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Abstract

Adversarial attacks for image classification are small

perturbations to images that are designed to cause misclas-

sification by a model. Adversarial attacks formally corre-

spond to an optimization problem: find a minimum norm

image perturbation, constrained to cause misclassification.

A number of effective attacks have been developed. How-

ever, to date, no gradient-based attacks have used best

practices from the optimization literature to solve this con-

strained minimization problem. We design a new untar-

geted attack, based on these best practices, using the well-

regarded logarithmic barrier method.

On average, our attack distance is similar or better than

all state-of-the-art attacks on benchmark datasets (MNIST,

CIFAR10, ImageNet-1K). In addition, our method performs

significantly better on the most challenging images, those

which normally require larger perturbations for misclassi-

fication. We employ the LogBarrier attack on several ad-

versarially defended models, and show that it adversari-

ally perturbs all images more efficiently than other attacks:

the distance needed to perturb all images is significantly

smaller with the LogBarrier attack than with other state-of-

the-art attacks.

1. Introduction

Deep learning models have achieved impressive results

in many areas of application. However, deep learning mod-

els remain vulnerable to adversarial attacks [21]: small

changes (imperceptible to the human eye) in the model

input may lead to vastly different model predictions. In

security-based applications, this vulnerability is of utmost

concern. For example, traffic signs may be modified with

small stickers to cause misclassification, causing say a stop

sign to be treated as speed limit sign [7]. Facial recognition

systems can be easily spoofed using colourful glasses [19].

This security flaw has led to an arms race in the re-

search community, between those who develop defences to

adversarial attacks, and those working to overcome these

defences with stronger adversarial attack methods [22, 17].

Notably, as the community develops stronger adversarial at-

tack methods, claims of model robustness to adversarial at-

tack are often proved to be premature [5, 2].

There are two approaches to demonstrating a model is

resistant to adversarial attacks. The first is theoretical, via a

provable lower bound on the minimum adversarial distance

necessary to cause misclassification [22, 17, 9]. Theoreti-

cal lower bounds are often pessimistic: the gap between the

theoretical lower bound and adversarial examples generated

by state-of-the-art attack algorithms can be large. There-

fore, a second empirical approach is also used: an upper

bound on the minimum adversarial distance is demonstrated

through adversarial examples created by adversarial attacks

[11, 14, 5, 4]. The motivation to design strong adversarial

attacks is therefore twofold: on the one hand, to validate

theoretical lower bounds on robustness; and on the other,

to construct empirical upper bounds on the minimum ad-

versarial distance. Ideally, the gap between the theoreti-

cal lower bound and the empirical upper bound should be

small. As adversarial attacks become stronger, the gap nar-

rows from above.

The process of finding an adversarial example with an

adversarial attack is an optimization problem: find a small

perturbation of the model input which causes misclassifi-

cation. This optimization problem has been recast in vari-

ous ways. Rather than directly enforcing misclassification,

many adversarial attacks instead attempt to maximize the

loss function. The Fast Gradient Signed Method (FGSM)

was one of the first adversarial attacks to do so [21], mea-

suring perturbation size in the ℓ∞ norm. Iterative versions

of FGSM were soon developed [11, 14, 24]. When pertur-

bations are measured in the ℓ2 norm, the iterative version

performs Projected Gradient Descent (PGD); when mea-

sured in ℓ∞ the iterative version is known as IFGSM. Both

iterative versions maximize the loss function subject to a

constraint enforcing small perturbation in the appropriate

norm. Other works have studied sparse adversarial attacks,

as in [16]. Rather than maximizing the loss, Carlini and
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Wagner [5] developed a strong adversarial attack by forcing

misclassification to a predetermined target class. If only the

decision of the model is available (but not the loss or the

model gradients), adversarial examples can still be found

using gradient-free optimization techniques [4].

