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Abstract

We present SlowFast networks for video recognition. Our

model involves (i) a Slow pathway, operating at low frame

rate, to capture spatial semantics, and (ii) a Fast path-

way, operating at high frame rate, to capture motion at

fine temporal resolution. The Fast pathway can be made

very lightweight by reducing its channel capacity, yet can

learn useful temporal information for video recognition.

Our models achieve strong performance for both action

classification and detection in video, and large improve-

ments are pin-pointed as contributions by our SlowFast con-

cept. We report state-of-the-art accuracy on major video

recognition benchmarks, Kinetics, Charades and AVA. Code

has been made available at: https://github.com/

facebookresearch/SlowFast.

1. Introduction

It is customary in the recognition of images I(x, y) to

treat the two spatial dimensions x and y symmetrically. This

is justified by the statistics of natural images, which are to

a first approximation isotropic—all orientations are equally

likely—and shift-invariant [41, 26]. But what about video

signals I(x, y, t)? Motion is the spatiotemporal counterpart

of orientation [2], but all spatiotemporal orientations are

not equally likely. Slow motions are more likely than fast

motions (indeed most of the world we see is at rest at a given

moment) and this has been exploited in Bayesian accounts of

how humans perceive motion stimuli [58]. For example, if

we see a moving edge in isolation, we perceive it as moving

perpendicular to itself, even though in principle it could

also have an arbitrary component of movement tangential to

itself (the aperture problem in optical flow). This percept is

rational if the prior favors slow movements.

If all spatiotemporal orientations are not equally likely,

then there is no reason for us to treat space and time sym-

metrically, as is implicit in approaches to video recognition

based on spatiotemporal convolutions [49, 5]. We might

instead “factor” the architecture to treat spatial structures

and temporal events separately. For concreteness, let us

study this in the context of recognition. The categorical

spatial semantics of the visual content often evolve slowly.
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Figure 1. A SlowFast network has a low frame rate, low temporal

resolution Slow pathway and a high frame rate, α× higher temporal

resolution Fast pathway. The Fast pathway is lightweight by using

a fraction (β, e.g., 1/8) of channels. Lateral connections fuse them.

For example, waving hands do not change their identity as

“hands” over the span of the waving action, and a person

is always in the “person” category even though he/she can

transit from walking to running. So the recognition of the cat-

egorical semantics (as well as their colors, textures, lighting

etc.) can be refreshed relatively slowly. On the other hand,

the motion being performed can evolve much faster than

their subject identities, such as clapping, waving, shaking,

walking, or jumping. It can be desired to use fast refreshing

frames (high temporal resolution) to effectively model the

potentially fast changing motion.

Based on this intuition, we present a two-pathway

SlowFast model for video recognition (Fig. 1). One path-

way is designed to capture semantic information that can be

given by images or a few sparse frames, and it operates at

low frame rates and slow refreshing speed. In contrast, the

other pathway is responsible for capturing rapidly changing

motion, by operating at fast refreshing speed and high tem-

poral resolution. Despite its high temporal rate, this pathway

is made very lightweight, e.g., ∼20% of total computation.

This is because this pathway is designed to have fewer chan-

nels and weaker ability to process spatial information, while

such information can be provided by the first pathway in a

less redundant manner. We call the first a Slow pathway and

the second a Fast pathway, driven by their different temporal

speeds. The two pathways are fused by lateral connections.
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Our conceptual idea leads to flexible and effective designs

for video models. The Fast pathway, due to its lightweight

nature, does not need to perform any temporal pooling—it

can operate on high frame rates for all intermediate layers

and maintain temporal fidelity. Meanwhile, thanks to the

lower temporal rate, the Slow pathway can be more focused

on the spatial domain and semantics. By treating the raw

video at different temporal rates, our method allows the two

pathways to have their own expertise on video modeling.

There is another well known architecture for video recog-

nition which has a two-stream design [44], but provides con-

ceptually different perspectives. The Two-Stream method

[44] has not explored the potential of different temporal

speeds, a key concept in our method. The two-stream method

adopts the same backbone structure to both streams, whereas

our Fast pathway is more lightweight. Our method does not

compute optical flow, and therefore, our models are learned

end-to-end from the raw data. In our experiments we observe

that the SlowFast network is empirically more effective.

Our method is partially inspired by biological studies

on the retinal ganglion cells in the primate visual system

[27, 37, 8, 14, 51], though admittedly the analogy is rough

and premature. These studies found that in these cells, ∼80%

are Parvocellular (P-cells) and ∼15-20% are Magnocellular

(M-cells). The M-cells operate at high temporal frequency

and are responsive to fast temporal changes, but not sensitive

to spatial detail or color. P-cells provide fine spatial detail

and color, but lower temporal resolution, responding slowly

to stimuli. Our framework is analogous in that: (i) our model

has two pathways separately working at low and high tempo-

ral resolutions; (ii) our Fast pathway is designed to capture

fast changing motion but fewer spatial details, analogous to

M-cells; and (iii) our Fast pathway is lightweight, similar

to the small ratio of M-cells. We hope these relations will

inspire more computer vision models for video recognition.

