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Abstract

This paper investigates a novel Bilinear attention (Bi-

attention) block, which discovers and uses second order

statistical information in an input feature map, for the pur-

pose of person retrieval. The Bi-attention block uses bilin-

ear pooling to model the local pairwise feature interactions

along each channel, while preserving the spatial structural

information. We propose an Attention in Attention (AiA)

mechanism to build inter-dependency among the second or-

der local and global features with the intent to make bet-

ter use of, or pay more attention to, such higher order

statistical relationships. The proposed network, equipped

with the proposed Bi-attention is referred to as Bilinear

ATtention network (BAT-net). Our approach outperforms

current state-of-the-art by a considerable margin across

the standard benchmark datasets (e.g., CUHK03, Market-

1501, DukeMTMC-reID and MSMT17).

1. Introduction

Person retrieval1, also known as person re-identification

(re-ID), has attracted an increasing amount of attention in

the Computer Vision (CV) community due to its signifi-

cant industrial potential as well as academic importance in

terms of creating highly discriminative feature representa-

tions, with one of the earliest works being [6]. In short, the

task of a person retrieval machine can be characterised as

follows: given an image of a specific person, the machine

should retrieve all images, from a gallery, that contain a per-

son with the same identity (ID).

This is a challenging task, and one of the main issues

causing an unreliable person retrieval system is that of

misalignment. That is, the location of the person’s body,

and its parts, with respect to a reference frame, can easily

change due to body shape, pose, clothing etc. This, in turn,

causes feature mismatches during training and testing, lead-

1In the remainder of this paper, we will use the terms “person retrieval”,

“person re-identification” and “person re-ID” interchangeably.

ing to inaccurate re-identification. Much effort has gone

into studying and addressing these issues [20, 36, 38, 32,

23, 41, 17, 22, 35]; however, it still remains a dominant

problem and calls for further study.

Some attempts [34, 29] developed over the years to

address this problem rely on human pose estimation.

These estimator networks supplement the baseline-network

with additional cues to learn a superior embedding space,

thereby resulting in increased accuracy over the baseline-

network. Other solutions benefit from person attributes

[16, 35], which are invariant across pose, illumination, mis-

alignment etc. However, person attribute learning also re-

quires training a network on an additional person attribute

dataset or labelling attributes within existing person re-ID

datasets.

Recently, several solutions have been inspired by the hu-

man visual sensing process using visual attention mecha-

nisms [20, 43, 33, 22], to focus on the discriminative regions

within a person bounding box. The inherent attention mod-

ule is designed to automatically select the meaningful parts

of an image, and is trained in a weakly-supervised manner

(i.e., no explicit labelling information is given to identify

the areas to attend). However, current attention models tend

to only utilize first order information, such as the pattern

itself in the feature map, ignoring higher order statistical

information that may be hidden in the feature map.

Bilinear mappings and models have been widely adopted

as a generalization of their linear counterparts. Some prime

examples are bilinear classifiers [25], bilinear pooling [5]

and bilinear CNNs [21] with applications in visual question

answering, fine-grained image recognition, texture classifi-

cation to name but a few. To the best of our knowledge,

attention mechanisms equipped with bi-linear models have

not been developed or studied before despite their intriguing

properties.

The contribution of this paper can be summarized as

follows: (a) We formulate a novel Bilinear attention (Bi-

attention) block with an Attention in Attention (AiA) mech-

anism. The AiA mechanism can be understood as having

an attention module inside another, with the inner one de-
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termining where to focus for the outer attention module.

As such, the Bi-attention with an AiA block utilizes second

order statistical information and builds inter-dependency

among second order local and global features, channel-

wise, in a unified block, while preserving the spatial struc-

ture information of the input feature map. (b) We propose a

novel deep architecture using the Bi-attention block, creat-

ing our Bilinear ATtention network (BAT-net), for the task

of person retrieval. To the best of our knowledge, this is

the first time a bilinear attention mechanism for represen-

tation learning has been developed. (c) Extensive exper-

iments performed on the standard benchmark datasets in-

cluding CUHK03 [18], Market-1501 [52], DukeMTMC-

reID [26] and MSMT17 [46], show that our approach out-

performs the current state-of-the-art methods by a consider-

able margin.

