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Abstract

Several popular approaches to 3D vision tasks process

multiple views of the input independently with deep neural

networks pre-trained on natural images, achieving view per-

mutation invariance through a single round of pooling over

all views. We argue that this operation discards important

information and leads to subpar global descriptors. In this

paper, we propose a group convolutional approach to multi-

ple view aggregation where convolutions are performed over

a discrete subgroup of the rotation group, enabling, thus,

joint reasoning over all views in an equivariant (instead of

invariant) fashion, up to the very last layer. We further de-

velop this idea to operate on smaller discrete homogeneous

spaces of the rotation group, where a polar view represen-

tation is used to maintain equivariance with only a fraction

of the number of input views. We set the new state of the art

in several large scale 3D shape retrieval tasks, and show

additional applications to panoramic scene classification.

1. Introduction

The proliferation of large scale 3D datasets for objects

[39, 3] and whole scenes [2, 8] enables training of deep

learning models producing global descriptors that can be

applied to classification and retrieval tasks.

The first challenge that arises is how to represent the in-

puts. Despite numerous attempts with volumetric [39, 24],

point-cloud [27, 32] and mesh-based [23, 26] representa-

tions, using multiple views of the 3D input allows switching

to the 2D domain where all the recent image based deep

learning breakthroughs (e.g. [15]) can be directly applied,

facilitating state of the art performance [33, 20].

Multi-view (MV) based methods require some form of

view-pooling, which can be (1) pixel-wise pooling over some

intermediate convolutional layer [33], (2) pooling over the

final 1D view descriptors [34], or (3) combining the final

* Equal contribution.

http://github.com/daniilidis-group/emvn

logits [20], which can be seen as independent voting. These

operations are usually invariant to view permutations.

Our key observation is that conventional view pooling is

performed before any joint processing of the set of views

and will inevitably discard useful features, leading to subpar

descriptors. We solve the problem by first realizing that each

view can be associated with an element of the rotation group

SO(3), so the natural way to combine multiple views is as a

function on the group. A traditional CNN is applied to obtain

view descriptors that compose this function. We design a

group-convolutional network (G-CNN, inspired by [5]) to

learn representations that are equivariant to transformations

from the group. This differs from the invariant represen-

tations obtained through usual view-pooling that discards

information. We obtain invariant descriptors useful for clas-

sification and retrieval by pooling over the last G-CNN layer.

Our G-CNN has filters with localized support on the group

and learns hierarchically more complex representations as

we stack more layers and increase the receptive field.

We take advantage of the finite nature of multiple views

and consider finite rotation groups like the icosahedral, in

contrast with [6, 10] which operate on the continuous group.

To reduce the computational cost of processing one view per

group element, we show that by considering views in canon-

ical coordinates with respect to the group of in-plane dilated

rotations (log-polar coordinates), we can greatly reduce the

number of views and obtain an initial representation on a ho-

mogeneous space (H-space) that can be lifted via correlation,

while maintaining equivariance.

We focus on 3D shapes but our model is applicable to

any task where multiple views can represent the input, as

demonstrated by an experiment on panoramic scenes.

Figure 1 illustrates our model. Our contributions are:

• We introduce a novel method of aggregating multiple

views whether “outside-in” for 3D shapes or “inside-

out” for panoramic views. Our model exploits the un-

derlying group structure, resulting in equivariant fea-

tures that are functions on the rotation group.

• We introduce a way to reduce the number of views

while maintaining equivariance, via a transformation to
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Figure 1: Our Equivariant Multi-View Network aggregates multiple views as functions on rotation groups that are processed

via group convolutions. This guarantees equivariance to 3D rotations and allows jointly reasoning over all views, leading

to superior shape descriptors. Vector-valued functions on the icosahedral group are shown on the pentakis dodecahedron,

and functions on the corresponding homogeneous spaces (H-spaces) are shown on the dodecahedron and icosahedron. Each

view is first processed by a CNN and resulting descriptors are associated with a group (or H-space) element. When views

are identified with an H-space, the first operation is a correlation that lifts features to the group. Once we have an initial

representation on the group, a Group-CNN can be applied.

canonical coordinates of in-plane rotation followed by

homogeneous space convolution.