We evaluate our method on the Kinetics-400 [30],

Kinetics-600 [3], Charades [43] and AVA [20] datasets. Our

comprehensive ablation experiments on Kinetics action clas-

sification demonstrate the efficacy contributed by SlowFast.

SlowFast networks set a new state-of-the-art on all datasets

with significant gains to previous systems in the literature.

2. Related Work

Spatiotemporal filtering. Actions can be formulated as

spatiotemporal objects and captured by oriented filter-

ing in spacetime, as done by HOG3D [31] and cuboids

[10]. 3D ConvNets [48, 49, 5] extend 2D image models

[32, 45, 47, 24] to the spatiotemporal domain, handling both

spatial and temporal dimensions similarly. There are also

related methods focusing on long-term filtering and pooling

using temporal strides [52, 13, 55, 62], as well as decom-

posing the convolutions into separate 2D spatial and 1D

temporal filters [12, 50, 61, 39].

Beyond spatiotemporal filtering or their separable ver-

sions, our work pursuits a more thorough separation of mod-

eling expertise by using two different temporal speeds.

Optical flow for video recognition. There is a classical

branch of research focusing on hand-crafted spatiotemporal

features based on optical flow. These methods, including

histograms of flow [33], motion boundary histograms [6],

and trajectories [53], had shown competitive performance

for action recognition before the prevalence of deep learning.

In the context of deep neural networks, the two-stream

method [44] exploits optical flow by viewing it as another

input modality. This method has been a foundation of many

competitive results in the literature [12, 13, 55]. However, it

is methodologically unsatisfactory given that optical flow is

a hand-designed representation, and two-stream methods are

often not learned end-to-end jointly with the flow.

3. SlowFast Networks

SlowFast networks can be described as a single stream

architecture that operates at two different framerates, but we

use the concept of pathways to reflect analogy with the bio-

logical Parvo- and Magnocellular counterparts. Our generic

architecture has a Slow pathway (Sec. 3.1) and a Fast path-

way (Sec. 3.2), which are fused by lateral connections to a

SlowFast network (Sec. 3.3). Fig. 1 illustrates our concept.

3.1. Slow pathway

The Slow pathway can be any convolutional model (e.g.,

[12, 49, 5, 56]) that works on a clip of video as a spatiotem-

poral volume. The key concept in our Slow pathway is a

large temporal stride τ on input frames, i.e., it processes

only one out of τ frames. A typical value of τ we studied is

16—this refreshing speed is roughly 2 frames sampled per

second for 30-fps videos. Denoting the number of frames

sampled by the Slow pathway as T , the raw clip length is

T × τ frames.

3.2. Fast pathway

In parallel to the Slow pathway, the Fast pathway is an-

other convolutional model with the following properties.

High frame rate. Our goal here is to have a fine representa-

tion along the temporal dimension. Our Fast pathway works

with a small temporal stride of τ/α, where α > 1 is the

frame rate ratio between the Fast and Slow pathways. The

two pathways operate on the same raw clip, so the Fast

pathway samples αT frames, α times denser than the Slow

pathway. A typical value is α = 8 in our experiments.

The presence of α is in the key of the SlowFast concept

(Fig. 1, time axis). It explicitly indicates that the two path-

ways work on different temporal speeds, and thus drives the

expertise of the two subnets instantiating the two pathways.
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High temporal resolution features. Our Fast pathway not

only has a high input resolution, but also pursues high-

resolution features throughout the network hierarchy. In

our instantiations, we use no temporal downsampling lay-

ers (neither temporal pooling nor time-strided convolutions)

throughout the Fast pathway, until the global pooling layer

before classification. As such, our feature tensors always

have αT frames along the temporal dimension, maintaining

temporal fidelity as much as possible.

Low channel capacity. Our Fast pathway also distin-

guishes with existing models in that it can use significantly

lower channel capacity to achieve good accuracy for the

SlowFast model. This makes it lightweight.

In a nutshell, our Fast pathway is a convolutional network

analogous to the Slow pathway, but has a ratio of β (β < 1)

channels of the Slow pathway. The typical value is β = 1/8
in our experiments. Notice that the computation (floating-

number operations, or FLOPs) of a common layer is often

quadratic in term of its channel scaling ratio. This is what

makes the Fast pathway more computation-effective than

the Slow pathway. In our instantiations, the Fast pathway

typically takes ∼20% of the total computation. Interestingly,

as mentioned in Sec. 1, evidence suggests that ∼15-20% of

the retinal cells in the primate visual system are M-cells (that

are sensitive to fast motion but not color or spatial detail).

The low channel capacity can also be interpreted as a

weaker ability of representing spatial semantics. Technically,

our Fast pathway has no special treatment on the spatial

dimension, so its spatial modeling capacity should be lower

than the Slow pathway because of fewer channels. The good

results of our model suggest that it is a desired tradeoff for

the Fast pathway to weaken its spatial modeling ability while

strengthening its temporal modeling ability.

Motivated by this interpretation, we also explore different

ways of weakening spatial capacity in the Fast pathway, in-

cluding reducing input spatial resolution and removing color

information. As we will show by experiments, these versions

can all give good accuracy, suggesting that a lightweight Fast

pathway with less spatial capacity can be made beneficial.