2. Related Work

Person Re-identification. Early works in the area of

person re-ID relied mostly on hand-crafted feature repre-

sentations [6] and learning latent spaces [49]. We refer in-

terested readers to [8] for more details regarding traditional

methods. Convolutional Neural Networks (CNN) are cur-

rently the method of choice for representation learning, de-

livering state-of-the-art results in person re-ID. In [49], Yi

et al. proposed a unified framework for feature and sim-

ilarity learning using Siamese networks [27]. Multi-level

similarities are employed in [45] to make more reliable de-

cisions. Having robustness in mind, Xiao et al. trained a

model across multiple datasets [48] and used domain guided

dropouts to mute domain-irrelevant neurons. Structures,

such as orthogonality constraints [37] and geometry con-

traints [1], have also shown to help achieving better, or more

robust, decisions in person re-identification.

Attention Mechanism. Recently, attention mecha-

nisms, inspired by the human sensing process, have been

studied extensively in Natural Language Processing [42]

and Computer Vision [20]. In person re-ID, the person mis-

alignment [36] and background biases [40] hinder learning

a robust representation. Visual attention mechanisms aim

at emphasizing informative regions for identification, while

depreciating harmful ones (e.g., background and occluded

regions).

The spatial transformer network (STN) [13], a binary

hard attention, was used in [17] to localize the latent body

parts of a human. Liu et al. proposed a Comparative Atten-

tion Network (CAN), which repeatedly localizes discrimi-

native parts and compares different local regions of person

pairs [22]. In Harmonious Attention Convolutional Neural

Network (HA-CNN) [20], hard region-level attention and

soft pixel-level attention are learned in a unified attention

block. In [43], Wang et al. considered both the channel-

wise and spatial-wise attention in a Fully Attentional Block

(FAB), where the channel information is re-calibrated and

the spatial structure information is also preserved.

Bilinear Pooling. Bilinear pooling [5, 51], is first intro-

duced to model local pairwise feature interactions for fine-

grained recognition problems and its representation power

is also enhanced by normalizing the higher order statistics

[21, 15]. Thereafter, Liu et al. utilized a compact form of

the bilinear operation to pool a high-dimensional feature

representation for the task of person re-ID [23]. In [41],

Ustinova et al. proposed a patch-based multi-regional bi-

linear pooling to account for the geometric misalignment

problem between person bounding boxes. Recently, Suh

et al. used a part-aligned representation to reduce the mis-

alignment problem by fusing the appearance and part fea-

ture maps in a bilinear pooling layer [36].

3. Bilinear Attention

In this section, we will first detail the Bilinear attention

block and employ it in a novel Attention in Attention mech-

anism. A simplified version of Bilinear attention is then in-

troduced, reducing the learnable parameters by almost half.

3.1. Bilinear Attention with AiA

Bilinear attention (Bi-attention) with the Attention in At-

tention (AiA) mechanism, captures the second order sta-

tistical information along each channel of the feature map

and builds inter-dependency among second order local and

global features in a unified cell, while preserving the spa-

tial structure of the input feature map. The architecture of

Bi-attention with AiA is depicted in Fig. 1.

Let X ∈ R
c×h×w be a feature map, where c, h and w

stand for the number of channels, height and width, respec-

tively. We denote the local feature at spatial location (i, j)
with xij ∈ R

c, i ∈ {1, 2, . . . , h}, j ∈ {1, 2, . . . , w}. The

bilinear pooling of a vector ϕ(x), an embedding of x (sub-

script is omitted for simplicity), is obtained as (see Fig. 2)

Y = ϕ(x)ϕ(x)T = x̄x̄T

=







x̄2
1 . . . x̄1x̄c̄

...
. . .

...

x̄c̄x̄1 . . . x̄2
c̄






,

(1)

where ϕ(x) ∈ R
c̄, c̄ = c/r, and Y ∈ R

c̄×c̄. The hyper-

parameter r is a dimensionality reduction factor and its

effect is discussed in § 5.4. Having efficiency in mind,

and since Y is a symmetric matrix, we only consider its

upper triangular elements in the subsequent processing.

This helps reducing the feature dimensionality from c̄2 to

c̄ · (c̄+ 1)/2 (see Fig. 2). Formally,

x̃ = Vec
(

UTri(Y )
)

, (2)
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Figure 1. The structure of Bilinear attention with the Attention in Attention mechanism. ϕ(·), φ(·) and ̟(·) are embedding functions.