In this paper, rather than using the loss as a proxy

for misclassification, we design an adversarial attack that

solves the adversarial optimization problem directly: min-

imize the size of the input perturbation subject to a mis-

classification constraint. Our method is gradient-based, but

does not use the training loss function. The method is based

on a sound, well-developed optimization technique, namely

the logarithmic barrier method [15]. The logarithmic bar-

rier is a simple and intuitive method designed specifically

to enforce inequality constraints, which we leverage to en-

force misclassification. We compare the LogBarrier attack

against current benchmark adversarial attacks (using the

Foolbox attack library [18]), on several common datasets

(MNIST [13], CIFAR10 [10], ImageNet-1K [6]) and mod-

els. On average, we show that the LogBarrier attack is

comparable to current state-of-the-art adversarial attacks.

Moreover, we show that on challenging images (those that

require larger perturbations for misclassification), the Log-

Barrier attack consistently outperforms other adversarial at-

tacks. Indeed, we illustrate this point by attacking models

trained to be adversarially robust, and show that the Log-

Barrier attack perturbs all images more efficiently than other

attack methods: the LogBarrier attack is able to perturb all

images using a much smaller perturbation size than that of

other methods.

2. Background material

Adversarial examples arise in classification problems

across multiple domains. The literature to date has been

concerned primarily with adversarial examples in image

classification: adversarial images appears no different (or

only slightly so) from an image correctly classified by a

model, but despite this similarity, are misclassified.

We let X be the space of images. Typically, pixel values

are scaled to be between 0 and 1, so that X is the unit box

[0, 1]M ⊂ R
M . We let Y be the space of labels. If the

images can be one of N classes, Y is usually a subset of

R
N . Often Y is the probability simplex, but not always.

In this case, each element yi of a label y correspond to the

probability an image is of class i. Ground-truth labels are

then one-hot vectors.

A trained model, with fixed model weights w, is a map

f(·;w) : X → Y . For brevity, in what follows we drop de-

pendence on w. For an input image x, the model’s predicted

classification is the argmax of the model outputs. Given

image-label pair (x, y), let c be the index of the correct label

(the argmax of y). A model is correct if argmax f(x) = c.
An adversarial image is a perturbation of the original im-

age, x+ δ, such that the model misclassifies:

argmax f(x+ δ) 6= c (1)

The perturbation must be small in a certain sense: it must

be small enough that a human can still correctly classify the

perturbed image. There are various metrics for measuring

the size of the perturbation. A common choice is the ℓ∞
norm (the max-norm); others use the (Euclidean) ℓ2 norm.

If perturbations must be sparse – for example, if the attacker

can only modify a small portion of the total image – then the

count of non-zero elements in δ may be used. Throughout

this paper we let m(δ) be a generic metric on the size of

the perturbation δ. Typically m(δ) is a specific ℓp norm,

m(δ) = ‖δ‖p, such as the Euclidean or max norms. Thus

the problem of finding an adversarial image may be cast as

an optimization problem, minimize the size of the perturba-

tion subject to model misclassification.

The misclassification constraint is difficult to enforce, so

a popular alternative is to introduce a loss function L. For

example, L could be the loss function used during model

training. In this case the loss measures the ‘correctness’

of the model at an image x. If the loss is large at a per-

turbed image x + δ, then it is hoped that the image is also

misclassified. The loss function is then used as a proxy for

misclassification, which gives rise to the following indirect

method for finding adversarial examples:

maximize
δ

L(x+ δ)

subject to m(δ) ≤ ε,
(2)

maximize the loss subject to perturbations being smaller

than a certain threshold. The optimization approach taken

by (2) is by far the most popular method for finding ad-

versarial examples. In one of the first papers on this

topic, Szegedy et al [21] proposed the Fast Signed Gradi-

ent Method (FGSM), where m(δ) is the ℓ∞ norm of the

perturbation δ, and the solution to (2) is approximated by

taking one step in the signed gradient direction. An iterative

version with multiple steps, Iterative FGSM (IFGSM) was

proposed in [11], and remains the method of choice for ad-

versarial attacks measured in ℓ∞. When perturbations are

measured in ℓ2, (2) is solved with Projected Gradient De-

scent (PGD) [14].