3.3. Lateral connections

The information of the two pathways is fused, so one

pathway is not unaware of the representation learned by the

other pathway. We implement this by lateral connections,

which have been used to fuse optical flow-based, two-stream

networks [12, 13]. In image object detection, lateral con-

nections [35] are a popular technique for merging different

levels of spatial resolution and semantics.

Similar to [12, 35], we attach one lateral connection be-

tween the two pathways for every “stage" (Fig. 1). Specif-

ically for ResNets [24], these connections are right after

pool1, res2, res3, and res4. The two pathways have different

temporal dimensions, so the lateral connections perform a

stage Slow pathway Fast pathway output sizes T×S2

raw clip - - 64×2242

data layer stride 16, 12 stride 2, 12 Slow : 4×2242

Fast : 32×2242

conv1
1×72, 64 5×72, 8 Slow : 4×1122

Fast : 32×1122stride 1, 22 stride 1, 22

pool1
1×32 max 1×32 max Slow : 4×562

Fast : 32×562stride 1, 22 stride 1, 22

res2





1×12, 64

1×32, 64

1×12, 256



×3





3×12, 8

1×32, 8

1×12, 32



×3
Slow : 4×562

Fast : 32×562

res3





1×12, 128

1×32, 128

1×12, 512



×4





3×12, 16

1×32, 16

1×12, 64



×4
Slow : 4×282

Fast : 32×282

res4





3×12, 256

1×32, 256

1×12, 1024



×6





3×12, 32

1×32, 32

1×12, 128



×6
Slow : 4×142

Fast : 32×142

res5





3×12, 512

1×32, 512

1×12, 2048



×3





3×12, 64

1×32, 64

1×12, 256



×3
Slow : 4×72

Fast : 32×72

global average pool, concate, fc # classes

Table 1. An example instantiation of the SlowFast network. The

dimensions of kernels are denoted by {T×S2, C} for temporal,

spatial, and channel sizes. Strides are denoted as {temporal stride,

spatial stride2}. Here the speed ratio is α = 8 and the channel

ratio is β = 1/8. τ is 16. The green colors mark higher temporal

resolution, and orange colors mark fewer channels, for the Fast

pathway. Non-degenerate temporal filters are underlined. Residual

blocks are shown by brackets. The backbone is ResNet-50.

transformation to match them (detailed in Sec. 3.4). We

use unidirectional connections that fuse features of the Fast

pathway into the Slow one (Fig. 1). We have experimented

with bidirectional fusion and found similar results.

Finally, a global average pooling is performed on each

pathway’s output. Then two pooled feature vectors are con-

catenated as the input to the fully-connected classifier layer.

3.4. Instantiations

Our idea of SlowFast is generic, and it can be instanti-

ated with different backbones (e.g., [45, 47, 24]) and im-

plementation specifics. In this subsection, we describe our

instantiations of the network architectures.

An example SlowFast model is specified in Table 1. We

denote spatiotemporal size by T×S2 where T is the tempo-

ral length and S is the height and width of a square spatial

crop. The details are described next.

Slow pathway. The Slow pathway in Table 1 is a temporally

strided 3D ResNet, modified from [12]. It has T = 4 frames

as the network input, sparsely sampled from a 64-frame raw

clip with a temporal stride τ = 16. We opt to not perform

temporal downsampling in this instantiation, as doing so

would be detrimental when the input stride is large.

Unlike typical C3D / I3D models, we use non-degenerate

temporal convolutions (temporal kernel size > 1, underlined

in Table 1) only in res4 and res5; all filters from conv1 to

res3 are essentially 2D convolution kernels in this pathway.
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This is motivated by our experimental observation that using

temporal convolutions in earlier layers degrades accuracy.

We argue that this is because when objects move fast and

the temporal stride is large, there is little correlation within a

temporal receptive field unless the spatial receptive field is

large enough (i.e., in later layers).

Fast pathway. Table 1 shows an example of the Fast path-

way with α = 8 and β = 1/8. It has a much higher temporal

resolution (green) and lower channel capacity (orange).

The Fast pathway has non-degenerate temporal convolu-

tions in every block. This is motivated by the observation that

this pathway holds fine temporal resolution for the temporal

convolutions to capture detailed motion. Further, the Fast

pathway has no temporal downsampling layers by design.

Lateral connections. Our lateral connections fuse from the

Fast to the Slow pathway. It requires to match the sizes

of features before fusing. Denoting the feature shape of

the Slow pathway as {T , S2, C}, the feature shape of the

Fast pathway is {αT , S2, βC}. We experiment with the

following transformations in the lateral connections:

(i) Time-to-channel: We reshape and transpose {αT , S2,

βC} into {T , S2, αβC}, meaning that we pack all α frames

into the channels of one frame.

(ii) Time-strided sampling: We simply sample one out of

every α frames, so {αT , S2, βC} becomes {T , S2, βC}.

(iii) Time-strided convolution: We perform a 3D convolution

of a 5×12 kernel with 2βC output channels and stride = α.