Bi(·) indicates the bilinear pooling and second order feature rearrangement function. GAP operates global average pooling. ⊗ indicates

element-wise multiplication.

where Vec(·) and UTri(·) indicate vectorization and the op-

erator that extracts the upper triangular elements of a ma-

trix, respectively. We abstract the bilinear pooling and fea-

ture rearrangement with: Bi(x̄) = Vec
(

UTri(x̄x̄T )
)

.

Figure 2. Processing of bilinear pooling and second order feature

rearrangement, denoted by Bi(·). In this operation, we sample the

elements in the upper triangle of Y and vectorize those elements

to a new feature vector x̃.

We note that though x̃ contains second order informa-

tion of x̄, it is sensitive to spatial misalignment. To address

this shortcoming, we introduce the concept of the Attention

in Attention (AiA) mechanism (see Fig. 3). The idea is to

adaptively re-weight the second order feature responses by

modelling the inter-dependencies between the second order

global and local features (see Fig. 1). We model the second

order global feature by

m =
1

hw

hw
∑

i=1

x̃i. (3)

This formulation contains the second order statistical infor-

mation (i.e., the vectorized version of the empirical auto-

correlation matrix of X̄) of the input of AiA.

The inter-dependency between embedded second order

global feature m and each embedded second order local

features x̃ is:

x̂ = ̟(m)⊗ φ(x̃), (4)

where ⊗ denotes element-wise multiplication and

̟(m), φ(x̃) ∈ R
c. The embedding functions, ̟(m) and

φ(x̃), do not merely re-weight the second order feature re-

sponses, but also reduce the dimension of the second order

feature from c̄ · (c̄+ 1)/2 to c (i.e., the channel size of the

input x). In Fig. 3, we further detail the aforementioned

steps. Intuitively, ̟(m) acts as an inner attention and local

Figure 3. Insight of Attention in Attention mechanism. The inner

attention module in AiA produces channel-wise attention values

of its input feature maps, (e.g., X̃), conceptually weighting or cal-

ibrating them for future processing.

features φ(x̃) that are more correlated to the global feature

̟(m), are emphasized by Eq. (4).

Finally, the attention mask of input x is obtained by nor-

malizing x̂. In this paper, we use Sigmoid(·) as a normal-

ization function (i.e., z = Sigmoid(x̂)). This normalized

vector will act as a channel mask, and emphasize the sig-

nificant elements of its input feature vector x at the same

spatial position, by element-wise multiplication as:

xz = z ⊗ x. (5)

Remark 1 The operations, described by Eq. (3) and (4),

resemble the Squeeze-and-Excitation (SE) Networks [10].

However, there is an essential difference: The SE Network

first squeezes the information in each channel to a scalar

which is then used to scale all the elements of a channel

uniformly. In contrast, we use channel attention as the in-

ner attention module to weight the significance of attention-

dependent feature maps (e.g., X̃) in AiA.

3.2. Bilinear Attention without AiA

In case the number of parameters in AiA becomes a

concern, one can resort to the simplified version called Bi-

attention without AiA (see Fig. 4). This simplification ap-

proximately halves the number of parameters of the Bi-

attention block while still keeping competitive performance

with regards to the person re-ID task. (See § 5 for a com-

parison against various benchmarks). Formally, we have

xz = Sigmoid
(

φ
(

Bi(ϕ(x))
)

)

⊗ x. (6)
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Figure 4. The structure of Bilinear attention without AiA.

Remark 2 The structure of Bi-attention without AiA is sim-

ilar to the Fully Attentional Block (FAB) [43] in the sense

that both types of attention keep spatial structure informa-

tion of the feature map, but with a fundamental difference

that our module exploits the second order information along

the channel, while FAB considers only the vanilla, first or-

der, channel pattern.

It is worth mentioning that both the proposed Bi-

attention modules can be seamlessly placed in any exist-

ing convolutional neural network to enhance the representa-

tion learning similar to what most existing attention blocks

do. In section 5, we will show the effectiveness of both Bi-

attention modules in a person re-ID application.

4. Bilinear Attention Networks for Person Re-

trieval

In this section, the architecture of the proposed net-

work, Bilinear ATtention network (BAT-net), will be de-

tailed, starting from the problem formulation of our appli-

cation.

