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Abstract

Weakly supervised object detection (WSOD) that only
needs image-level annotations has obtained much atten-
tion recently. By combining convolutional neural network
with multiple instance learning method, Multiple Instance
Detection Network (MIDN) has become the most popular
method to address the WSOD problem and been adopted
as the initial model in many works. We argue that MIDN
inclines to converge to the most discriminative object parts,
which limits the performance of methods based on it. In this
paper, we propose a novel Coupled Multiple Instance De-
tection Network (C-MIDN) to address this problem. Specif-
ically, we use a pair of MIDNs, which work in a com-
plementary manner with proposal removal. The localiza-
tion information of the MIDNs is further coupled to obtain
tighter bounding boxes and localize multiple objects. We
also introduce a Segmentation Guided Proposal Removal
(SGPR) algorithm to guarantee the MIL constraint after the
removal and ensure the robustness of C-MIDN. Through a
simple implementation of the C-MIDN with online detector
refinement, we obtain 53.6% and 50.3% mAP on the chal-
lenging PASCAL VOC 2007 and 2012 benchmarks respec-
tively, which significantly outperform the previous state-of-
the-arts.

1. Introduction

Recent development of Convolutional Neural Networks
(CNN) [18] has helped object detection to achieve superior
performance [13, 23, 22, 20]. However, to train such object
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Figure 1. Illustration of the proposed C-MIDN. Green rectangles
indicate the top scoring bounding boxes. Two MIDNs work in a

complementary way and generate candidates for coupling. Best
viewed in color.

detectors requires large scale datasets with accurate bound-
ing box annotations, which cost quite a lot of human labor
to get. To address this problem, Weakly Supervised Ob-
ject Detection (WSOD), which needs only image-level an-
notations during training, becomes increasingly attractive.
Compared with bounding box annotations, image-level an-
notations are much easier to collect, and can also be mas-
sively obtained through the Internet.

To localize objects in cluttered scene without bounding
box annotations, a common way is to formulate WSOD as a
Multiple Instance Learning (MIL) problem. In recent years,
CNN has been introduced into MIL, which is referred as
Multiple Instance Detection Network (MIDN), to improve
the detection performance. Bilen and Vedaldi [4] propose
a concise end-to-end Weakly Supervised Deep Detection
Network (WSDDN). WSDDN is effective and convenient
to implement, thus many works choose it as a basic MIDN.
However, due to the inconsistency between the training ob-
jective and supervision, WSDDN tends to localize the most
discriminative object parts rather than the entire object.
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Some works propose to use refinement modules com-
bined with WSDDN to solve this problem. Tang et al. [31]
propose an online detector refinement method to refine the
output of WSDNN. Wang et al. [37] introduce a collab-
orative leaning framework which combines WSDDN and
Faster RCNN in one end-to-end network to improve the de-
tection performance. However, the performance of these
methods is still limited by the performance of basic WS-
DDN. Once WSDDN converges to parts of objects and fails
to generate reasonable initial detection on most training im-
ages, these methods have little chance to localize the tight
object prediction boxes.

Our motivation is: while single MIDN inclines to con-
verge to the most discriminative parts of objects, we can
couple the localization information of MIDNs that work in
a complementary manner to alleviate this issue. Based on
this idea, we propose a Coupled Multiple Instance Detec-
tion Network (C-MIDN). C-MIDN consists of two MIDNs
and we use proposal removal to force them to mine differ-
ent candidate bounding boxes. In particular, we remove the
top-scoring proposals of the first MIDN from the input of
the second one. If the first detector finds the proposal con-
taining only object parts, such removal can force the second
detector to localize the entire object, Fig. 1. Also, the sec-
ond detector may find new object when there are multiple
objects in the image. But the proposal removal must be
performed carefully to guarantee that there are still correct
object bounding boxes after the removal. Otherwise the re-
moval will destroy the MIL constraint and lead the second
detector to go astray. To make the MIDNs more robust, we
further introduce a segmentation guided proposal removal
algorithm. This is based on the observation that if the de-
tection result cannot cover the segmentation area, the detec-
tion result either contains parts of objects or misses some
object instances. In both cases, there are tight proposals af-
ter removing the result. So we leverage weakly supervised
semantic segmentation method to generate the segmenta-
tion map, and introduce the segmentation cover rate as a
metric to guide the proposal removal operation. Finally, we
couple the localization evidence of MIDNSs to obtain tighter
bounding boxes and localize multiple objects, by applying
a priority based suppression algorithm.