The output of the lateral connections is fused into the Slow

pathway by summation or concatenation.

4. Experiments: Action Classification

We evaluate our approach on four video recognition

datasets using standard evaluation protocols. For the action

classification experiments, presented in this section we con-

sider the widely used Kinetics-400 [30], the recent Kinetics-

600 [3], and Charades [43]. For action detection experiments

in Sec. 5, we use the challenging AVA dataset [20].

Training. Our models on Kinetics are trained from random

initialization (“from scratch”), without using ImageNet [7]

or any pre-training. We use synchronized SGD training

following the recipe in [19]. See details in Appendix.

For the temporal domain, we randomly sample a clip

(of αT×τ frames) from the full-length video, and the input

to the Slow and Fast pathways are respectively T and αT
frames; for the spatial domain, we randomly crop 224×224

pixels from a video, or its horizontal flip, with a shorter side

randomly sampled in [256, 320] pixels [45, 56].

Inference. Following common practice, we uniformly sam-

ple 10 clips from a video along its temporal axis. For each

clip, we scale the shorter spatial side to 256 pixels and take

3 crops of 256×256 to cover the spatial dimensions, as an

approximation of fully-convolutional testing, following the

code of [56]. We average the softmax scores for prediction.

We report the actual inference-time computation. As

existing papers differ in their inference strategy for crop-

ping/clipping in space and in time. When comparing to

previous work, we report the FLOPs per spacetime “view"

(temporal clip with spatial crop) at inference and the number

of views used. Recall that in our case, the inference-time

spatial size is 2562 (instead of 2242 for training) and 10

temporal clips each with 3 spatial crops are used (30 views).

Datasets. Kinetics-400 [30] consists of ∼240k training

videos and 20k validation videos in 400 human action cate-

gories. Kinetics-600 [3] has ∼392k training videos and 30k

validation videos in 600 classes. We report top-1 and top-5

classification accuracy (%). We report the computational

cost (in FLOPs) of a single, spatially center-cropped clip.

Charades [43] has ∼9.8k training videos and 1.8k vali-

dation videos in 157 classes in a multi-label classification

setting of longer activities spanning ∼30 seconds on average.

Performance is measured in mean Average Precision (mAP).

4.1. Main Results

Kinetics-400. Table 2 shows the comparison with state-of-

the-art results for our SlowFast instantiations using vari-

ous input samplings (T×τ ) and backbones: ResNet-50/101

(R50/101) [24] and Nonlocal (NL) [56].

In comparison to the previous state-of-the-art [56] our

best model provides 2.1% higher top-1 accuracy. Notably,

all our results are substantially better than existing results

that are also without ImageNet pre-training. In particular, our

model (79.8%) is 5.9% absolutely better than the previous

best result of this kind (73.9%). We have experimented with

ImageNet pretraining for SlowFast networks and found that

they perform similar (±0.3%) for both the pre-trained and

the train from scratch (random initialization) variants.

Our results are achieved at low inference-time cost. We

notice that many existing works (if reported) use extremely

dense sampling of clips along the temporal axis, which can

lead to >100 views at inference time. This cost has been

largely overlooked. In contrast, our method does not require

many temporal clips, due to the high temporal resolution yet

lightweight Fast pathway. Our cost per spacetime view can

be low (e.g., 36.1 GFLOPs), while still being accurate.

The SlowFast variants from Table 2 (with different back-

bones and sample rates) are compared in Fig. 2 the with their

corresponding Slow-only pathway to assess the improvement

brought by the Fast pathway. The horizontal axis measures

model capacity for a single input clip of 2562 spatial size,

which is proportional to 1/30 of the overall inference cost.
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model flow pretrain top-1 top-5 GFLOPs×views

I3D [5] ImageNet 72.1 90.3 108 × N/A

Two-Stream I3D [5] X ImageNet 75.7 92.0 216 × N/A

S3D-G [61] X ImageNet 77.2 93.0 143 × N/A

Nonlocal R50 [56] ImageNet 76.5 92.6 282 × 30

Nonlocal R101 [56] ImageNet 77.7 93.3 359 × 30

R(2+1)D Flow [50] X - 67.5 87.2 152 × 115

STC [9] - 68.7 88.5 N/A × N/A

ARTNet [54] - 69.2 88.3 23.5 × 250

S3D [61] - 69.4 89.1 66.4 × N/A

ECO [63] - 70.0 89.4 N/A × N/A

I3D [5] X - 71.6 90.0 216 × N/A

R(2+1)D [50] - 72.0 90.0 152 × 115

R(2+1)D [50] X - 73.9 90.9 304 × 115

SlowFast 4×16, R50 - 75.6 92.1 36.1 × 30

SlowFast 8×8, R50 - 77.0 92.6 65.7 × 30

SlowFast 8×8, R101 - 77.9 93.2 106 × 30

SlowFast 16×8, R101 - 78.9 93.5 213 × 30

SlowFast 16×8, R101+NL - 79.8 93.9 234 × 30

Table 2. Comparison with the state-of-the-art on Kinetics-400.

In the last column, we report the inference cost with a single “view"

(temporal clip with spatial crop) × the numbers of such views used.