• We explore the finite rotation groups and homogeneous

spaces and present a discrete G-CNN model on the

largest group to date, the icosahedral group. We further

explore the concept of filter localization for this group.

• We achieve state of the art performance on multiple

shape retrieval benchmarks, both in canonical poses

and perturbed with rotations, and show applications to

panoramic scene classification.

2. Related work

3D shape analysis Performance of 3D shape analysis is

heavily dependent on the input representation. The main

representations are volumetric, point cloud and multi-view.

Early examples of volumetric approaches are [3], which

introduced the ModelNet dataset and trained a 3D shape clas-

sifier using a deep belief network on voxel representations;

and [24], which presents a standard architecture with 3D

convolutional layers followed by fully connected layers.

Su et al. [33] realized that by rendering multiple views

of the 3D input one can transfer the power of image-based

CNNs to 3D tasks. They show that a conventional CNN can

outperform the volumetric methods even using only a single

view of the input, while a multi-view (MV) model further

improves the classification accuracy.

Qi et al. [28] study volumetric and multi-view methods

and propose improvements to both; Kanezaki et al. [20]

introduces an MV approach that achieves state-of-the-art

classification performance by jointly predicting class and

pose, though without explicit pose supervision.

GVCNN [12] attempts to learn how to combine differ-

ent view descriptors to obtain a view-group-shape represen-

tation; they refer to arbitrary combinations of features as

“groups”. This differs from our usage of the term “group”

which is the algebraic definition.

Point-cloud based methods [27] achieve intermediate per-

formance between volumetric and multi-view, but are much

more efficient computationally. While meshes are arguably

the most natural representation and widely used in computer

graphics, only limited success has been achieved with learn-

ing models operating directly on them [23, 26].

In order to better compare 3D shape descriptors we will

focus on the retrieval performance. Recent approaches show

significant improvements on retrieval: You et al. [41] com-

bines point cloud and MV representations; Yavartanoo et

al. [40] introduces multi-view stereographic projection; and

Han et al. [14] implements a recurrent MV approach.

We also consider more challenging tasks on rotated Mod-

elNet and SHREC’17 [29] retrieval challenge which contains

rotated shapes. The presence of arbitrary rotations motivates

the use of equivariant representations.
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Equivariant representations A number of workarounds

have been introduced to deal with 3D shapes in arbitrary

orientations. Typical examples are training time rotation

augmentation and/or test time voting [28] and learning an

initial rotation to a canonical pose [27]. The view-pooling

in [33] is invariant to permutations of the set of input views.

A principled way to deal with rotations is to use repre-

sentations that are equivariant by design. There are mainly

three ways to embed equivariance into CNNs. The first way

is to constrain the filter structure, which is similar to Lie

generator based approach [30, 17]. Worral et al. [38] take

advantage of circle harmonics to have both translational and

2D rotational equivariance into CNNs. Similarly, Thomas

et al. [35] introduce a tensor field to keep translational and

rotational equivariance for 3D point clouds.

The second way is through a change of coordinates; [11,

18] take the log-polar transform of the input and transfer

rotational and scaling equivariance about a single point to

translational equivariance.

The third way is to make use of an equivariant filter orbit.

Cohen and Welling propose group convolution (G-CNNs)

with the square rotation group [5], later extended to the

hexagon [19]. Worrall and Brostow [37] proposed CubeNet

using Klein’s Four-group on 3D voxelized data. Winkels

et al. [36] implement 3D group convolution on Octahedral

symmetry group for volumetric CT images. Cohen et al. [7]

very recently considered functions on the icosahedron, how-

ever their convolutions are on the cyclic group and not on

the icosahedral as ours. Esteves et al. [10] and Cohen et

al. [6] focus on the infinite group SO(3), and use the spheri-

cal harmonic transform for the exact implementation of the

spherical convolution or correlation. The main issue with

these approaches is that the input spherical representation

does not capture the complexity of an object’s shape; they

are also less efficient and face bandwidth challenges.