Our C-MIDN can be combined with MIDN-based meth-
ods. In this paper we implement C-MIDN with popular on-
line detector refinement (ODR) method, and conduct exten-
sive experiments on challenging PASCAL VOC 2007 and
2012 benchmarks. With C-MIDN, we obtain 53.6% and
50.3% mAP on VOC 2007 and VOC 2012 respectively, both
significantly outperform the previous state-of-the-arts.

In summary, the contributions of this paper are three
folds.

1. We propose a novel coupled multiple instance detec-
tion network. By combining a pair of MIDNs with

proposal removal and further coupling the results, our
method can find complete bounding box and localize
multiple instances.

2. We further propose a segmentation guided proposal
removal algorithm to make the MIDNs more robust
by guaranteeing the MIL constraint after proposal re-
moval.

3. The proposed framework significantly outperforms the
previous state-of-the-arts both on PASCAL VOC2007
and VOC2012 datasets.

2. Related Work

Traditional Multiple Instance Learning To achieve lo-
calization with only image-level annotations provided, most
of previous works [17, 7, 28, 5, 14, 3, 2, 24, 27] formu-
late WSOD as an MIL problem [10]. Under this formula-
tion, an image can be treated as a bag of candidate proposals
generated by object proposal methods. Learning procedure
alternates between training the detector and selecting pos-
itive proposals. Such MIL strategy leads to a non-convex
optimization problem, which is sensitive to the initializa-
tion and likely to get stuck in local optima. Some works
try to find better initialization methods [17, 7, 28, 5, 14].
Jie et al. [14] proposed a self-taught approach to harvest
high-quality positive object proposals samples. Deselaers
et al. [7] use objectness score to initialize the object loca-
tion. Cinbis et al. [5] proposed a multi-fold MIL by splitting
the training data to multi-fold to escape local optima.

Multiple Instance Detection Network In recent years,
many end-to-end frameworks have been proposed to com-
bine MIL and CNN [4, 31, 30, 15, 42, 36, 35, 34, 37, 25,
32, 9]. Bilen and Vedaldi [4] proposed WSDDN, which
consists of two parallel data streams to get classification
and detection confidence of proposals respectively. A spa-
tial regulariser which forces the features of top scoring re-
gion and regions with high overlap to be the same is further
added to guarantee the spatial smoothness.

Many works incorporate WSDDN into their framework
and improve the detection performance. Tang et al. [31]
combine WSDDN with several instance classifiers, and pro-
pose an online instance classifier refinement method to re-
fine the initial candidates of WSDDN. PCL [30] uses a
graph-based center cluster method and average MIL loss
based on [31]. Zhang et al. [43] propose a Weakly-
Supervised to Fully-Supervised Framework(W2F) which
use PGA and PGE to mine better pseudo ground truth from
MIDN to train a fully-supervised detector. Wang et al. [37]
introduce a collaborative leaning framework which com-
bine WSDDN detector and Faster RCNN in one end-to-end
network, and use feature sharing to improve WSDNN at the
same time. These methods have achieved promising results,

9835



@ Sum Over Proposals
(03] Element-wise Multiply

C-MIDN

— Network Connection

Forward-only Connection

[ Fc ][ Fc ]

Softmax

' SGPR Coupling

Segmentation Map

[ Fc ][ Fc ]

ROI Pooling =~

CONVs with O -, -

Softmax*

Softmax I
Soft I i

[ Fc ][ Fc ]

oftmax

Figure 2. The proposed architecture. A backbone network with ROI-pooling layer is used to get the feature vectors of candidate proposals.
Then these feature vectors are fed in two main modules, C-MIDN and ODR. In C-MIDN, two MIDNs work in a complementary way with
segmentation guided proposal removal, and the results of two MIDNs are coupled to mine more complete proposals. In ODR, there are
several instance classifiers. The supervision of the first stage comes from the coupled result of C-MIDN, and the supervision of other stages
comes from their preceding stages. In the second MIDN of C-MIDN, “softmax*” denotes the masked soffmax layer as in Eq. 4

but their performance is limited by the basic MIDN. We also
choose WSDDN as our basic MIDN, but we couple the lo-
calization information of two complementary WSDDNs to
escape the sub-optimum of detecting object parts.