The SlowFast models are with different input sampling (T×τ ) and

backbones (R-50, R-101, NL). “N/A” indicates the numbers are

not available for us.
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Figure 2. Accuracy/complexity tradeoff on Kinetics-400 for the

SlowFast (green) vs. Slow-only (blue) architectures. SlowFast is

consistently better than its Slow-only counterpart in all cases (green

arrows). SlowFast provides higher accuracy and lower cost than

temporally heavy Slow-only (e.g. red arrow). The complexity is for

a single 2562 view, and accuracy are obtained by 30-view testing.

Fig. 2 shows that for all variants the Fast pathway is able to

consistently improve the performance of the Slow counter-

part at comparatively low cost. The next subsection provides

a more detailed analysis on Kinetics-400.

Kinetics-600 is relatively new, and existing results are lim-

ited. So our goal is mainly to provide results for future ref-

erence in Table 3. Note that the Kinetics-600 validation set

overlaps with the Kinetics-400 training set [3], and therefore

we do not pre-train on Kinetics-400. The winning entry [21]

of the latest ActivityNet Challenge 2018 [15] reports a best

model pretrain top-1 top-5 GFLOPs×views

I3D [3] - 71.9 90.1 108 × N/A

StNet-IRv2 RGB [21] ImgNet+Kin400 79.0 N/A N/A

SlowFast 4×16, R50 - 78.8 94.0 36.1 × 30

SlowFast 8×8, R50 - 79.9 94.5 65.7 ×30

SlowFast 8×8, R101 - 80.4 94.8 106 × 30

SlowFast 16×8, R101 - 81.1 95.1 213 × 30

SlowFast 16×8, R101+NL - 81.8 95.1 234 × 30

Table 3. Comparison with the state-of-the-art on Kinetics-600.

SlowFast models the same as in Table 2.

model pretrain mAP GFLOPs×views

CoViAR, R-50 [59] ImageNet 21.9 N/A

Asyn-TF, VGG16 [42] ImageNet 22.4 N/A

MultiScale TRN [62] ImageNet 25.2 N/A

Nonlocal, R101 [56] ImageNet+Kinetics400 37.5 544 × 30

STRG, R101+NL [57] ImageNet+Kinetics400 39.7 630 × 30

our baseline (Slow-only) Kinetics-400 39.0 187 × 30

SlowFast Kinetics-400 42.1 213 × 30

SlowFast, +NL Kinetics-400 42.5 234 × 30

SlowFast, +NL Kinetics-600 45.2 234 × 30

Table 4. Comparison with the state-of-the-art on Charades. All

our variants are based on T×τ = 16×8, R-101.

single-model, single-modality accuracy of 79.0%. Our vari-

ants show good performance with the best model at 81.8%.

SlowFast results on the recent Kinetics-700 [4] are in [11].

Charades [43] is a dataset with longer range activities. Ta-

ble 4 shows our SlowFast results on it. For fair comparison,

our baseline is the Slow-only counterpart that has 39.0 mAP.

SlowFast increases over this baseline by 3.1 mAP (to 42.1),

while the extra NL leads to an additional 0.4 mAP. We also

achieve 45.2 mAP when pre-trained on Kinetics-600. Over-

all, our SlowFast models in Table 4 outperform the previous

best number (STRG [57]) by solid margins, at lower cost.

4.2. Ablation Experiments

This section provides ablation studies on Kinetics-400

comparing accuracy and computational complexity.

Slow vs. SlowFast. We first aim to explore the SlowFast

complementarity by changing the sample rate (T×τ ) of the

Slow pathway. Therefore, this ablation studies α, the frame

rate ratio between the Fast and Slow paths. Fig. 2 shows the

accuracy vs. complexity tradeoff for various instantiations of

Slow and SlowFast models. It is seen that doubling the num-

ber of frames in the Slow pathway increases performance

(vertical axis) at double computational cost (horizontal axis),

while SlowFast significantly extends the performance of all

variants at small increase of computational cost, even if the

Slow pathways operates on higher frame rate. Green arrows

illustrate the gain of adding the Fast pathway to the corre-

sponding Slow-only architecture. The red arrow illustrates

that SlowFast provides higher accuracy and reduced cost.

Next, Table 5 shows a series of ablations on the Fast

pathway design, using the default SlowFast, T×τ = 4×16,

R-50 instantiation (specified in Table 1), analyzed in turn.
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lateral top-1 top-5 GFLOPs

Slow-only - 72.6 90.3 27.3

Fast-only - 51.7 78.5 6.4

SlowFast - 73.5 90.3 34.2

SlowFast TtoC, sum 74.5 91.3 34.2

SlowFast TtoC, concat 74.3 91.0 39.8

SlowFast T-sample 75.4 91.8 34.9

SlowFast T-conv 75.6 92.1 36.1

(a) SlowFast fusion: Fusing Slow and Fast pathways

with various types of lateral connections throughout

the network hierarchy is consistently better than the

Slow and Fast only baselines.

top-1 top-5 GFLOPs

Slow-only 72.6 90.3 27.3

β = 1/4 75.6 91.7 54.5

1/6 75.8 92.0 41.8

1/8 75.6 92.1 36.1

1/12 75.2 91.8 32.8

1/16 75.1 91.7 30.6

1/32 74.2 91.3 28.6

(b) Channel capacity ratio: Varying

values of β, the channel capacity ratio

of the Fast pathway to make SlowFast

lightweight.