4.1. Problem Formulation

Let pi ∈ R
C×H×W denote an input image, where C,

H , and W are the number of channels, height and width,

respectively. Each image pi is labeled by its identity, de-

noted by yi ∈ {1, . . . , k}. Thus, the training set with N im-

ages, can be described as {pi, yi}
N
i=1. The person retrieval

system, F(p, θ), parameterized by θ, aims at encoding an

image p to an embedding space, such that the intra-person

variations are minimized while the inter-person variations

are maximized. In this work, the embedding space is the

concatenation of the person-appearance embedding space,

i.e. fa = Fa(p, θa), and the person-part embedding space,

i.e. fp = Fp(p, θp), satisfying that F(p, θ) = [fT
a , fT

p ]T .

4.2. Overview

The BAT-net has two feature extractors, namely, a

person-appearance feature extractor (denoted by Fa) and a

person part-feature extractor (denoted by Fp). The overall

architecture of the BAT-net is shown in Fig. 5. The person

overall appearance is encoded by the appearance feature ex-

tractor; while the part feature extractor aims to encode the

different parts of the person.

The appearance feature extractor consists of 4 convolu-

tional blocks. After the second convolutional block, which

learns mid-level features, a Bi-attention is added to capture

the second order statistical information of the feature map

and highlight its discriminative regions. This bilinearly at-

tended feature map encourages the following layers to learn

a holistic representation of the person.

Recent studies in person re-identification suggest that in-

dependent modeling of part regions can enhance the pre-

cision of the overall system [36, 38, 20]. We also equip

the BAT-net with such part-based learning ability. More

specifically, we use a simple sub-network as a part feature

extractor, which aims to learn distinct and discriminative

parts in the input image. The bilinearly attended feature

map Xz ∈ R
c×h×w is divided into T non-overlapping re-

gions Xz
t s.t. Xz

t ∈ R
c× h

T
×w, t = 1, . . . , T . Each of the

non-overlapped regions is resized to c × h × w by bilinear

interpolation and fed to the t-th stream of the part feature

extractor network; which generates the part-feature embed-

dings.

Remark 3 Our part feature extractor network is different

from the current part-based solutions [36, 20, 38]. For

example, in [36], the part feature is extracted via a pose

estimation network called OpenPose [2]. In [20], the

part regions are sampled through a hard attention network.

In [38], the parts are split in the final feature map. By con-

trast, and in addition to the structural differences, each part

model in the BAT-net works independently from the others

in the sense that no weight-sharing between part-models is

envisaged. This, in turn, can increase the diversity of the

learnt parts leading to a more generalized discriminative

embedding space for retrieval purposes.

4.3. Multi­Task Training

Multi-Task Training (MTT) has shown to be effective

in modern person re-ID solutions. As the name suggests,

MTT formulates the overall learning procedure as a combi-

nation of several sub-tasks; each having its own importance

in the overall learning mechanism. [50] uses cross-entropy

loss for the classification task and triplet loss for the ranking

task. [43] combines triplet loss, focal loss and cross-entropy

loss to train a state-of-the-art model. Following [50], we

train our network for the tasks of ranking and classification.

Ranking Task. We use triplet loss for the ranking task.

In a mini batch, {pi}
Nm

i=1, one possible triplet can be de-

noted as {pi,p
+
i ,p

−

i } such that the anchor pi shares the

same identity with the positive sample p+
i and the negative

sample p−

i belongs to a different identity. In the embedding

space F(·), the triplet loss is formulated as follows:

Jrank =
1

Ntri

Ntri
∑

i=1

[

d+i − d−i +m
]

+
, (7)

where [·]+ = max(·, 0), Ntri indicates the number of

triplets in one batch, m is a margin. d+i = ‖(F(pi) −
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Figure 5. The architecture of Bilinear ATtention network (BAT-net). BAT-net has two feature extractor, e.g., person appearance feature

extractor and person part feature extractor. The feature map, Xz , which is imposed by bilinear attention net, is feed to following stages of

convolutional layers for appearance and part feature embedding.

F(p+
i )‖2, and d−i = ‖F(pi) − F(p−

i )‖2. In the triplet

selection, for each anchor, we mine one hard positive and 5
hard negatives, coming up with 5 triplets. This is to avoid

collapsing to local minima in the early stages of optimiza-

tion.