Some methods propose to leverage Weakly Supervised
Semantic Segmentation to improve WSOD [12, 9, 40].
Diba et al. [9] use segmentation confidence map to generate
better proposals for MIL. Wei et al. [40] introduce two seg-
mentation based metrics, purity and completeness, to mine
tight boxes. However, WSSS can only provide semantic-
level information. When there are several instances near
each other in one image, the segmentation map may mix
into one big region, as shown in the last row of Fig. 4(c),
leading these methods to learn proposals which contain
multiple instances. Our method also uses WSSS, but we
introduce a new perspective, i.e. to use the coverage of
segmentation region to identify whether there remains tight
instance bounding boxes have not been found by detector.
Then we can inherit the advantage of WSSS and avoid its
shortcomings.

Weakly Supervised Semantic Segmentation A signifi-
cant advance of performance of WSSS has been witnessed
in last several years [44, 16, 38, 1, 29, 45, 41]. Class ac-
tivation map [44] provides a simple and effective way to
produce initial segmentation region. Kolesnikov and Lam-
pert [16] introduce three principles and propose an end-to-
end network to implement these principles. Wei et al. [39]
proposed adversarial erasing method to progressively mine
object region. Ahn and Kwak [1] propose AffinityNet,

which trains a network to predict the affinity between pix-
els and further employs a random walk algorithm to re-
fine the CAM. Without losing generality, we choose Affin-
ityNet to generate the semantic segmentation map used in
our method.

3. Method

In this section, we will first introduce the basic MIDN.
Then we describe the proposed Coupled Multiple Instance
Network (C-MIDN) in detail. Finally, an implementation
of C-MIDN with online detector refinement (ODR) will be
presented.

3.1. Multiple Instance Detection Network

By combining CNN and MIL, MIDN provides a simple
and efficient pipeline for WSOD. In this paper, we choose
WSDDN as our basic MIDN. WSDDN use a weighted-sum
pooling strategy to map the proposal scores generated by a
latent detector to image-level classification confidence. By
optimizing a multi-class cross entropy loss in an end-to-end
manner, the latent detector can be trained under only image-
level supervision. In particular, for a given image I, the
corresponding label is denoted as Y = {y1,92,...,yc},
where y. = 1 or O indicates the presence or absence of
class ¢ in I, and C is the number of classes. We use Se-
lective Search [33] to generate candidate proposals B =
{b1,b2,...,b;5|}. The proposals B and image I are fed
into a CNN to extract the feature vectors of proposals. As
shown in Fig. 3, the network contains two data streams,
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Figure 3. Network structure details of the basic MIDN.

named classification branch and detection branch respec-

tively. Both branches consist of a linear map layer and a

softmax layer. In the classification branch, the linear map

layer maps the feature vectors to a matrix z¢ € RE*|BI,

which is then passed through a softmax operator defined as

[Octass (7€)]ij = =z The detection branch also ap-
1€k

plies a linear map on the feature vector to generate a ma-
d

e”ij

trix ¢ € RE*IBI, but the following softmax operator is
changed to [04e(29));; = % The final score of
Zk=0 e ik

each proposal is generated by an element-wise product of
the two matrices: ' = 0jqss(2¢) ® 04e¢(x?). Finally, a
summation over all proposals is used to obtain the image
score p. = 2@1 mi. The parameters are optimized by a
multi-class cross entropy loss L, as in Eq. 1.