3. Preliminaries

We seek to leverage symmetries in data. A symmetry is

an operation that preserves some structure of an object. If

the object is a discrete set with no additional structure, each

operation can be seen as a permutation of its elements.

The term group is used in its classic algebraic definition

of a set with an operation satisfying the closure, associativity,

identity, and inversion properties. A transformation group

like a permutation is the “missing link between abstract

group and the notion of symmetry” [25].

We refer to view as an image taken from an oriented

camera. This differs from viewpoint that refers to the optical

axis direction, either outside-in for a moving camera pointing

at a fixed object, or inside-out for a fixed camera pointing at

different directions. Multiple views can be taken from the

same viewpoint; they are related by in-plane rotations.

Equivariance Representations that are equivariant by de-

sign are an effective way to exploit symmetries. Consider a

set X and a transformation group G. For any g ∈ G, we can

define group action applied on the set, T X
g : X → X , which

has property of homomorphism, T X
g T X

h = T X
gh . Consider a

map Φ : X → Y . We say Φ is equivariant to G if

Φ(T X
g (x)) = T Y

g (Φ(x)), ∀x ∈ X , g ∈ G. (1)

In the context of CNNs, X and Y are sets of input and feature

representations, respectively. This definition encompasses

the case when T Y
g is the identity, making Φ invariant to G

and discarding information about g. In this paper, we are

interested in non-degenerate cases that preserve information.

Convolution on groups We represent multiple views as a

functions on a group and seek equivariance to the group,

so group convolution (G-Conv) is the natural operation

for our method. Let us recall planar convolution between

f, h : R2 7→ R, which is the main operation of CNNs:

(f ∗ h)(y) =

∫

x∈R2

f(x)h(y − x) dx. (2)

It can be seen as an operation over the group of translations

on the plane, where the group action is addition of coordinate

values; it is easily shown to be equivariant to translation. This

can be generalized to any group G and f, h : G 7→ R,

(f ∗ h)(y) =

∫

g∈G

f(g)h(g−1y) dg, (3)

which is equivariant to group actions from G.

Convolution on homogeneous spaces For efficiency, we

may relax the requirement of one view per group element

and consider only one view per element of a homogeneous

space of lower cardinality. For example, we can represent

the input on the 12 vertices of the icosahedron (an H-space),

instead of on the 60 rotations of the icosahedral group.

A homogeneous space X of a group G is defined as a

space where G acts transitively: for any x1, x2 ∈ X , there

exists g ∈ G such that x2 = gx1.

Two convolution-like operations can be defined between

functions on homogeneous spaces f, h : X 7→ R:

(f ∗ h)(y) =

∫

g∈G

f(gη)h(g−1y) dg, (4)

(f ⋆ h)(g) =

∫

x∈X

f(gx)h(x) dx, (5)

where η ∈ X is an arbitrary canonical element. We denote

(4) “homogeneous space convolution” (H-Conv), and (5)

“homogeneous space correlation” (H-Corr). Note that con-

volution produces a function on the homogeneous space X
while correlation lifts the output to the group G.

We refer to [22, 4] for expositions on group and homoge-

neous space convolution in the context of neural networks.
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Finite rotation groups Since our representation is a finite

set of views that can be identified with rotations, we will deal

with finite subgroups of the rotation group SO(3). A finite

subgroup of SO(3) can be the cyclic group Ck of multiples

of 2π/k, the dihedral group Dk of symmetries of a regular

k-gon, the tetrahedral, octahedral, or icosahedral group [1].

Our main results are on the icosahedral group I, the 60-

element non-abelian group of symmetries of the icosahedron

(illustrated in the supplementary material). The symmetries

can be divided in sets of rotations around a few axes. For ex-

ample, there are 5 rotations around each axis passing through

vertices of the icosahedron or 3 rotations around each axis

passing through its faces centers.