Fewer works have studied the adversarial optimization

problem directly, i.e., without a loss function. In a seminal

work, Carlini and Wagner [5], developed a targeted attack,

in which the adversarial distance is minimized subject to

a targeted misclassification. In a targeted attack, not just

any misclassification will do: the adversarial perturbation

must induce misclassification to a pre-specified target class.

The Carlini-Wagner attack (CW) incorporates the targeted

misclassification constraint as a penalty term into the objec-

tive function. The CW attack was able to overcome many
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adversarial defence methods that had been thought to be

effective, and was an impetus for the adversarial research

community’s search for rigorous, theoretical guarantees of

adversarial robustness.

There is interest in gradient-free methods for finding ad-

versarial examples. In this scenario, the attacker only has

access to the classification of the model, but not the model

itself (nor the model’s gradients). In [4], Brendal et al di-

rectly minimize the ℓ2 adversarial distance while enforc-

ing misclassification using a gradient-free method. Their

Boundary attack iteratively alternates between minimizing

the perturbation size, and projecting the perturbation onto

the classification boundary. The projection step is approxi-

mated by locally sampling the model decision near the clas-

sification boundary.

3. The LogBarrier Attack

We tackle the problem of finding (untargeted) adversar-

ial examples by directly solving the following optimization

problem,

minimize
δ

m(δ)

subject to argmax f(x+ δ) 6= c,
(3)

that is, minimize the adversarial distance subject to misclas-

sification. We use the logarithmic barrier method [15] to en-

force misclassification, as follows. We are given an image-

label pair (x, y) and correct label c = argmax y. Misclas-

sification at an image x occurs if there is at least one index

of the model’s prediction with greater value than the predic-

tion of the correct index:

max
i 6=c

fi(x)− fc(x) > 0 (4)

This is a necessary and sufficient condition for misclassifi-

cation. Thus, we rewrite (3):

minimize
δ

m(δ)

subject to max
i 6=c

fi(x+ δ)− fc(x+ δ) > 0.
(5)

The barrier method is a standard tool in optimization for

solving problems such as (5) with inequality constraints. A

complete discussion of the method can be found in [15]. In

the barrier method, inequality constraints are incorporated

into the objective function via a penalty term, which is in-

finite if a constraint is violated. If a constraint is far from

being active, then the penalty term should be small. The

negative logarithm is an ideal choice:

min
δ

m(δ)− λ log (fmax − fc) (6)

where we denote fmax := maxi fi(x + δ) and fc :=
fc(x + δ). If the gap between fmax is much larger than
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Figure 1: The logarithmic barrier function φ(·) :=
−λ log(·) defined over (0, 1). As λ decreases, the barrier

becomes steeper, mimicking a hard constraint.

fc, the logarithmic barrier term is small. However, as this

gap shrinks, the penalty term approaches infinity. Thus the

penalty acts as a barrier, forcing an optimization algorithm

to search for solutions where the constraint is inactive. If

(6) is solved iteratively with smaller and smaller values of

λ, in the limit as λ → 0, the solution to the original prob-

lem (5) is recovered. (This argument can be made formal if

desired, using Γ-convergence [3].) See Figure 1, where the

barrier function is plotted with decreasing values of λ. In

the limit as λ→ 0, the barrier becomes 0 if the constraint is

satisfied, and∞ otherwise.

3.1. Algorithm description

We now give a precise description of our implementa-

tion of the log barrier method for generating adversarial im-

ages. The constraint fmax − fc > 0 can be viewed as a

feasible set. Thus, the algorithm begins by finding an ini-

tial feasible image: the original image must be perturbed

so that it is misclassified (not necessarily close to the orig-

inal). There are several ways to find a misclassified image.

A simple approach would be to take another natural image

with a different label. However, we have found in practice

that closer initial images are generated by randomly per-

turbing the original image with increasing levels of noise

(e.g. Standard Normal or Bernoulli) until it is misclassified.

After each random perturbation, the image is projected back

onto the set of images in the [0, 1]M box, via the projection

P . This process is briefly described in Algorithm 1. Note

that if the original image is already misclassified, no ran-

dom perturbation is performed, since the original image is

already adversarial.
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Algorithm 1 LogBarrier: Initialization

Input: image x ∈ X , model f(·;w), ρ, step-size h > 0,

kmax ∈ N.