Fast pathway spatial top-1 top-5 GFLOPs

RGB - 75.6 92.1 36.1

RGB, β=1/4 half 74.7 91.8 34.4

gray-scale - 75.5 91.9 34.1

time diff - 74.5 91.6 34.2

optical flow - 73.8 91.3 35.1

(c) Weaker spatial input to Fast pathway: Alter-

native ways of weakening spatial inputs to the Fast

pathway in SlowFast models. β=1/8 unless speci-

fied otherwise.

Table 5. Ablations on the Fast pathway design on Kinetics-400. We show top-1 and top-5 classification accuracy (%), as well as

computational complexity measured in GFLOPs (floating-point operations, in # of multiply-adds ×10
9) for a single clip input of spatial size

2562. Inference-time computational cost is proportional to this, as a fixed number of 30 of views is used. Backbone: 4×16, R-50.

Individual pathways. The first two rows in Table 5a show

the results for using the structure of one individual pathway

alone. The default instantiations of the Slow and Fast path-

way are very lightweight with only 27.3 and 6.4 GFLOPs,

32.4M and 0.53M parameters, producing 72.6% and 51.7%

top-1 accuracy, respectively. The pathways are designed

with their special expertise if they are used jointly, as is

ablated next.

SlowFast fusion. Table 5a shows various ways of fusing the

Slow and Fast pathways. As a naïve fusion baseline, we show

a variant using no lateral connection: it only concatenates

the final outputs of the two pathways. This variant has 73.5%

accuracy, slightly better than the Slow counterpart by 0.9%.

Next, we ablate SlowFast models with various lateral

connections: time-to-channel (TtoC), time-strided sampling

(T-sample), and time-strided convolution (T-conv). For TtoC,

which can match channel dimensions, we also report fus-

ing by element-wise summation (TtoC, sum). For all other

variants concatenation is employed for fusion.

Table 5a shows that these SlowFast models are all bet-

ter than the Slow-only pathway. With the best-performing

lateral connection of T-conv, the SlowFast network is 3.0%

better than Slow-only. We employ T-conv as our default.

Interestingly, the Fast pathway alone has only 51.7% ac-

curacy (Table 5a). But it brings in up to 3.0% improvement

to the Slow pathway, showing that the underlying representa-

tion modeled by the Fast pathway is largely complementary.

We strengthen this observation by the next set of ablations.

Channel capacity of Fast pathway. A key intuition for

designing the Fast pathway is that it can employ a lower

channel capacity for capturing motion without building a

detailed spatial representation. This is controlled by the

channel ratio β. Table 5b shows the effect of varying β.

The best-performing β values are 1/6 and 1/8 (our de-

fault). Nevertheless, it is surprising to see that all values

from β=1/32 to 1/4 in our SlowFast model can improve

over the Slow-only counterpart. In particular, with β=1/32,

the Fast pathway only adds as small as 1.3 GFLOPs (∼5%

relative), but leads to 1.6% improvement.

model pre-train top-1 top-5 GFLOPs

3D R-50 [56] ImageNet 73.4 90.9 36.7

3D R-50, recipe in [56] - 69.4 88.6 36.7

3D R-50, our recipe - 73.5 90.8 36.7

Table 6. Baselines trained from scratch: Using the same network

structure as [56], our training recipe achieves comparable results

without ImageNet pre-training.

Weaker spatial inputs to Fast pathway. Further, we ex-

periment with using different weaker spatial inputs to the

Fast pathway in our SlowFast model. We consider: (i) a half

spatial resolution (112×112), with β=1/4 (vs. default 1/8)

to roughly maintain the FLOPs; (ii) gray-scale input frames;

(iii) “time difference" frames, computed by subtracting the

current frame with the previous frame; and (iv) using optical

flow as the input to the Fast pathway.

Table 5c shows that all these variants are competitive and

are better than the Slow-only baseline. In particular, the

gray-scale version of the Fast pathway is nearly as good as

the RGB variant, but reduces FLOPs by ∼5%. Interestingly,

this is also consistent with the M-cell’s behavior of being

insensitive to colors [27, 37, 8, 14, 51].

We believe both Table 5b and Table 5c convincingly show

that the lightweight but temporally high-resolution Fast path-

way is an effective component for video recognition.

Training from scratch. Our models are trained from

scratch, without ImageNet training. To draw fair compar-

isons, it is helpful to check the potential impacts (positive

or negative) of training from scratch. To this end, we train

the exact same 3D ResNet-50 architectures specified in [56],

using our large-scale SGD recipe trained from scratch.