Equivariance via canonical coordinates Some configu-

rations produce views that are related by in-plane rotations.

We leverage this to reduce the number of required views

by obtaining rotation invariant view descriptors through a

change to canonical coordinates followed by a CNN.

Segman et al. [30] show that changing to a canonical

coordinate system allows certain transformations of the input

to appear as translations of the output. For the group of

dilated rotations on the plane (isomorphic to SO(2)× R
+),

canonical coordinates are given by the log-polar transform.

Since planar convolutions are equivariant to translation,

converting an image to log-polar and applying a CNN re-

sults in features equivariant to dilated rotation, which can be

pooled to invariant descriptors on the last layer [11, 18].

4. Method

Our first step is to obtain |G| views of the input where

each view xi is associated with a group element gi ∈ G1.

Each view is fed to a CNN Φ1, and the 1D descriptors ex-

tracted from the last layer (before projection into the number

of classes) are combined to form a function on the group

y : G 7→ R
n, where y(gi) = Φ1(xi). A group convolutional

network (G-CNN) Φ2 operating on G is then used to process

y, and global average pooling on the last layer yields an

invariant descriptor that is used for classification or retrieval.

Training is end-to-end. Figure 1 shows the model.

The MVCNN with late-pooling from [20], which outper-

forms the original [33], is a special case of our method where

Φ2 is the identity and the descriptor is y averaged over G.

4.1. View configurations

There are several possible view configurations of icosa-

hedral symmetry, basically consisting of vertices or faces of

solids with the same symmetry. Two examples are associat-

ing viewpoints with faces/vertices of the icosahedron, which

1Alternatively, we can use |X | views for a homogeneous space X as

shown in 4.3.

are equivalent to the vertices/faces of its dual, the dodeca-

hedron. These configurations are based on platonic solids,

which guarantee a uniform distribution of viewpoints. By se-

lecting viewpoints from the icosahedron faces, we obtain 20

sets of 3 views that differ only by 120 deg in plane rotations;

we refer to this configuration as 20× 3. Similarly, using the

dodecahedron faces we obtain the 12× 5 configuration.

In the context of 3D shape analysis, multiple viewpoints

are useful to handle self-occlusions and ambiguities. Views

that are related by in-plane rotations are redundant in this

sense, but necessary to keep the group structure.

To minimize redundancy, we propose to associate view-

points with the 60 vertices of the truncated icosahedron

(which has icosahedral symmetry). There is a single view

per viewpoint in this configuration. This is not a uniformly

spaced distribution of viewpoints, but the variety is beneficial.

Figure 3 shows some view configurations we considered.

Note that our configurations differ from both the 80-views

from [33] and 20 from [20] which are not isomorphic to any

rotation group. Their 12-views configuration is isomorphic

to the more limited cyclic group.

4.2. Group convolutional networks

The core of the group convolutional part of our method is

the discrete version of (3). A group convolutional layer with

ci, cj channels in the input and output and nonlinearity σ is

then given by

f ℓ+1

j (y) = σ





ci
∑

i=1

∑

g∈G

f ℓ
i (g)hij(g

−1y)



 , (6)

where f ℓ
i is the channel i at layer ℓ and hij is the filter

between channels i and j, where 1 ≤ j ≤ cj . This layer is

equivariant to actions of G.

Our most important results are on the icosahedral group

I which has 60 elements and is the largest discrete subgroup

of the rotation group SO(3). To the best of our knowledge,

this is the largest group ever considered in the context of

discrete G-CNNs. Since I only coarsely samples SO(3),

equivariance to arbitrary rotations is only approximate. Our

results show, however, that the combination of invariance to

local deformations provided by CNNs and exact equivari-

ance by G-CNNs is powerful enough to achieve state of the

art performance in many tasks.

When considering the group I, inputs to Φ2 are 60× n
where n is the number of channels in the last layer of Φ1

(n=512 for ResNet-18). There are ci × cj filters per layer

each with up to the same cardinality of the group.