Initialize: B ∼ Bernoulli(ρ) ∈ X or B ∼ Normal(0, 1)
for k = 0 to kmax do

if x misclassified then

Exit for-loop

else

Sample b from B
x← P(x+ h1.01kb)

end if

end for

After an initial perturbation is found, we solve (6) for a

fixed λ. Various optimization methods algorithms may be

used to solve (6). For small- to medium-scale problems,

variants of Newton’s method are typically preferred. How-

ever, due to computational constraints, we chose to use gra-

dient descent. After each gradient descent step, we check

to ensure that the updated adversarial image remains in the

[0, 1]M box. If not, it is projected back into the set of images

with the projection P .

It is possible that a gradient descent step moves the ad-

versarial image so that the image is correctly classified by

the model. If this occurs, we simply backtrack along the

line between the current iterate and the previous iterate, un-

til we regain feasibility. To illustrate the backtracking pro-

cedure, let u(k) be the previous iterate, and ũ(k+1) be a can-

didate adversarial image which is now correctly classified.

We continue backtracking the next iterate via

ũ(k+1) ← γũ(k+1) + (1− γ)u(k), (7)

until the iterate is misclassified. The hyper-parameter γ ∈
(0, 1) is a backtracking parameter. The accumulation point

of the above sequence is u(k). As a result, this process

is guaranteed to terminate, since the previous iterate is it-

self misclassified. This backtracking procedure is some-

times necessary when iterates are very close to the deci-

sion boundary. If the iterate is very close to the decision

boundary, then the gradient of the log barrier term is very

large, and dominates the update step. Since the constraint

set fmax − fy > 0 is not necessarily convex or even fully

connected, it is possible that the iterate could be sent far

from the previous iterate without maintaining misclassifi-

cation. We rarely experience this phenomenon in practice,

but include the backtracking step as a safety. An alternate

approach (which we did not implement), more aligned with

traditional optimization techniques, would be instead to use

a dynamic step size rule such as the Armijo-Goldstein con-

dition [1].

The gradient descent algorithm comprises a series of it-

erates in an inner loop. Recall that as λ → 0, the log bar-

Figure 2: The central path taken by the LogBarrier attack.

Dashed lines represent level sets of the logarithmic barrier

function. As λ decreases iterates approach the decision

boundary.

Algorithm 2 LogBarrier attack

Input: original image x, initial misclassified image u(0),

model f(·;w), distance measure m(·)
Hyperparameters: backtrack factor γ ∈ (0, 1); initial

penalty size λ0; step size h; λ shrink factor β ∈ (0, 1);
termination threshold ε > 0; and maximum iterations

Kouter, Jinner ∈ N.

for j = 0 to Kouter · Jinner do

If j mod Kouter = 0 : λk = λ0β
k

ũ(j+1) ← u(j) − h∇
(

m(u(j) − x) + λkφ(u
(j))

)

u(j+1) ← P
(

ũ(j+1)
)

project onto [0, 1]M

while u(j+1) not misclassified do

u(j+1) ← γu(j+1) + (1− γ)u(j)

end while

if ‖u(j+1) − u(j)‖ ≤ ε then

break

end if

end for

rier problem approaches the original problem (5). Thus, we

shrink λ by a certain factor and repeat the procedure again,

iterating in a series of outer loops (of course, initializing

now with previous iterate). As λ shrinks, the solutions to

(6) approach the decision boundary. In each inner loop, if

the iterates fail to move less than some threshold value ε,

we move onto the next outer loop. The path taken by the it-

erates of the outer loop is called the central path, illustrated

in Figure 2.
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The LogBarrier attack pseudocode is presented in Al-

gorithm 2. For brevity we write the log barrier φ(u) :=
− log(maxi fi(u) − fc(u)). We remark that the LogBar-

rier attack can be improved by running the method several

times, with different random initializations (although we do

not implement this here).