Classification Task. The triplet loss does not fully take

into account the identity specific (intra-person) information

and only encodes relative similarity (inter-person) informa-

tion within a particular triplet. Thus, we augment the triplet

loss with the cross-entropy based classification loss Jcls to

encode the class specific information.

4.4. Implementation Details

Network Architecture. We implemented our BAT-

net model in the PyTorch [24] deep learning framework.

The backbone network is the first version of GoogLeNet

[39], pretrained on ImageNet [28] with Batch Normaliza-

tion [12]. The spatial size of the input image is fixed to

256 × 128. In the appearance feature extractor, the size

of the feature after global average pooling (GAP) is 1024,

which is followed by the 512-dimensional person appear-

ance embedding layer fa. Another fc layer is connected

to predict person identity using the person appearance em-

bedding. In the part feature extractor, we follow the work

in [20], and fix T = 4 across all experiments. The output

features of each of the T streams are concatenated, and is

passed through a 512-dimensional part embedding fp. A fc

layer is further connected to predict person identity using

the person part embedding. In the testing stage, fa and fp
are concatenated to give the final person representation f ,

such that f = [fT
a , fT

a ]T ∈ R
1024.

In the Bi-attention block, the embedding functions ϕ(·),
φ(·) and ̟(·) are 1× 1 convolutional layers with a follow-

ing batch normalization layer and a nonlinear layer. Here,

the nonlinear layer uses the ReLU(·) function. In ϕ(·),
the dimensionality reduction factor, r, is set to 8 for the

CUHK03 [18] dataset, and to 4 for the other datasets. The

details of datasets will be presented in § 5.1.

Network Training. We use the Adam [14] optimizer

with default momentum values (0.9, 0.999) for (β1 and

β2). The weight decay is set to 0.0001. The learn-

ing rate is initialized to 1 × 10−3 for CUHK03 [18] and

5×10−4 for Market-1501 [52], DukeMTMC-reID [26] and

MSMT17 [46]. We train the network for 300 epochs. The

learning rate is decayed by a factor of 0.1 at 150, 200, 250
epochs respectively for all the datasets. In the multi-task

training, we pose the ranking task and classification task

in both appearance and part feature extractors separately;

this is inspired by [38] where supervision on each respective

feature extractor is vital for learning discriminative features.

Our training images are randomly flipped in the horizon-

tal direction, followed by random erasing [54]. Here, the

random erasing is used to provide the momentum to jump

out of local optima, inspired by [11]; thus, we apply this

data augmentation after 50 epochs. No such augmentation

is used during the testing phase. We report the performance
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of the trained network at the last epoch. Moreover, it is

worth noting that we do not apply re-ranking to boost the

ranking result in the testing phase.

5. Experiment

5.1. Datasets

In this section, we evaluate our proposed algo-

rithm across four standard benchmark datasets, i.e.,

CUHK03 [18], Market-1501 [52], DukeMTMC-

reID [26] and MSMT17 [46].

CUHK03 This dataset consists of 13, 164 person images

of 1, 467 identities, captured by 6 cameras. Each person is

observed by two disjoint camera views. CUHK03 offers

both hand-labeled and DPM-detected [4] bounding boxes,

and we evaluate our model on both sets. We adopt the new

training/testing protocol proposed in [53]. In this protocol,

the training set contains 767 identities and the testing set

contains the remaining 700 identities.

Market-1501 This dataset consists of 32, 668 person im-

ages of 1, 501 identities observed under a maximum of 6
different camera views. The dataset is split into 12, 936
training images of 751 identities and 19, 732 testing images

of the remaining 750 identities, and both training and test-

ing images are detected using a DPM [4].

DukeMTMC-reID This dataset is collected with 8 dif-

ferent cameras and was originally proposed for video-based

person tracking and re-identification. It has 1, 404 identi-

ties and includes 16, 522 training images of 702 identities,

2, 228 query images of 702 identities and 17, 661 gallery

images.

MSMT17 This is the largest person re-ID dataset, con-

sisting of 126, 441 person images, detected by Faster R-

CNN [7], and 4, 101 identities. This dataset is collected

with 15 cameras and covers 4 days with different weather

conditions over a month. The training set consists of 32, 621
images belonging to 1, 041 identities, whereas the test set

contains 93, 820 images of the remaining 3, 060 identities.

The test set is further randomly split into 11, 659 query im-

ages and the remaining 82, 161 are used as gallery images.