We can visualize both filters and feature maps as functions

on the faces of the pentakis dodecahedron, which is the dual

polyhedron of the truncated icosahedron. It has icosahedral

symmetry and 60 faces that can be identified with elements

of the group. The color of the face associated with gi ∈ I
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Figure 2: Features learned by our method are visualized on the pentakis dodecahedron, which has icosahedral symmetry so

its 60 faces can be identified with elements of the discrete rotation group I. Columns show learned features from different

channels/layers. The first two rows are related by a rotation of 72 deg in I . Equivariance is exact in this case, as can be verified

by the feature maps rotating around the polar axis (notice how the top 5 cells shift one position). The first and third row are

related by a rotation of 36 deg around the same axis, which is in the midpoint between two group elements. Equivariance is

approximate in this case, and features are a mixture of the two above.

Figure 3: Outside-in camera configurations considered. Left

to right: 20 × 3, 12 × 5, and 60 × 1. Blue arrows indicate

the optical axis and green, the camera up direction. Object is

placed at the intersection of all optical axes. Only the 60× 1
configuration avoids views related by in-plane rotations.

reflects f(gi), which is vector valued. Figure 2 shows some

equivariant feature maps learned by our method.

4.3. Equivariance with fewer views

As illustrated in Figure 3, the icosahedral symmetries

can be divided in sets of rotations around a few axes. If we

arrange the cameras such that they lie on these axes, images

produced by each camera are related by in-plane rotations.

As shown in Section 3, converting one image to canon-

ical coordinates can transform in-plane rotations in trans-

lations. We’ll refer to converted images as “polar images”.

Since fully convolutional networks can produce translation-

invariant descriptors, by applying them to polar images we

effectively achieve invariance to in-plane rotations [11, 18],

which makes only one view per viewpoint necessary. These

networks require circular padding in the angular dimension.

When associating only a single view per viewpoint, the

input is on a space of points instead of a group of rotations2.

In fact, the input is a function on a homogeneous space of the

group; concretely, for the view configurations we consider,

it is on the icosahedron or dodecahedron vertices.

We can apply discrete versions of convolution and corre-

lation on homogeneous spaces as defined in Section 3:

∗f ℓ+1

j (y) = σ





ci
∑

i=1

∑

g∈G

f ℓ
i (gη)hij(g

−1y)



 , (7)

⋆f ℓ+1

j (g) = σ

(

ci
∑

i=1

∑

x∈X

f ℓ
i (gx)hij(x)

)

. (8)

The benefit of this approach is that since it uses 5x (3x)

fewer views when starting from the 12× 5 (20× 3) configu-

ration, it is roughly 5x (3x) faster as most of the compute is

done before the G-CNN. The disadvantage is that learning

from polar images can be challenging. Figure 4 shows one

example of polar images produced from views.

When inputs are known to be aligned (in canonical pose),

an equivariant intermediate representation is not necessary;

in this setting, we can use the same method to reduce the

number of required views, but without the polar transform.

4.4. Filter localization

G-CNN filters are functions on G, which can have up to

|G| entries. Results obtained with deep CNNs during the

past few years show the benefit from limited support filters

(many architectures use 3× 3 kernels throughout). The ad-

vantages are two-fold: (1) convolution with limited support

2They are isomorphic for the 60× 1 configuration.
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Figure 4: One subset of in-plane related views from the

12× 5 configuration and correspondent polar images. Note

how the polar images are related by circular vertical shifts

so their CNN descriptors are approximately invariant to the

in-plane rotation. There are 12 such subsets for the 12× 5
configuration and 20 for the 20×3; this allows us to maintain

equivariance with 12 or 20 views instead of 60.

is computationally more efficient, and (2) it allows learn-

ing of hierarchically more complex features as layers are

stacked. Inspired by this idea, we introduce localized filters

for discrete G-CNNs3. For a filter h : G 7→ R, we simply

choose a subset S of G that is allowed to have nonzero filter

values while h(G − S) is set to zero. Since S is a fixed

hyperparameter, we can compute (6) more efficiently:

f ℓ+1

j (y) = σ





ci
∑

i=1

∑

g∈S

f ℓ
i (yg

−1)hij(g)



 . (9)

To ensure filter locality, it is desirable that elements of S
are close to each other in the manifold of rotations. The 12

smallest rotations in I are of 72 deg. We therefore choose S
to contain the identity and a number of 72 deg rotations.