The literature on adversarial perturbations primarily fo-

cuses on perturbations measured in the ℓ2 and ℓ∞ norms.

For perturbations measured in the ℓ2 norm, we set the dis-

tance measure to be the squared Euclidean norm, m(δ) =
‖δ‖22. When perturbations are measured in the ℓ∞ norm, we

do not use the max-norm directly as a measure, due to the

fact that the ℓ∞ norm is non-smooth with sparse subgradi-

ents. Instead, we use the following approximation of the ℓ∞
norm [12],

‖δ‖∞ = max
i=1,...,N

|δi|

≈

∑N
i=1 |δi| exp(α|δi|)
∑N

i=1 exp(α|δi|)
,

where α > 0. As α→∞ the ℓ∞ norm is recovered.

Algorithm hyper-parameters

Like many optimization routines, the logarithmic barrier

method has several hyper-parameters. However, because

our implementation is parallelized, we have found that the

tuning process is relatively quick. For the ℓ∞ attack, our

default parameters are ε = 10−6, h = 0.1, β = 0.75, γ =
0.5, λ0 = 0.1,Kouter = 25, and Jinner = 1000. For ℓ2, we

set h = 5 · 10−3 with Kouter = 15 and Jinner = 200; the rest

are the same as in the ℓ∞ case.

For the initialization procedure, we have kmax = 103

and h = 5 · 10−4. If attacking in ℓ2, we initialize using

the Standard Normal distribution. Else, for ℓ∞, we use the

Bernoulli initialization with ρ = 0.01.

Top5 misclassification

The LogBarrier attack may be generalized to enforce Top5

misclassification as well. In this case, the misclassification

constraint is that f(k)(x+δ)−fc(x+δ) > 0, k = 1, . . . , 5,

where now (k) is the index of sorted model outputs. (In

other words, f(1) = maxi fi, and f(2) is the second-largest

model output, and so forth.) We then set the barrier function

to be −
∑5

k=1 log(f(k) − fc). In this scenario, the LogBar-

rier attack is initialized with an image that is not classified

in the Top5.

4. Experimental results

We compare the LogBarrier attack with current state-

of-the-art adversarial attacks on three benchmark datasets:

MNIST [13], CIFAR10 [10], and ImageNet-1K [6]. On

Table 1: Percent misclassification of the networks at a spec-

ified perturbation size, for attacks measured in ℓ2. Because

we are measuring the strength of adversarial attacks, at a

given adversarial distance, a higher percentage misclassi-

fied is better.

MNIST
CIFAR10

Imagenet-1K
AllCNN ResNeXt34

‖δ‖2 2.3 120/255 120/255 1

LogBarrier 99.10 98.70 99.90 98.40

CW 98.50 97.30 90.40 74.86

PGD 52.58 86.60 59.80 90.00

BA 97.20 98.70 99.60 48.80

Table 2: Percent misclassification of the networks at a spec-

ified perturbation size, for attacks measured in ℓ∞. Higher

percentage misclassified is better.

MNIST
CIFAR10

Imagenet-1K
AllCNN ResNeXt34

‖δ‖∞ 0.3 8/255 8/255 8/255

LogBarrier 94.80 100 98.70 95.20

IFGSM 73.40 93.1 75.80 99.60

MNIST and CIFAR10, we attack 1000 randomly chosen

images; on ImageNet-1K we attack 500 randomly selected

images, due to computational constraints. On ImageNet-

1K, we use the Top5 version of the LogBarrier attack.

All other attack methods are implemented using the ad-

versarial attack library Foolbox [18]. For adversarial attacks

measured in ℓ2, we compare the LogBarrier attack against

Projected Gradient Descent (PGD) [14], the Carlini-Wagner

attack (CW) [5], and the Boundary attack (BA) [4]. These

three attacks all very strong, and consistently perform well

in adversarial attack competitions. When measured in ℓ∞,

we compare against IFGSM [11], the current state-of-the-

art. We leave Foolbox hyper-parameters to their defaults,

except the number of iterations in the Boundary attack,

which we set to a maximum of 5000 iterations.