c
Lossaipn = — Y _{yelogpe+(1—ye)log(1—pe)} (1)

c=1
3.2. Coupled Multiple Instance Detection Network

The basic MIDN inclines to localize the most discrim-
inative object parts, which is undesirable in the detection
task. To solve this issue, our C-MIDN contains a pair of
MIDNSs which work in a complementary way, Fig. 1. The
two MIDNs have similar structure, but specific proposals
are removed from the input of the second one. In particu-
lar, after the forward propagation, the top-scoring proposal
of the first detector and adjacent proposals will be removed
from the input of the second MIDN. With such removal, the
latter detector can avoid being trapped to the same object
parts as the first detector, and has more chance to find the
entire object or localize new objects. However, if there is
only one object in the image and the first MIDN has cor-
rectly localized it, Fig. 4(b), such removal will lead to none
tight boxes in the remaining proposals and break the MIL
constraint, which will confuse the second detector and harm
its detection performance. To address this problem, we pro-
pose to leverage weakly supervised semantic segmentation
to guide the process of proposal removal, named Segmen-
tation Guided Proposal Removal (SGPR). Finally, we cou-
ple the localization information of the MIDNSs to keep good
proposals as many as possible and suppress the bad ones. In
the rest of this subsection, we will present the details of the
SGPR algorithm and the coupling method.

Segmentation Guided Proposal Removal As justified in
[40, 9], semantic segmentation can find more complete ob-
ject regions. If the segmentation coverage rate of the first

Algorithm 1 SGPR
Input: The final score of the first MIDN x°; object propos-
als B; image label Y.
Output: Mask for the second MIDN M € {0,1}¢*I5l,
I: Setall Mo, =1,ce{l,...,C}andk € {1,...,|B|}.
2: forc=1to C do
3: if y. = 1 then
4: be <= argmax,, cp T
5 Compute the segmentation coverage rate r. of

be.

6: if r. < teoper then
7: for k = 1to |B| do
: Compute IoU I, between proposal by
and b’
9: if I, > tremove then
10: My < 0.

MIDN’s top scoring box is too small, we speculate that
there might be two cases: 1) only one object exists in the im-
age, and the detector only finds part of the object, Fig. 4(a);
2) there are multiple object instances of the same class, and
the detector fails to find all of them, Fig. 4(c). In both cases,
there are tight instance bounding boxes that have not been
found. So we use the segmentation coverage rate as a met-
ric to evaluate whether the removal operation can be per-
formed.

Specifically, we generate the segmentation map of-
fline by weakly supervised semantic segmentation method.
Without losing generality, we choose AffinityNet [1], one
of the state-of-the-art WSSS methods. Firstly, we check the
segmentation coverage rate of the first detector’s top pro-
posal. We denote the set of positive pixels in segmentation
map for class ¢ as M.. For every class c that y. = 1, we
select the first detector’s top-scoring proposal b, as in Eq. 2,
and denote the set of inner pixels of b. as N.. Then the
coverage rate r. can be computed according to Eq. 3. If
T is smaller than a coverage threshold t.,ye, We perform
the proposal removal on class c, otherwise we retain all the
proposals.

b, = argmax 2)
breB
[Me (1 N|
o = el el 3
T 0] 3)

When performing proposal removal, we select the pro-
posals whose IoU with b, is larger than ¢,.¢y,00e and remove
them from the input of the second detector in a class specific
way. In practice, we generate a mask M € {0,1}¢*I5I |
where M., = 0 indicates that proposal by needs to be re-
moved in class c. The softmax layer in the detection branch
of the second MIDN is modified to achieve proposal re-
moval, as in Eq. 4. Like WSSDN, the score of each pro-
posal in the second detector can be obtained by an element-
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Figure 4. The comparison between different MIDNs and the coupled result. "MIDN” indicates the MIDN in baseline model. "MIDN-
1” indicates the first MIDN in proposed C-MIDN, and "MIDN-2" indicates the second. “Coupled” indicates the result after coupling.

”Segmentation” indicates the segmentation map generated by WSSS.

wise multiplication. Then the image-level score and loss
of Loss%,; can be obtained in the same way as the first
detector. The total loss of C-MIDN is the sum of both de-
tector’s loss, Eq. 5.

c
evii Mij

=—F “)
ZLleo e$fk Mik

Uset (xd)ij

1 2
Lossc_mipn = Lossyrpn + Lossiipn (®))

To make the SGPR algorithm more clear, we summarize
the process of SGPR in Algorithm 1.