One caveat of this approach is that we need to make sure

S spans G, otherwise the receptive field will not cover the

whole input no matter how many layers are stacked, which

can happen if S belongs to a subgroup of G (see Figure 5).

In practice this is not a challenging condition to satisfy; for

our heuristic of choosing only 72 deg rotations we only need

to guarantee that at least two are around different axes.

5. Experiments

We evaluate on 3D shape classification, retrieval and

scene classification, and include more comparisons and an

ablation study in the supplementary material. First, we dis-

cuss the architectures, training procedures, and datasets.

Architectures We use a ResNet-18 [15] as the view pro-

cessing network Φ1, with weights initialized from Ima-

geNet [9] pre-training. The G-CNN part contains 3 layers

with 256 channels and 9 elements on its support (note that

3Localization for the continuous case was introduced in [10].

Figure 5: Localized filters and their receptive fields as we

stack more layers. First column shows the filter, second the

input, and others are results of stacking group convolutions

with the same filter. Top row filter has 12 nonzero elements;

middle and bottom have 5. The support for the bottom row

contains elements of a 12 element subgroup, so its receptive

field cannot cover the full input space.

the number of parameters is the same as one conventional

3 × 3 layer). We project from 512 to 256 channels so the

number of parameters stay close to the baseline. When the

method in Section 4.3 is used to reduce the number of views,

the first G-Conv layer is replaced by a H-Corr.

Variations of our method are denoted Ours-X, and Ours-

R-X. The R suffix indicate retrieval specific features, that

consist of (1) a triplet loss4 and (2) reordering the retrieval

list so that objects classified as the query’s predicted class

come first. Before reordering, the list is sorted by cosine

distance between descriptors. For SHREC’17, choosing the

number N of retrieved objects is part of the task – in this

case we simply return all objects classified as the query’s

class.

For fair assessment of our contributions, we implement a

variation of MVCNN, denoted MVCNN-M-X for X input

views, where the best-performing X is shown. MVCNN-M-

X has the same view-processing network, training procedure

and dataset as ours; the only difference is that it performs

pooling over view descriptors instead of using a G-CNN.

Training We train using SGD with Nesterov momentum

as the optimizer. For ModelNet experiments we train for 15

epochs, and 10 for SHREC’17. Following [16], the learning

rate linearly increases from 0 to lr in the first epoch, then de-

cays to zero following a cosine quarter-cycle. When training

with 60 views, we set the batch size to 6, and lr to 0.0015.

This requires around 11 Gb of RAM. When training with 12

or 20 views, we linearly increase both the batch size and lr.

Training our 20-view model on ModelNet40 for one

epoch takes ≈ 353s on an NVIDIA 1080 Ti, while the corre-

sponding MVCNN-M takes ≈ 308s. Training RotationNet

[20] for one epoch under same conditions takes ≈ 1063s.

4Refer to the supplementary material for details.
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Datasets We render 12 × 5, 20 × 3 and 60 × 1 camera

configurations (Section 4.1) for ModelNet and the ShapeNet

SHREC’17 subset, for both rotated and aligned versions.

For the aligned datasets, where equivariance to rotations

is not necessary, we fix the camera up-vectors to be in the

plane defined by the object center, camera and north pole.

This reduces the number of views from 12 × 5 to 12 and

from 20 × 3 to 20. For the rotated datasets, all renderings

have 60 views and follow the group structure. Note that

the rotated datasets are not limited to the discrete group

and contain continuous rotations from SO(3). We observe

that the 60 × 1 configuration performs best so those are

the numbers shown for “Ours-60”. For the experiment with

fewer views, we chose 12 from 12×5 and 20 from 20×3 that

are converted to log-polar coordinates (Section 4.3). For the

scene classification experiment, we sample 12 overlapping

views from panoramas. No data augmentation is performed.