4.1. Undefended networks

We first study the LogBarrier attack on networks that

have not been trained to be adversarially robust. For

MNIST, we use the network described in [5, 16]. On CI-

FAR10, we consider two networks: AllCNN [20], a shal-

low convolutional network; and a ResNeXt34 (2x32) [23],

a much deeper network residual network. Finally, for

ImageNet-1K, we use a pre-trained ResNet50 [8] available

for download on the PyTorch website.

Tables 1 and 2 report the percentage misclassified, for

each attack at a fixed perturbation size. A strong attack

should have a high misclassification rate. In the tables, the

perturbation size is chosen to agree with attack thresholds

commonly reported in the adversarial literature. Measured
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Table 3: Adversarial attacks perturbation statistics in the ℓ2 norm. We report the mean and variance of the adversarial distance

on a subsample of the test dataset. Lower values are better.

MNIST
CIFAR10

ImageNet-1K
AllCNN ResNeXt34

µ σ2 µ σ2 µ σ2 µ σ2

LogBarrier 1.29 1.98e−1 1.63e−1 1.12e−2 1.21e−1 6.68e−3 3.82e−1 6.87e−2

CW 1.27 1.96e−1 1.72e−1 8.57e−2 2.39e−1 1.87e−1 8.86e−1 1.59

PGD 2.54 2.53 3.18e−1 3.49e−1 6.88e−1 1.15 4.21e−1 3.16e−1
BA 1.41 2.11e−1 1.63e−1 1.36e−2 1.11e−1 7.396e−3 1.55 3.31

Table 4: Adversarial attacks perturbation statistics in the ℓ∞ norm. We report the mean and variance of the adversarial attack

distance for each method on a subsample of the test dataset. Lower values are better.

MNIST
CIFAR10

ImageNet-1K
AllCNN ResNeXt34

µ σ2 µ σ2 µ σ2 µ σ2

LogBarrier 1.57e−1 7.43e−3 6.16e−3 1.3e−5 5.14e−3 3.20e−5 1.27e−2 1.46e−3
IFGSM 2.49e−1 3.4e−2 1.14e−2 6.93e−4 2.70e−2 2.07e−3 2.38e−3 1.30e−5

in Euclidean norm, we see that the LogBarrier attack is the

strongest on all datasets and models. Measured in the max-

norm, the LogBarrier outperforms IFGSM on all datasets

and models, except on ImageNet-1K where the difference

is slight.

We also report the mean and variance of the adversarial

attack distances, measured in ℓ2 and ℓ∞, in Tables 3 and 4

respectively. A strong adversarial attack should have a small

mean adversarial distance, and a small variance. Small vari-

ance is necessary to ensure precision of the attack method.

A strong attack method should be able to consistently find

close adversarial examples. Table 3 demonstrates that, mea-

sured in ℓ2, the LogBarrier attack is either the first ranked at-

tack, or a close second. When measured in ℓ∞, the LogBar-

rier attack significantly outperforms IFGSM on all datasets

and models, except ImageNet-1K.

For illustration, we show examples of adversarial images

from the IFGSM and LogBarrier attacks in Figure 3. On

images where IFGSM requires a large distance to adver-

sarially perturb, the LogBarrier attack produces visibly less

distorted images.

4.2. Defended networks

In this section we turn to attacking adversarially de-

fended networks. We first consider two defence strategies:

gradient obfuscation [2], and multi-step adversarial train-

ing as described in Madry et al [14]. We study these two

strategies on the MNIST and ResNeXt34 networks used in

Section 4.1. We limit ourselves to studying defence meth-

ods for attacks in the ℓ∞ norm. Attacks are performed on

the same 1000 randomly selected images as the previous

section. Finally, we also test our attack on a MNIST model

trained with Convex Adversarial Polytope [22] training, the

current state-of-the-art defence method on MNIST.

Gradient Obfuscation

Although discredited as a defence method [2], gradient ob-

fuscation is a hurdle any newly proposed adversarial attack

method must be able to surmount. We implement gradient

obfuscation by increasing the temperature on the softmax

function computing model probabilities from model logits.