Candidates Coupling As shown in Fig. 4, the MIDNs
in C-MIDN can localize different object regions. To cou-
ple the localization evidence of the MIDNs, we choose the
top scoring proposals of them as candidate bounding boxes,
and then merge the candidates by a priority based suppres-
sion method. Specifically, if the IoU of the top proposals
is smaller than 0.1, it is highly possible that they belong
to different objects, so we keep both of them. Otherwise,
they may belong to the same object with good chance, and
we keep the top proposal of the second MIDN as it is more
likely to find the compete object after some bad proposals
have been removed by SPRG.

3.3. Implementation with ODR

In this section, we will describe how to combine C-
MIND with the popular Online Detector Refinement (ODR)
framework following [31, 30, 32]. As shown in Fig. 2, we
add several instance classifiers (ICs) parallel to C-MIDN
into the network. The proposal features are extracted from

a pretrained VGG [26] model. The coupled result of C-
MIDN will be used to generate initial supervision for the
first IC of ODR, while the supervision of the kth IC de-
pends on the {k — 1} IC’s top-scoring proposal.

Formally, we denote the image label vector as ¥ =
{y1,¥2,...,yc} Foreachclass cthat y. = 1, we select the
top-scoring proposal of {k — 1} IC as the positive seed for
the &kt IC, and the positive seeds of the first IC come from
the coupled result of C-MIDN. Consider a seed s°*, we first
compute a set of IoUs {I§*}, where I§* is the IoU between
the j-th proposal b; and the seed 5°*. Then we denote the
set of positive proposals as B5" = {b; |Ij‘:’C > 0.5} and the
set of negative proposals as B5* = {b;|0.1 < I¢* < 0.5}.
Negative proposals will be labeled to class {C + 1}, which
means the background class. Instead of directly labeling the
positive proposals to class ¢, we treat these positive propos-
als as a bag, and use a averaged MIL pooling method [30].
For seed s°*, the loss of negative proposals is

1
Loss® = fﬁ( Z log (E’(CC_H)J-))) (6)
b;eBck

and the averaged MIL loss of k" IC is

k
ijeB;k xcj

Bk 1
| P ‘ Og( ‘B§k|

) (D

ck 1
Lossy" = W] (
Then, the ODR loss of k-th IC Lossk, ;,  is a summation of
both losses over all seeds and all positive classes. Moreover,
we use a weighted loss as suggested in OICR. For more
details, please refer to [30, 31].

Finally, We use SGD to train the network end-to-end by
combining the loss of C-MIDN and ODR as in Eq. 8.
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
WSDDN [4] 464 583 355 259 140 667 530 392 89 418 266 386 447 59.0 108 17.3 407 49.6 569 50.8 | 39.3
OICR [31] 585 630 351 169 174 632 608 344 82 497 410 313 519 6438 136 231 416 484 589 587 | 420
WCCN [9] 495 60.6 38.6 292 162 708 569 425 109 441 299 422 479 641 138 235 459 541 608 545 | 428
TS2C [40] 593 575 437 273 135 639 61.7 599 241 469 367 456 399 626 103 23.6 417 524 587 566 | 443
PCL [30] 571 67.1 409 169 188 651 63.7 453 170 56.7 489 332 544 683 16:8 257 458 522 59.1 62.0 | 458
MELM [36] 556 669 342 29.1 164 688 68.1 430 250 656 453 532 496 @ 68.6 2.0 254 525 568 621 57.1| 473
WSRPN [32] 603 662 450 19.6 266 68.1 684 494 80 569 550 336 625 682 206 29.0 490 541 588 584 | 479
OICR+FRCNN [31] 655 672 472 21.6 221 68.0 685 359 57 63.1 495 303 647 @ 66.1 130 256 500 57.1 602 59.0 | 47.0
CL [37] 612 666 483 260 158 665 654 539 247 612 462 535 485 @ 66.1 121 220 492 532 662 594 | 483
PCL+FRCNN [30] 632 699 479 226 273 710 69.1 496 120 60.1 515 373 633 639 158 236 488 553 612 62.1 | 488
WSRPN+FRCNN [32] | 63.0 69.7 408 11.6 277 705 741 585 100 66.7 606 347 757 703 257 265 554 564 555 549 504
W2F [43] 635 70.1 505 31.9 144 720 678 737 233 534 494 659 572 672 27.6 238 51.8 587 640 623 | 524
Baseline(MIDN+ODR) | 443 71.0 456 242 154 700 69.5 470 21.8 659 375 598 527 704 7.2 264 598 60.5 675 644 | 49.0
C-MIDN 533 715 49.8 26.1 203 703 699 683 287 653 451 646 580 712 200 275 549 549 694 635 52.6
C-MIDN+FRCNN 541 745 569 264 222 687 689 748 252 648 464 703 663 675 216 244 530 597 687 589 | 53.6