5.1. SHREC’17 retrieval challenge

The SHREC’17 large scale 3D shape retrieval chal-

lenge [29] utilizes the ShapeNet Core55 [3] dataset and has

two modes: “normal” and “perturbed” which correspond to

“aligned” and “rotated” as we defined in Section 5.2. The

challenge was carried out in 2017 but there has been recent

interest on it, especially on the “rotated” mode [6, 10, 21].

Table 1 shows the results. N is the number of retrieved

elements, which we choose to be the objects classified as

the same class as the query. The Normalized Discounted

Cumulative Gain (NDGC) score uses ShapeNet subclasses

to measure relevance between retrieved models. Methods

are ranked by the mean of micro (instance-based) and macro

(class-based) mAP. Several extra retrieval metrics are in-

cluded in the supplementary material. Only the best perform-

ing methods are shown; we refer to [29] for more results.

Our model outperforms the state of the art for both modes

even without the triplet loss, which, when included, increase

the margins. We consider this our most important result,

since it is the largest available 3D shape retrieval benchmark

and there are numerous published results on it.

5.2. ModelNet classification and retrieval

We evaluate 3D shape classification and retrieval on vari-

ations of ModelNet [39]. In order to compare with most

publicly available results, we evaluate on “aligned” Model-

Net, and use all available models with the original train/test

split (9843 for training, 2468 for test). We also evaluate

on the more challenging “rotated” ModelNet40, where each

instance is perturbed with a random rotation from SO(3).

Tables 2 and 3 show the results. We show only the best

performing methods and refer to the ModelNet website5 for

complete leaderboard. Classification performance is given

by accuracy (acc) and retrieval by the mean average precision

5http://modelnet.cs.princeton.edu

micro macro

Method score mAP G@N mAP G@N

RotatNet [20] 67.8 77.2 86.5 58.3 65.6

ReVGG [29] 61.8 74.0 82.8 49.6 55.9

DLAN [13] 57.0 66.3 76.2 47.7 56.3

MVCNN-M-12 69.1 74.9 83.8 63.2 70.3

Ours-12 70.7 77.7 86.3 63.6 70.8

Ours-20 71.4 77.9 86.8 64.9 71.9

Ours-60 71.7 77.8 86.4 65.6 72.3

Ours-R-20 72.2 79.1 87.5 65.4 72.3

DLAN [13] 56.6 65.6 75.4 47.6 56.0

ReVGG [29] 55.7 69.6 78.3 41.8 47.9

MVCNN-M-60 57.5 64.1 75.9 50.9 59.7

Ours-12 58.1 66.4 76.7 49.8 58.6

Ours-20 59.3 66.9 77.0 51.7 60.2

Ours-60 62.1 69.6 79.6 54.6 63.0

Ours-R-60 63.5 71.8 81.1 55.1 63.3

Table 1: SHREC’17 retrieval results. Top block: aligned

dataset; bottom: rotated. We show mean average precision

(mAP) and normalized discounted cumulative gain (G). We

set the new state of the art by a large margin. Even our

12-view model outperforms the baseline, which shows the

potential of keeping equivariance with fewer views.

(mAP). Averages are over instances. We include class-based

averages on the supplementary material.

We outperform the retrieval state of the art for both Mod-

elNet10 and ModelNet40, even without retrieval-specific

features. When including such features (triplet loss and

reordering by class label), the margin increases significantly.

We focus on retrieval and do not claim state of the

art on classification, which is held by RotationNet [20].

While ModelNet retrieval was not attempted by [20], the

SHREC’17 retrieval was, and we show significantly better

performance on it (Table 1).

5.3. Scene classification

We have shown experiments for object-centric config-

urations (outside-in), but our method is also applicable to

camera-centric configurations (inside-out), which is demon-

strated on the Matterport3D [2] scene classification from

panoramas task. We sample multiple overlapping azimuthal

views from the panorama and apply our model over the

cyclic group of 12 rotations, with a filter support of 6. Ta-

ble 4 shows the results; the full table with accuracies per

class and input samples are in the supplementary material.