As the softmax temperature increases, the size of the gra-

dients of the model probabilities approaches zero, because

the model probabilities approach one-hot vectors. Although

the decision boundary of the model does not change, many

adversarial attack algorithms have difficulty generating ad-

versarial examples when model gradients are small.

In Tables 5 and 6 we show that the LogBarrier attack

easily overcomes gradient obfuscation, on both CIFAR10

and MNIST models. The reason that the LogBarrier method

is able to overcome gradient obfuscation is simple: away

from the decision boundary, the logarithmic barrier term is

not active (indeed, it is nearly zero). Thus the LogBarrier

algorithm focuses on minimizing the adversarial distance,

until it is very close to the decision boundary, at which point

the barrier term activates. In contrast, because IFGSM is a

local method, if model gradients are small, it has a difficult

time climbing the loss landscape, and is not able to generate

adversarial images.
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Figure 3: Adversarial images for ℓ∞ perturbations, generated by the LogBarrier and IFGSM adversarial attacks, compared

against the original clean image. Where IFGSM has difficulties finding adversarial images, the LogBarrier method succeeds:

LogBarrier adversarial images are visibly less distorted than IFGSM adversarial images.
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Figure 4: Overlay of attack curves, measured in ℓ∞, on (a) MNIST and (b) CIFAR10 networks. Two types of networks

are compared: an undefended network, and a defended network (denoted (D)), trained using the same architecture as the

undefended network with adversarial training. The LogBarrier attack requires a smaller adversarial distance to attack all

images, compared to IFGSM.

Adversarial Training

Adversarial training is a popular method for defending

against adversarial attacks. We test the LogBarrier attack

on networks trained with multi-step adversarial training in

the ℓ∞ norm, as presented in Madry et al [14]. Our re-

sults are shown in Tables 5 and 6. We also plot defence

curves of the LogBarrier and IFGSM attacks on defended

and undefended models in Figures 4a and 4b, for respec-

tively MNIST and CIFAR10.

On MNIST, we did not observe a reduction in test ac-

curacy on clean images with adversarially trained models

compared to undefended models. As expected, adversarial

training hinders both LogBarrier and IFGSM from finding

adversarial images at very small distances. However, we

see that the LogBarrier attack is able to attack all images

with nearly the same distance in both the defended and un-

defended models. In contrast, IFGSM requires a very large

adversarial distance to attack all images on the defended

model, as shown in Figure 4a. That is, adversarial train-

ing does not significantly reduce the empirical distance re-

quired to perturb all images, when the LogBarrier attack

is used. The point is illustrated in Table 5, where we re-

port the distance required to perturb 90% of all images.

The LogBarrier attack requires an adversarial distance of

0.22 on the undefended MNIST model, and 0.29 on the de-

fended MNIST model, to perturb 90% of all images. In con-

trast, IFGSM requires a distance of 0.46 on the undefended

model, but 0.65 on the defended model.

On CIFAR10, we observe the same behaviour, although
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Table 5: Defence strategies on MNIST. We report the percentage misclassified at ℓ∞ adversarial magnitudes ‖δ‖∞ = 0.1 and

0.3; higher is better. We also report the attack magnitude needed to perturb 90% of the images (the 90% quantile of attacks,

written q(90%)). ‘NA’ indicates that the attack failed.

Undefended Obfuscated (T = 2) Adversarial training1

‖δ‖∞ = 0.1 ‖δ‖∞ = 0.3 q(90%) ‖δ‖∞ = 0.1 ‖δ‖∞ = 0.3 q(90%) ‖δ‖∞ = 0.1 ‖δ‖∞ = 0.3 q(90%)

LogBarrier 15.70 94.80 2.27e−1 18.30 99.80 1.95e−1 3.59 (2.90) 31.50 (95.40) 4.06e−1 (2.85e−1)

IFGSM 12.40 62.5 4.60e−1 8.60 32.90 NA 2.80 (3.00) 23.59 (53.80) 4.49e−1 (6.51e−1)

Table 6: Defence strategies on ResNeXt34 on the CIFAR10 dataset. We report the percentage misclassified at ℓ∞ adversarial

magnitudes of ‖δ‖∞ = 4/255 and 8/255, and the magnitude required to perturb 90% of test images. If the adversarial attack

was unsuccessful, we report NA.