5.2. Evaluation Protocol

We use both mean average precision (mAP) and cumu-

lative matching characteristic (CMC) to evaluate the model

performance. The CMC curve measures the correct match-

ing rate for a given query image against the gallery images

at various rank, whereas the mAP measures the probabil-

ity of all correct matches in the gallery images for a given

query image, measuring the overall ranking performance.

5.3. Comparison with State­of­the­Art Methods

To show the effectiveness of the attention block with

higher order information and the AiA mechanism, Bilin-

ear ATtention network with AiA and without AiA are tested

across the four datasets.

CUHK03 We evaluated our model on both the labeled

and detected person bounding boxes of CUHK03. Table 1

clearly shows that our model improves over the current

state-of-the-art in both settings significantly. In particular,

when compared against the current state-of-the-art Mancs,

we observe that BAT-net w/o AiA outperforms it by a sig-

nificant margin: i.e. 8.1% in mAP and 5.2% in Rank-1 ac-

curacy on the manually labeled set and by 8.2% in mAP and

5.9% in Rank-1 accuracy on the detected set. This signifi-

cant improvement shows that the use of such second order

information increases the discriminative ability in represen-

tation through attention by itself. Incorporation of the AiA

mechanism leads to a further improvement against Mancs:

i.e. 4.1% in mAP and 4.4% in Rank-1 accuracy on the man-

ually labeled set and by 4.5% in mAP and 4.8% in Rank-1

accuracy on the detected set. This validates the need of our

design choices in BAT-net along with the importance of the

AiA mechanism to obtain superior discriminative embed-

dings for person-retrieval.

Table 1. Evaluation on the CUHK03 [18] dataset in both labeled

and detected bounding box. 1st / 2nd best in red / blue.

@ Labeled @ Detected

Model mAP R-1 mAP R-1

SVDNet [37] - - 37.3 41.5

HA-CNN [20] 41.0 44.4 38.6 41.7

AOS [11] - - 47.1 43.4

MLFN [3] 49.2 54.7 47.8 52.8

MGCAM [33] 50.2 50.1 46.9 46.7

DaRe [45] 52.2 56.4 50.1 54.3

PCB+RPP [38] 57.5 63.7 - -

Mancs [43] 63.9 69.0 60.5 65.5

BAT-net w/o AiA 72.0 74.2 68.7 71.4

BAT-net w/ AiA 76.1 78.6 73.2 76.2

Market-1501 We further evaluate our proposed BAT-net

against the recent state-of-the-art methods on Market-1501

in the single query setting. The results are shown in Ta-

ble 2. Like before, BAT-net w/o AiA outperforms Mancs

by 3.2% on mAP and 1.0% on Rank-1 accuracy respec-

tively. Similarly, with addition of the AiA module, we ob-

serve a further improvement of 5.1% / 2.0% in terms of

mAP and Rank-1 accuracy over Mancs. Moreover, when

compared against PBR, which uses bilinear pooling for part

alignment, both BAT-net w/o AiA and BAT-net w/ AiA out-

perform it by 9.5% / 3.9% and 11.4% / 4.9% respectively

in-terms of mAP / Rank-1 measures.

DukeMTMC-reID The evaluation of our proposed al-

gorithm for DukeMTMC-reID is shown in Table 3. Com-

pared to Mancs, BAT-net w/o AiA improves the their eval-

uated results by 4.0% on mAP and 1.2% on Rank-1 accu-
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Table 2. Evaluation on the Market-1501 [52] dataset under single

query setting. 1st / 2nd best in red / blue.

Model mAP R-1 R-5 R-10

MSCAN [17] 57.5 80.3 - -

SVDNet [37] 62.1 82.3 92.3 95.2

PDC [34] 63.4 84.1 92.7 94.9

JLML [19] 65.5 85.1 - -

DaRe [45] 69.9 86.0 - -

AOS [11] 70.4 86.5 - -

Glad [47] 73.9 89.9 - -

MGCAM [33] 74.3 83.8 - -

MLFN [3] 74.3 90.0 - -

DKPM [31] 75.3 90.1 96.7 97.9

HA-CNN [20] 75.7 91.2 - -

PBR [36] 76.0 90.2 96.1 97.4

DuATM [32] 76.6 91.4 97.1 -

PCB+RPP [38] 81.6 93.8 97.5 98.5

Mancs [43] 82.3 93.1 - -

SGGNN [30] 82.8 92.3 96.1 97.4

BAT-net w/o AiA 85.5 94.1 98.2 99.1

BAT-net w/ AiA 87.4 95.1 98.2 98.9

racy. Equipped with AiA, BAT-net outperforms Mancs by

5.5% on mAP and 2.8% on Rank-1 accuracy. Moreover,

BAT-net w/o AiA and BAT-net w/ AiA improves the mAP

/ Rank-1 over PBR by 11.6% / 4.0%, and 13.1% / 5.6%,

respectively.