Table 6 shows the comparisons using this 3D R-50 base-

line architecture. We observe, that our training recipe

achieves comparably good results as the ImageNet pre-

training counterpart reported by [56], while the recipe in

[56] is not well tuned for directly training from scratch. This

suggests that our training system, as the foundation of our

experiments, has no loss for this baseline model, despite not

using ImageNet for pre-training.
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5. Experiments: AVA Action Detection

Dataset. The AVA dataset [20] focuses on spatiotemporal

localization of human actions. The data is taken from 437

movies. Spatiotemporal labels are provided for one frame

per second, with every person annotated with a bounding

box and (possibly multiple) actions. Note the difficulty in

AVA lies in action detection, while actor localization is less

challenging [20]. There are 211k training and 57k validation

video segments in AVA v2.1 which we use. We follow the

standard protocol [20] of evaluating on 60 classes (see Fig. 3).

The performance metric is mean Average Precision (mAP)

over 60 classes, using a frame-level IoU threshold of 0.5.

Detection architecture. Our detector is similar to Faster

R-CNN [40] with minimal modifications adapted for video.

We use the SlowFast network or its variants as the backbone.

We set the spatial stride of res5 to 1 (instead of 2), and

use a dilation of 2 for its filters. This increases the spatial

resolution of res5 by 2×. We extract region-of-interest (RoI)

features [17] at the last feature map of res5. We first extend

each 2D RoI at a frame into a 3D RoI by replicating it along

the temporal axis, similar to the method presented in [20].

Subsequently, we compute RoI features by RoIAlign [22]

spatially, and global average pooling temporally. The RoI

features are then max-pooled and fed to a per-class, sigmoid-

based classifier for multi-label prediction.

We follow previous works that use pre-computed pro-

posals [20, 46, 29]. Our region proposals are computed

by an off-the-shelf person detector, i.e., that is not jointly

trained with the action detection models. We adopt a person-

detection model trained with Detectron [18]. It is a Faster

R-CNN with a ResNeXt-101-FPN [60, 35] backbone. It is

pre-trained on ImageNet and the COCO human keypoint

images [36]. We fine-tune this detector on AVA for person

(actor) detection. The person detector produces 93.9 AP@50

on the AVA validation set. Then, the region proposals for

action detection are detected person boxes with a confidence

of > 0.8, which has a recall of 91.1% and a precision of

90.7% for the person class.

Training. We initialize the network weights from the

Kinetics-400 classification models. We use step-wise learn-

ing rate, reducing the learning rate 10× when validation error

saturates. We train for 14k iterations (68 epochs for ∼211k

data), with linear warm-up [19] for the first 1k iterations.

We use a weight decay of 10−7. All other hyper-parameters

are the same as in the Kinetics experiments. Ground-truth

boxes are used as the samples for training. The input is

instantiation-specific αT×τ frames of size 224×224.

Inference. We perform inference on a single clip with

αT×τ frames around the frame that is to be evaluated. We

resize the spatial dimension such that its shorter side is 256

pixels. The backbone feature extractor is computed fully

convolutionally, as in standard Faster R-CNN [40].

model flow video pretrain val mAP test mAP

I3D [20] Kinetics-400 14.5 -

I3D [20] X Kinetics-400 15.6 -

ACRN, S3D [46] X Kinetics-400 17.4 -

ATR, R50+NL [29] Kinetics-400 20.0 -

ATR, R50+NL [29] X Kinetics-400 21.7 -

9-model ensemble [29] X Kinetics-400 25.6 21.1

I3D [16] Kinetics-600 21.9 21.0

SlowFast Kinetics-400 26.3 -

SlowFast Kinetics-600 26.8 -

SlowFast, +NL Kinetics-600 27.3 27.1

SlowFast*, +NL Kinetics-600 28.2 -

Table 7. Comparison with the state-of-the-art on AVA v2.1. All

our variants are based on T×τ = 8×8, R101. Here “*” indicates a

version of our method that uses our region proposals for training.

model flow video pretrain val mAP test mAP

SlowFast, 8×8 Kinetics-600 29.0 -

SlowFast, 16×8 Kinetics-600 29.8 -

SlowFast++, 16×8 Kinetics-600 30.7 -

SlowFast++, ensemble Kinetics-600 - 34.3

Table 8. SlowFast models on AVA v2.2. Here “++” indicates a

version of our method that is tested with multi-scale and horizontal

flipping augmentation. The backbone is R-101+NL and region

proposals are used for training.

5.1. Main Results

We compare with previous results on AVA in Table 7. An

interesting observation is on the potential benefit of using

optical flow (see column ‘flow’ in Table 7). Existing works

have observed mild improvements: +1.1 mAP for I3D in

[20], and +1.7 mAP for ATR in [29]. In contrast, our base-

line improves by the Fast pathway by +5.2 mAP (see Table 9

in our ablation experiments in the next section). Moreover,

two-stream methods using optical flow can double the com-

putational cost, whereas our Fast pathway is lightweight.

As system-level comparisons, our SlowFast model has

26.3 mAP using only Kinetics-400 pre-training. This is 5.6

mAP higher than the previous best number under similar

settings (21.7 of ATR [29], single-model), and 7.3 mAP

higher than that using no optical flow (Table 7).