Undefended Obfuscated (T = 20) Adversarial training

‖δ‖∞ = 4
255 ‖δ‖∞ = 8

255 q(90%) ‖δ‖∞ = 4
255 ‖δ‖∞ = 8

255 q(90%) ‖δ‖∞ = 4
255 ‖δ‖∞ = 8

255 q(90%)

LogBarrier 98.40 98.70 7.79e−3 47.60 54.40 1.53e−1 23.40 48.10 9.58e−2

IFGSM 58.30 75.80 6.56e−2 36.90 43.90 NA 31.60 54.90 1.38e−1

the phenomenon is less pronounced. As shown in Table

6 and Figure 4b, the LogBarrier attack requires a smaller

adversarial distance to perturb all images than IFGSM. No-

tably, the LogBarrier attack on the defended network is able

to attack all images with a smaller adversarial distance than

even IFGSM on the undefended network.

Against the Convex Adversarial Polytope

Finally, we use the LogBarrier attack on a provable defence

strategy, the Convex Adversarial Polytope [22]. The Con-

vex Adversarial Polytope is a method for training a model to

guarantee that no more than a certain percentage of images

may be attacked at a given adversarial distance. We chose

to attack the defended MNIST network in [22], which is

guaranteed to have no more than 5.82% misclassification at

perturbation size ‖δ‖∞ = 0.1. We validated this theoretical

guarantee with both the LogBarrier attack and IFGSM, and

found that both methods were unable to perturb more than

3% of test images at distance 0.1.

5. Discussion

We have presented a new adversarial attack that uses a

traditional method from the optimization literature, namely

the logarithmic barrier method. The LogBarrier attack is ef-

fective in both the ℓ∞ and ℓ2 norms. The LogBarrier attack

directly solves the optimization problem posed by the very

definition of adversarial images; i.e., find an image close

to an original image, while being misclassified by a net-

work. This is in contrast to many other adversarial attack

problems (such as PGD or IFGSM), which attempt to max-

imize a loss function as a proxy to the true adversarial op-

1In an earlier manuscript, the defended MNIST model was not as robust

as it could have been. Here we report attacks on a new robust model as

well as the older less robust model; the results for the old model is in

parenthesis.

timization problem. Whereas loss-based adversarial attacks

start locally at or near the original image, the LogBarrier

attack begins far from the original image. In this sense,

the LogBarrier attack is similar in spirit to the Boundary

attack [4]: both the LogBarrier attack and the Boundary at-

tack begin with a misclassified image, and iteratively move

the image closer to the original image, while maintaining

misclassification. The LogBarrier attack is a gradient-based

attack: to enforce misclassification, gradients of the loga-

rithmic barrier are required. In contrast, the Boundary at-

tack is gradient-free, and uses rejection sampling to enforce

misclassification. Although the LogBarrier attack uses gra-

dients, we have shown that it is not impeded by gradient

obfuscation, a common drawback to other gradient-based

attacks. Because the LogBarrier attack is able to use gradi-

ents, it is typically faster than the Boundary attack.

The LogBarrier attack may be used as an effective tool

to validate claims of adversarial robustness. We have shown

that one strength of the LogBarrier attack is its ability to

attack all images in a test set, using a fairly small max-

imum adversarial distance compared to other attacks. In

other words, the LogBarrier attack estimates the mean ad-

versarial distance with high precision. Using the LogBar-

rier attack, we have raised questions about the robustness

of multi-step adversarial training [14]. For instance, on

MNIST, we showed that multi-step adversarial training did

not significantly improve the necessary distance required to

perturb all test images, relative to an undefended model. For

adversarially trained models on CIFAR10, we showed that

the necessary distance to perturb all images is significantly

smaller than the estimate provided by IFGSM. This is fur-

ther motivation for the development of rigorous, theoretical

guarantees of model robustness.
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