Table 1.

Detection average precision (%) on the PASCAL VOC 2007 test set. The upper part shows the results of weakly supervised

detectors, and the second part shows the results of fully supervised detector trained by using the output of weakly supervised detectors’

result as pseudo groundtruth.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv | mAP
OICR [31] 677 612 415 256 222 546 497 254 199 470 181 260 389 677 20 226 411 343 379 553 379
TS2C [40] 674 570 377 237 152 570 49.1 648 151 394 193 484 445 672 21 233 351 402 466 458 | 400
PCL [30] 634 642 442 256 264 545 551 305 116 510 158 394 559 707 82 263 469 413 441 577 | 416
OICR+FRCNN [31] | 714 694 551 298 28.1 550 579 244 172 591 218 266 578 713 1.0 231 527 375 335 566 | 425
CL [37] 705 678 49.6 208 221 614 517 347 203 503 190 435 493 708 102 208 481 410 565 567 | 433
PCL+FRCNN [30] 69.0 713 561 303 273 552 576 30. 86 566 184 439 646 718 75 230 460 441 426 588 | 442
W2F [43] 730 694 458 300 287 588 586 567 205 589 100 69.5 67.0 734 74 246 482 468 507 580 | 478
BasclineMIDN+ODR) | 68.8 704 488 304 294 612 556 450 255 613 262 454 606 739 76 250 546 282 589 60.0 | 468
C-MIDN 729 689 539 253 297 609 560 783 230 578 257 730 635 737 131 287 515 350 561 575 502
C-MIDN+FRCNN 720 707 587 272 260 590 543 826 215 557 260 783 662 728 167 204 448 375 619 543 | 503
Table 2. Detection average precision (%) on the PASCAL VOC 2012 test set.
4.2. Implementation Details
K
Loss = Lossc—mipN + Z Lossk (8) We use VGG16 as our backbone network, which is pre-
k=1 trained on the ImageNet dataset [6]. Also, we replace the

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluate our method on the challenging PAS-
CAL VOC 2007, PASCAL VOC 2012 and MS-COCO
datasets [11, 19], which are widely used as benchmarks for
widely supervised object detection. In all the experiments,
only image-level annotations are used for training.

For VOC 2007 and 2012, we use the trainval set (5011
images and 11540 images respectively) to train our net-
work, and the test set (4952 images and 10991 images re-
spectively) for testing. For evaluation, we use two kinds
of measurements: 1) Average Precision (AP) and the mean
of AP (mAP) on the fest set, following the standard PAS-
CAL VOC protocol; 2) CorLoc [8] on the frainval set to
evaluate the localization accuracy. Based on the PASCAL
criterion, a bounding box is considered to be positive if it
has an ToU > 0.5 with the ground-truth for both metrics.

