 7, we compare our method to [16] (cyclevae),
the state-of-the-art among the variational approaches, and
to [15] (atsdm), the state-of-the-art among the adversarial
approaches. In addition to our full model (ours), we also
include [10] (drnet), a version of our model that utilizes the
objective of [20] (bvae), a version without Lyg (adversarial)
and a version without Ly (variational), where the update of
~ from (18) is replaced by

Vi+1 = max{O, V¢ + lw(IT’ — 6)}, 24)

to estimate the required v to achieve the MI constraint (5).
Because it is difficult to obtain ground truth for triplets
(1,22, x3) on real data, we resort to the synthetic sprites
dataset [43] to compare the methods. It contains 672 dif-
ferent video game characters, each depicted in a wide vari-
ety of poses. For training, we only utilize pairs of images
(z1,x2) belonging to the same character. To measure the
performance of the different approaches, we calculate the
mean squared error between images o generated from in-
puts z; and z3, and the corresponding ground truth 5. We
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Market-1501 [58]

DeepFashion [34, 35]

Model Reconstruction Transfer Reconstruction  Transfer
3 reID mAP %] - bigger is better
§ sup. VUNet [12] 25.3 19.9 21.3 14.6
é ns adversarial 34.8 6.6 37.4 10.5
< Unsup ours 30.2 25.4 52.9 47.1
rePose [% of image width] - smaller is better
sup. VUNet [12] 179+ 94 1754+ 94 1.5+3.1 1.9+4.0
]
é unsu adversarial 24.6 +10.3 25.3+10.3 6.2+7.3 7.44+8.1
p: ours 23.94+9.9 24.74+9.9 5.5+ 6.8 6.8+ 7.6

Table 2. Evaluating how well the generated image preserves (i) appearence or (ii) pose. For (i) we compare input x; and output z2 of

our approach using a standard encoder for person reidentification [
measured by comparing the results of keypoint detector [5] of 23 and x2. Note that [

randomly select 8000 triplets (z1, x2,x3) from the test set
and report the error distribution in Fig. 7.

4.2. Visualization of encodings

To better understand the information encoded by 7 and
«, we visualize these representations. Because 7 does not
contain information about the appearance, this corresponds
to a marginalization of images depicting a given pose over
all appearances. Similarly, o yields a marginalization for
a given appearance over all poses. We show examples of
these visualizations in Fig. 1, Tab. 1, and Fig. 5. This syn-
thesis is performed independently from the training of our
model with the sole purpose of interpretability and visual-
ization. For this, a decoder network is trained to reconstruct
images from only one of the factors. In Tab. 1, these visu-
alizations demonstrate that I/ estimates entanglement cor-
rectly. In that figure, a) is our model without Ly and the
update of «y replaced by (24). b) is our model without Lyg,
c) with b, = 0, d) with v = 1 fixed and e) is our full model.

4.3. Shared representations across object categories

The previous dataset contained a single category of ob-
jects, namely video game characters. In this setting, a com-
mon pose representation is relatively easily defined in terms
of a skeleton. It is considerably more difficult to find a rep-
resentation of pose that works across different object cate-
gories which do not share a common shape. To evaluate our
model in this situation, we utilize the NORB dataset [31],
which contains images of 50 toys belonging to 5 different
object categories. Each instance is depicted under a wide
variety of camera views and lighting conditions. For this
experiment, we consider camera views and lighting con-
ditions to be represented by 7. In Fig. 5 we can see that
our model successfully finds two representations that can
be combined across different object categories. Note that

] using retrieval performance (mAP). Conservation of pose (ii) is

] uses keypoint annotations.

our model was never trained on a pair of images depicting
instances of different categories.

4.4. Evaluation on Human Datasets

In Tab. 2, we evaluate our approach on natural images
of people, which have been the subject of recent models
for disentangled image generation [12]. Besides qualita-
tive evaluations, we employ two quantitative measures to
validate how much of the pose and appearance are being
preserved in the generated output: (i) Since ground-truth
triplets are not available for these datasets, we require a
metric that captures similarity in appearance while being
invariant to changes in pose. Such a measure can be ob-
tained from a person reidentification model [19], which can
identify the same person despite differences in pose. Using
the evaluation protocol of [19] we report the mean average
precision (mAP) of re-identifying generated images under
“reID mAP” in Tab. 2. (ii) To measure how well our ap-
proach retains pose we employ Openpose [5] to obtain key-
point estimates. We extract keypoints from the pose input
image x3 and the output x5 and compute the euclidean dis-
tance between the estimated keypoints in both images. As
above, we include an ablation (adversarial) without Lyg.

5. Conclusion

We have shown how an additional classifier, whose gra-
dients are not used directly to train the encoder, prevents
encoder overpowering. This enables robust learning of dis-
entangled representations of pose and appearance without
requiring a prior on pose configurations, pose annotations
or keypoint detectors. Our approach can be readily applied
on a wide variety of real-world datasets.

This work has been funded by the German Research Foundation
(DFG) - 371923335, 421703927 and a hardware donation from NVIDIA.
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