The MV approach is superior to operating directly on

panoramas because (1) it allows higher overall resolution
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M40 (aligned) M10 (aligned)

acc mAP acc mAP

MVCNN-12 [33] 90.1 79.5 - -

SPNet [40] 92.63 85.21 97.25 94.20

PVNet [41] 93.2 89.5 - -

SV2SL [14] 93.40 89.09 94.82 91.43

PANO-ENN [31] 95.56 86.34 96.85 93.2

MVCNN-M-12 94.47 89.13 96.33 93.54

Ours-12 94.51 91.82 96.33 95.30

Ours-20 94.69 91.42 97.46 95.74

Ours-60 94.36 91.04 96.80 95.25

Ours-R-12 94.67 93.56 96.78 96.18

Table 2: Aligned ModelNet classification and retrieval. We

only compare with published retrieval results. We achieve

state of the art retrieval performance even without retrieval-

specific model features. This shows that our view aggrega-

tion is useful even when global equivariance is not necessary.

M40 (rotated)

acc mAP

MVCNN-80 [33] 86.0 -

RotationNet [20] 80.0 74.20

Spherical CNN [6] 86.9 -

MVCNN-M-60 90.68 78.18

Ours-12 88.50 79.58

Ours-20 89.98 80.73

Ours-60 91.00 82.61

Ours-R-60 91.08 88.57

Table 3: Rotated ModelNet40 classification and retrieval.

Note that gap between “Ours” and “MVCNN-M” is much

larger than in the aligned dataset, which demonstrates the

advantage of our equivariant representation.

while sharing weights across views, and (2) views match the

scale of natural images so pre-training is better exploited.

Our MVCNN-M outperforms both baselines, and our pro-

posed model outperforms it, which shows that the group

structure is also useful in this setting. In this task, our rep-

resentation is equivariant to azimuthal rotations; a CNN

operating directly on the panorama has the same property.

5.4. Discussion

Our model shows state of the art performance on multiple

3D shape retrieval benchmarks. We argue that the retrieval

single [2] pano [2] MV-M-12 Ours-12

acc [%] 33.3 41.0 51.9 53.8

Table 4: Scene classification class-based accuracy.

problem is more appropriate to evaluate shape descriptors

because it requires a complete rank of similarity between

models instead of only a class label.

Our results for aligned datasets show that the full set of 60

views is not necessary and may be even detrimental in this

case; but even when equivariance is not required, the princi-

pled view aggregation with G-Convs is beneficial, as direct

comparison between MVCNN-M and our method show. For

rotated datasets, results clearly show that performance in-

creases with the number of views, and that the aggregation

with G-Convs brings huge improvements.

Interestingly, our MVCNN-M baseline outperforms many

competing approaches. The differences with respect to the

original MVCNN [33] are (1) late view-pooling, (2) use of

ResNet, (3) improved rendering, and (4) improved learning

rate schedule. These significant performance gains were also

observed in [34], and attest to the representative potential of

multi-view representations.

One limitation is that our feature maps are equivariant

to discrete rotations only, and while classification and re-

trieval performance under continuous rotations is excellent,

for tasks such as continuous pose estimation it may not be.

Another limitation is that we assume views to follow the

group structure, which may be difficult to achieve for real

images. Note that this is not a problem for 3D shape analysis,

where we can render any arbitrary view.

6. Conclusion

We proposed an approach that leverages the representa-

tional power of conventional deep CNNs and exploits the

finite nature of the multiple views to design a group convolu-

tional network that performs an exact equivariance in discrete

groups, most importantly the icosahedral group. We also in-

troduced localized filters and convolutions on homogeneous

spaces in this context. Our method enables joint reasoning

over all views as opposed to traditional view-pooling, and

is shown to surpass the state of the art by large margins in

several 3D shape retrieval benchmarks.
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