The work in [16] pre-trains on the larger Kinetics-600

and achieves 21.9 mAP. For fair comparison, we observe

an improvement from 26.3 mAP to 26.8 mAP for using

Kinetics-600. Augmenting SlowFast with NL blocks [56]

increases this to 27.3 mAP. We train this model on train+val

(and by 1.5× longer) and submit it to the AVA v2.1 test server

[34]. It achieves 27.1 mAP single crop test set accuracy.

By using predicted proposals overlapping with ground-

truth boxes by IoU > 0.9, in addition to the ground truth

boxes, for training we achieve 28.2 mAP single crop valida-

tion accuracy, a new state-of-the-art on AVA.

Using the AVA v2.2 dataset (which provides more con-

sistent annotations) improves this number to 29.0 mAP (Ta-

ble 8). The longer-term SlowFast, 16×8 model produces

29.8 mAP and using multiple spatial scales and horizontal

flip for testing, this number is increased to 30.7 mAP.
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Figure 3. Per-category AP on AVA: a Slow-only baseline (19.0 mAP) vs. its SlowFast counterpart (24.2 mAP). The highlighted categories

are the 5 highest absolute increase (black) or 5 highest relative increase with Slow-only AP > 1.0 (orange). Categories are sorted by number

of examples. Note that the SlowFast instantiation in this ablation is not our best-performing model.

model T × τ α mAP

Slow-only, R-50 4×16 - 19.0

SlowFast, R-50 4×16 8 24.2

Table 9. AVA action detection baselines: Slow-only vs. SlowFast.

Finally, we create an ensemble of 7 models and submit it

to the official test server for the ActivityNet challenge 2019

[1]. As shown in Table 8 this entry (SlowFast++, ensemble)

achieved 34.3 mAP accuracy on the test set, ranking first

in the AVA action detection challenge 2019. Further details

on our winning solution are provided in the corresponding

technical report [11].

5.2. Ablation Experiments

Table 9 compares a Slow-only baseline with its SlowFast

counterpart, with the per-category AP shown in Fig. 3. Our

method improves massively by 5.2 mAP (relative 28%) from

19.0 to 24.2. This is solely contributed by our SlowFast idea.

Category-wise (Fig. 3), our SlowFast model improves in

57 out of 60 categories, vs. its Slow-only counterpart. The

largest absolute gains are observed for “hand clap" (+27.7

AP), “swim" (+27.4 AP), “run/jog" (+18.8 AP), “dance"

(+15.9 AP), and “eat” (+12.5 AP). We also observe large

relative increase in “jump/leap”, “hand wave”, “put down”,

“throw”, “hit” or “cut”. These are categories where modeling

dynamics are of vital importance. The SlowFast model

is worse in only 3 categories: “answer phone" (-0.1 AP),

“lie/sleep" (-0.2 AP), “shoot" (-0.4 AP), and their decrease is

relatively small vs. others’ increase.

6. Conclusion

The time axis is a special dimension. This paper has inves-

tigated an architecture design that contrasts the speed along

this axis. It achieves state-of-the-art accuracy for video ac-

tion classification and detection. We hope that this SlowFast

concept will foster further research in video recognition.

A. Appendix

Implementation details. We study backbones including

ResNet-50 and the deeper ResNet-101 [24], optionally aug-

mented with non-local (NL) blocks [56]. For models involv-

ing R-101, we use a scale jittering range of [256, 340]. The

T×τ = 16×8 models are initilaized from the 8×8 coun-

terparts and trained for half the training epochs to reduce

training time. For all models involving NL, we initialize

them with the counterparts that are trained without NL, to

facilitate convergence. We only use NL on the (fused) Slow

features of res4 (instead of res3+res4 [56]).

On Kinetics, we adopt synchronized SGD training in 128

GPUs following the recipe in [19], and we found its accu-

racy is as good as typical training in one 8-GPU machine

but it scales out well. The mini-batch size is 8 clips per

GPU (so the total mini-batch size is 1024). We use the

initialization method in [23]. We train with Batch Normal-

ization (BN) [28] with BN statistics computed within each 8

clips. We adopt a half-period cosine schedule [38] of learn-

ing rate decaying: the learning rate at the n-th iteration is

η · 0.5[cos( n

nmax
π)+ 1], where nmax is the maximum training

iterations and the base learning rate η is set as 1.6. We also

use a linear warm-up strategy [19] in the first 8k iterations.

For Kinetic-400, we train for 256 epochs (60k iterations with

a total mini-batch size of 1024, in ∼240k Kinetics videos)

when T ≤ 4 frames, and 196 epochs when T > 4 frames: it

is sufficient to train shorter when a clip has more frames. We

use momentum of 0.9 and weight decay of 10-4. Dropout

[25] of 0.5 is used before the final classifier layer.

For Kinetics-600, we extend the training epochs (and

schedule) by 2× and set the base learning rate η to 0.8.

For Charades, we fine-tune the Kinetics models. A per-

class sigmoid output is used to account for the mutli-class

nature. We train on a single machine for 24k iterations using

a batch size of 16 and a base learning rate of 0.0375 (Kinetics-

400 pre-trained) and 0.02 (Kinetics-600 pre-trained) with

10× step-wise decay if the validation error saturates. For

inference, we temporally max-pool scores [56].
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