For MS-COCO, the train set (about 80K images) of MS-
COCO 2014 is used for training and the val set (about 40K
images) for testing. For evaluation, we use two metrics
mAP@0.5 and mAP@][.5, .95] which are the standard PAS-
CAL criterion and the standard MS-COCO criterion respec-
tively.

penultimate max-pooling layer and subsequent convolution
layers by the dilated convolution layers as recommended in
[31]. In SGPR, the coverage threshold t..e, is set to 0.3,
and the IoU threshold ¢,¢,0ve 1S set to 0.3. The refinement
time k is set to 3. The momentum and weight decay are set
t0 0.9 and 5 x 10* respectively. The mini-batch for training
is set to 2, 2, and 4 for VOC 2007, VOC 2012 and MS-
COCO respectively. The learning rate is 1 x 103 for the
first 50K, 100K and 120K iterations, and then decreases to
1 x 10~ for the following 25K, 50K and 80K iterations for
VOC 2007, VOC 2012 and MS-COCO respectively.

We use Seletective Search [33] to generate object pro-
posals for VOC 2007 and 2012 datasets, and use MCG [21]
for MS-COCO dataset. The segmentation map of train-
ing images are generated offline by AffinityNet, which is
trained on the same training images, and we use the original
training settings recommended in [1]. For data augmenta-
tion, we rescale the shortest side of images to one of these
five scales {480,576, 688,864,1233} and cap the longest
image side to 2000. The scale of a training image is ran-
domly selected and a random horizontal flip is applied. In
evaluation, each testing image is augmented with all these
five scales and horizontal flip, then the average score of to-
tal 10 images is used as the final score. For all the experi-
ments, an NMS of 0.3 is employed to get the final detection
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result. Our experiments are implemented based on the Py-
Torch deep learning framework and run on NVIDIA TITAN
X GPUs.

Method VOC 2007 | VOC 2012
WSDDN [4] 58.0 -
OICR [31] 61.2 63.5
WCCN [9] 56.7 -
TS2C [40] 61.0 64.4
PCL [30] 63.0 65.0
MELM [36] 61.4 -
WSRPN [32] 66.9 67.2
OICR+FRCNN [31] 64.3 65.6
CL [37] 64.7 65.2
PCL+FRCNN [30] 66.6 68.0
WSRPN+FRCNN [32] 68.4 69.3
W2F [43] 70.3 69.4
C-MIDN 68.7 712
C-MIDN+FRCNN 71.9 73.3

Table 3. Detection CorLoc (%) on the trainval set of VOC 2007
and VOC 2012.

Method mAP@0.5 | mAP@[.5, .95]
PCL [30] 194 8.5
PCL+FRCNN [30] 19.6 9.2
C-MIDN 214 9.6

Table 4. Results (mMAP@0.5 and mAP@[.5, .95] in %) on the MS-
COCO dataset.

4.3. Ablation Studies

We first compare the proposed framework with the base-
line model (WSDDN+ODR) to demonstrate the effective-
ness of C-MIDN. Additional ablation experiments are pre-
sented to illustrate the influence of SGPR and the threshold
of IoU in proposal removal, denoted as t,cmove. Without
loss generality, we only perform experiments on VOC 2007.

Influence of C-MIDN framework To show the effective-
ness of the proposed C-MIDN, we compare the result of
our method with a baseline framework, which replaces the
C-MIDN in our framework by a WSDDN and chooses the
top proposal of WSDDN as the initial supervision of ODR.
From the Table. 1, we can see that our model exceeds the
baseline by 3.6 points on mAP, and the increase is about
7%. The CorLoc in Table. 3 shows the same trend as mAP.
The performance of almost all classes have been improved.
Our model can not only greatly improve the performance on
non-rigid classes, such as cat (mAP from 47 to 68.3), dog
(mAP from 59.8 to 64.6) and person(mAP from 7 to 20),
showing the ability of C-MIDN to avoid being trapped to
parts of objects. Meanwhile, our model can also improve
the performance on some rigid classes, such as diningtable
(mAP from 37.5 to 45.1) and aeroplane (mAP from 44.3 to
53.3). This is because C-MIDN can find more objects and
enrich the object patterns by the candidates coupling pro-
cess.

B UPR ® SGPR M Baseline - C-MIDN Baseline SOTA

55 55
53 526
53 51.8 51.8
_ _ 51.2
S sl S 51
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47+ . 47
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Figure 5. (a) Results of different proposal removal strategies.
“UPR” indicates an unconditional proposal removal method.
”SGPR” indicates the proposed segmentation guided proposal re-
moval algorithm. “Baseline” indicates the basic framework com-
bining WSDDN with ODR. (b) Comparison of the results for dif-
ferent proposal removal threshold ¢,emove.