Table 3. Evaluation on the DukeMTMC-reID [26] dataset under

single query setting. 1st / 2nd best in red / blue.

Model mAP R-1 R-5 R-10

DaRe [45] 56.3 74.5 - -

SVDNet [37] 56.8 76.7 86.4 89.9

AOS [11] 62.1 79.2 - -

MLFN [3] 62.8 81.0 - -

DKPM [31] 63.2 80.3 89.5 91.9

HA-CNN [20] 63.8 80.5 - -

DuATM [32] 64.6 81.8 90.2 -

PBR [36] 64.2 82.1 - -

SGGNN [30] 68.2 81.1 88.4 91.2

PCB+RPP [38] 69.2 83.3 - -

Mancs [43] 71.8 84.9 - -

BAT-net w/o AiA 75.8 86.1 93.9 95.6

BAT-net w/ AiA 77.3 87.7 94.7 96.3

MSMT17 Table 4 shows the result of our proposed net-

work without/with AiA mechanism on the new challeng-

ing MSMT17 dataset. As observed, both of our proposed

networks outperform the baseline algorithms by a tangible

margin. More specifically, BAT-net w/o AiA and w/ AiA

outperforms the next-best algorithm, i.e. Glad, by 16.4% /

12.7% and 22.8% / 18.1% with regards to mAP and Rank-1

accuracy, respectively.

Table 4. Evaluation on the MSMT17 [46] dataset under single

query setting. “*” indicates the results of the algorithms as re-

ported in [46] . 1st / 2nd best in red / blue.

Model mAP R-1 R-5 R-10

GoogLeNet* [39] 23.0 47.6 65.0 71.8

PDC* [34] 29.7 58.0 73.6 79.4

Glad* [47] 34.0 61.4 76.8 81.6

GoogLeNet (Ours) 39.3 65.8 80.5 85.3

+ Bi-attention w/AiA 43.1 69.5 82.7 87.2

BAT-net w/o AiA 50.4 74.1 86.4 89.7

BAT-net w/ AiA 56.8 79.5 89.1 91.1

5.4. Ablation Study

We further perform extra experiments to verify the effec-

tiveness of our proposed Bi-attention with AiA on Market-

1501 [52] under the single query setting and CUHK03 [18]

with the detected bounding boxes.

Effect of Bilinear Attention. We first evaluate the effect

of bilinear attention on the feature extractors, and the results

are shown in Table 5. The results on both the datasets con-

vince us that: (1) The Bi-attention brings retrieval gain in

person appearance feature extractor. (2) The retrieval ac-

curacy increases when the appearance feature extractor is

equipped with the part feature extractor. (3) Further addi-

tion of Bi-attention continues to improve the overall per-

formance of the network as a whole. This shows that our

design is effective in exploiting the complementary infor-

mation between feature extractors and the attention model.

Table 5. Effect of Bi-attention on the Market-1501 [52] and

CUHK03 [18] datasets.

Market @ SQ CUHK03 @ D

Model mAP R-1 mAP R-1

(i) Fa 80.7 91.6 64.5 67.1

(ii) + Bi-attention w/ AiA 83.4 93.2 67.4 70.6

(iii) Fa + Fp 85.1 93.8 67.8 71.1

(iv) BAT-net w/ AiA 87.4 95.1 73.2 76.2

Effect of the Position of Bilinear Attention. Table 6

shows the effect of Bi-attention when added to different po-

sitions of the baseline GoogLeNet network. p1, p2, p3 and

p4 indicate the position of the output of Blk 1, Blk 2, Blk

3 and Blk 4 along the appearance feature extractor respec-

tively (Refer to Fig. 5). Table 6 shows that: (1) Using

Bi-attention in the early stages, i.e. p1, p2, is superior to

inserting it in the later stages i.e. p3, p4. A similar obser-

vation is also made in [44], where the non-local network

enhances the performance of ResNet [9] in its early stages.