Influence of SGPR To validate the effect of SGPR, we
conduct an experiment by replacing the SGPR with an Un-
conditional Proposal Removal method (UPR). To be spe-
cific, the same proposal removal as in SGPR will be always
performed during the whole training process in UPR. Table
2 shows that with UPR, the performance declines greatly.
We think the reason is that the UPR method removes all
tight proposals on some images, and breaks the basic as-
sumption of MIL. Thus the second MIDN would be con-
fused and localize background regions falsely, which even-
tually harms the performance of the entire model.

Influence of ¢,¢,,00e We conduct experiments to analyze
the influence the removal threshold ;¢ ove. AS shown in
Fig. 5, we can observe that our framework is insensitive to
tremove, and all models with different thresholds can out-
perform the baseline by more than 2.4 in mAP. In particular,
performance rises and then decreases as t,¢move INCreases
continuously, reaching the peak at 0.3. The reason behind
this trend may be two folds. When ,emove 1S too small,
too many proposals will be removed and there is a high risk
of removing all tight proposals, which will broke the MIL
constraint and lead the MIDNSs go astray. When ¢,¢move 1S
too large, only a few proposals will be removed, which may
cause that both two detectors are trapped at parts of objects.
So in other experiments, we set t,.emove 10 0.3.

4.4. Comparison with State-of-the-Art

In this subsection, we present the result of our C-MIDN
compared with other state-of-the-art methods. Table. 1
shows the result on VOC 2007 dataset, and Table. 2 shows
the result on VOC 2012 dataset. On VOC 2007, our model
obtains 52.6 mAP, which outperforms the state-of-the-art
method by 9.8%. On VOC 2012, our model obtains 50.2
mAP, and the improvement over the state-of-the-art in-
creases to 15.7%. This increase of improvement is be-
cause our model can benefit from better segmentation re-
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model, and green rectangle indicates ours.

sults trained on larger data sets. As shown in Table. 1,
our model achieves the best results on almost all non-rigid
classes.

Some works propose to train a fully supervised detector
by using the result of MIL based detector as pseudo ground-
truth, and show significant improvement of performance.
Following Tang et al [31], we also use the top-scoring
proposals produced by C-MIDN as pseudo ground-truth to
train a Fast-RCNN. As shown in Table. 1 and Table. 2, the
detection performance on VOC 2007 and VOC 2012 of our
method are further improved to 53.6 and 50.3 respectively,
which are the new state-of-the-arts.

The CorLoc results of C-MIDN on VOC 2007 and VOC
2012 are reported in Table. 3, which also create new state-
of-the-arts. To further reveal the robustness of the our
method, we conduct experiments on more challenging MS-
COCO dataset, and C-MIDN surpasses existing methods on
both mAP@0.5 and mAP@][.5, .95] 4.

We illustrate some detection results of our framework
in Fig. 6. It can be found that the proposed method can
correctively localize the objects while the baseline method
is trapped to parts of objects. But the detection result on
some classes is still undesirable, and we show some failure
cases in Fig 7. The main failures are due to that the second
MIDN also finds discriminative part of object instead of the
entire object, especially on the class of person.

5. Conclusions

In this paper, we propose a Coupled Multiple Instance
Detection Network for WSOD. C-MIDN uses two MIDNs
that work in a complementary way by proposal removal. A
novel Segmentation Guided Proposal Removal algorithm is
further introduced to guarantee the MIL constraint after pro-
posal removal. Finally we couple the output of the MIDN's

Figure 7. The failure cases in which both MIDNs find different
parts of objects. The red rectangles denote the failed detection
results of two MIDNSs.

to get tighter object bounding-boxes and recall more ob-
jects. Extensive experiments have been conducted to verify
the effectiveness of C-MIDN. Combined with Online De-
tector Refinement, the proposed framework surpasses all
previous methods proposed on WSOD, and creates new
state-of-the-arts.
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