(2) Moreover, the performance of adding Bi-attention in p2
surpasses the performance compared to when it is added in
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p1. One reasonable explanation is that, the feature maps in

p2 have richer channel information than that in p1, while

it still maintains spatial structure information, thereby en-

abling the network to emphasize more on the statistical in-

formation. (3) In the CUHK03 dataset, which has a smaller

training set, the performance of person retrieval degrades

when Bi-attention is inserted in p4. This is observed as the

embedding layer of the Bi-attention module overfits on the

training set due to the high dimensionality of the feature

maps in p4.

Table 6. Effect of the position of Bi-attention on the Market-

1501 [52] and CUHK03 [18] datasets.

Market @ SQ CUHK03 @ D

Model mAP R-1 mAP R-1

(i) w/o attention 85.1 93.8 67.8 71.1

(ii) p1 86.8 94.4 71.4 73.2

(iii) p2 87.4 95.1 73.2 76.2

(iv) p3 85.5 93.9 69.8 72.9

(v) p4 85.3 94.0 68.9 70.8

Effect of the Dimensionality Reduction Factor r. The

reduction factor r in the embedding function ϕ(·) is an im-

portant hyperparameter that affects the information pooled

by the bilinear operation. The results and comparisons

shown in Table 7 reveal that: (1) The performance does not

improve monotonically with a decreased factor. The main

interpretation is that the parameter size will increase expo-

nentially by decreasing the factor, which leads to the overfit-

ting of embedding functions (e.g., ̟(·), φ(·)) in the training

set. (2) We observe that while r = 4 gives the best results

in the Market dataset, the best value of r is observed to be 8
when the network is trained on CUHK03. One possible ex-

planation is that the network trained on Market is less prone

to overfitting due to its larger training set in comparison to

CUHK03.

Table 7. Effect of the Dimensionality Reduction Factor r for em-

bedding function ϕ(·) on the Market-1501 [52] and CUHK03 [18]

datasets.

Market @ SQ CUHK03 @ D

Model mAP R-1 mAP R-1

(i) w/o attention 85.1 93.8 67.8 71.1

(ii) r = 2 87.1 94.9 72.3 75.4

(iii) r = 4 87.4 95.1 72.6 74.9

(iv) r = 8 87.2 94.5 73.2 76.2

(v) r = 16 86.9 94.4 72.5 75.6

(vi) r = 32 86.9 94.1 72.1 74.8

Visualisation of Bilinear Attention. We visualise the

Bi-attention for person images in both the Market-1501

dataset in Fig. 6(a) and CUHK03 detected-set in Fig. 6(b).

(a) (b)

Figure 6. Visualisation of our Bi-attention in person images, sam-

pled from the Market dataset (a) and the CUHK03 dataset (b). In

each dataset, from left to right, (1) the input person image, (2) the

input feature map to Bi-attention and (3) the masked feature map.

In the heat map, the response increases from blue to red. Best

viewed in color.

Fig. 6 shows that: (1) The attention mask filters out the

non-informative background clutter in person images, (2)

The attention mask further emphasizes on the discrimina-

tive parts of a person bounding box, which reduces the

prevalent misalignment problem in the retrieval task.

6. Conclusion

In this paper, we propose a novel Bilinear attention (Bi-

attention) block for person retrieval. The Bi-attention block

uses bilinear pooling to model the local pairwise feature

interactions along each channel, while preserving the spa-

tial structural information. Then an Attention in Attention

(AiA) mechanism is proposed to build inter-dependency

among second order local and global features with the intent

to make better use of, or pay more attention to, such higher

order statistical relationships. We also introduce a simpli-

fied version called Bi-attention without AiA, which approx-

imately halves the number of parameters of the Bi-attention

block, while still keeping competitive performance in visual

tasks. We incorporated the aforementioned two Bi-attention

blocks in our network, BAT-net, and showed that state-of-

the-art performances could be achieved by benefiting from

higher order attention in representation learning. This in-

cludes extensive evaluations on four standard person re-ID

benchmarks along with the required ablation studies to un-

derstand the effect of the Bi-attention block.

Future works include analyzing the AiA for addressing

other visual tasks and developing other forms of attention

mechanisms by exploiting higher-order information.
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