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Abstract

Learning how objects sound from video is challenging,
since they often heavily overlap in a single audio channel.
Current methods for visually-guided audio source separa-
tion sidestep the issue by training with artificially mixed
video clips, but this puts unwieldy restrictions on training
data collection and may even prevent learning the proper-
ties of “true” mixed sounds. We introduce a co-separation
training paradigm that permits learning object-level sounds
from unlabeled multi-source videos. Our novel training ob-
jective requires that the deep neural network’s separated
audio for similar-looking objects be consistently identi-
fiable, while simultaneously reproducing accurate video-
level audio tracks for each source training pair. Our ap-
proach disentangles sounds in realistic test videos, even in
cases where an object was not observed individually dur-
ing training. We obtain state-of-the-art results on visually-
guided audio source separation and audio denoising for the
MUSIC, AudioSet, and AV-Bench datasets.

1. Introduction

Multi-modal perception is important to capture the rich-
ness of real-world sensory data for objects, scenes, and
events. The sounds made by objects, whether actively gen-
erated or incidentally emitted, offer valuable signals about
their physical properties and spatial locations—the cymbals
crash on stage, the bird tweets up in the tree, the truck revs
down the block, the silverware clinks in the drawer.

Objects often generate sounds while coexisting or inter-
acting with other surrounding objects. Thus, rather than
observe them in isolation, we hear them intertwined with
sounds coming from other sources. Likewise, a realistic
video records the various objects with a single audio chan-
nel that mixes all their acoustic frequencies together. Auto-
matically separating the sounds of each object in a video is
of great practical interest, with applications including audio
denoising, audio-visual video indexing, instrument equal-
ization, audio event remixing, and dialog following.

Whereas traditional methods assume access to multiple
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Figure 1: We propose a co-separation training objective to learn
audio-source separation from unlabeled video containing multiple
sound sources. Our approach learns to associate consistent sounds
to similar-looking objects across pairs of training videos. Then,
given a single novel video, it returns a separate sound track for
each object. Image credit: [1, 2].

microphones or carefully supervised clean audio samples
[22, 48, 9], recent methods tackle the audio(-visual) source
separation problem using a “mix-and-separate” paradigm
to train deep neural networks in a self-supervised man-
ner [41, 50, 8, 31, 52]. Namely, such methods randomly mix
audio/video clips, and the learning objective is to recover
the original unmixed signals. For example, one can cre-
ate “synthetic cocktail parties” that mix clean speech with
other sounds [8], add pseudo “off-screen” human speakers
to other real videos [31], or superimpose audio from clips
of musical instruments [52].

There are two key limitations with this current training
strategy. First, it implicitly assumes that the original real
training videos are dominated by single-source clips con-
taining one primary sound maker. However, gathering a
large number of such clean “solo” recordings is impracti-
cal and will be difficult to scale beyond particular classes
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like human speakers and musical instruments. Second, it
implicitly assumes that the sources in a recording are inde-
pendent. However, it is precisely the correlations between
real sound sources (objects) that make the source separation
problem most challenging at test time. Such correlations
can go uncaptured by the artificially mixed training clips.

Towards addressing these shortcomings, we introduce a
new strategy for learning to separate audio sources. Our
key insight is a novel co-separation training objective that
learns from naturally occurring multi-source videos.! Dur-
ing training, our co-separation network considers pairs of
training videos and, rather than simply separate their artifi-
cially mixed soundtracks, it must also generate audio tracks
that are consistently identifiable at the object level across
all training samples. In particular, using noisy object detec-
tions from the unlabeled training video, we devise a loss re-
quiring that within an individual training video, each sepa-
rated audio track should be distinguishable as its proper ob-
ject. For example, when two training instances both contain
a guitar plus other instruments, there is pressure to make the
separated guitar tracks consistently identifiable. See Fig. 1.

We call our idea “co-separation” as a loose analogy to
image co-segmentation [38], whereby jointly segmenting
two related images can be easier than segmenting them sep-
arately, since it allows disentangling a shared foreground
object from differently cluttered backgrounds. Note, how-
ever, that our co-separation operates during training only;
unlike co-segmentation, at test time our method performs
separation on an individual video input.

Our method design offers the following advantages.
First, co-separation allows training with “in the wild” sound
mixes. It has the potential to benefit from the variability and
richness of unlabeled multi-source video. Second, it en-
hances the supervision beyond “mix-and-separate”. By en-
forcing separation within a single video at the object-level,
our approach exposes the learner to natural correlations be-
tween sound sources. Finally, objects with similar appear-
ance from different videos can partner with each other to
separate their sounds jointly, thereby regularizing the learn-
ing process. In this way, our method is able to learn well
from multi-source videos, and it can successfully separate
an object sound in a test video even if the object has never
been observed individually during training.

We experiment on three benchmark datasets and demon-
strate the advantages discussed above. Our approach yields
state-of-the-art results on separation and denoising. Most
notably, it outperforms the prior methods and baselines by
a large margin when learning from noisy AudioSet [14]
videos. Overall co-separation is a promising direction to
learn audio-visual separation from multi-source videos.

IThroughout, we use “multi-source video™ as shorthand for video con-
taining multiple sounds in its single-channel audio.

2. Related Work

Audio-Only Source Separation Audio source separa-
tion has a rich history in signal processing. While many
methods assume audio captured by multiple microphones,
some tackle the “blind” separation problem with single-
channel audio [22, 7, 48, 9], most recently with deep learn-
ing [20, 18, 44]. Mix-and-separate style training is now
commonly used for audio-only source separation to cre-
ate artificial training examples [21, 18, 50]. Our approach
adapts the mix-and-separate idea. However, different from
all of the above, we leverage visual object detection to guide
sound source separation. Furthermore, as discussed above,
our co-separation framework is more flexible in terms of
training data and can generalize to multi-source videos.

Audio-Visual Source Separation Early methods for
audio-visual source separation focus on mutual informa-
tion [10], subspace analysis [42, 34], matrix factoriza-
tion [33, 39], and correlated onsets [5, 27]. Recent methods
leverage deep learning for separating speech [8, 31, 3, 11],
musical instruments [52, 13, 51], and other objects [12].
Similar to the audio-only methods, almost all use a “mix-
and-separate” training paradigm to perform video-level sep-
aration by artificially mixing training videos. In contrast,
we perform source separation at the object level to explicitly
model sounds coming from visual objects, and our model
enforces separation within a video during training.

Most related to our work are the “sound of pixels”
(SoP) [52] and multi-instance learning (AV-MIML) [12]
approaches. AV-MIML [12] also focuses on learning ob-
ject sound models from unlabeled video, but its two-stage
method relies on NMF to perform separation, which limits
its performance and practicability. Furthermore, whereas
AV-MIML simply uses image classification to obtain weak
labels on video frames, our approach detects localized ob-
jects and our end-to-end network learns visual object rep-
resentations in concert with the audio streams. SoP [52]
outputs a sound for each pixel, whereas we predict sounds
for visual objects with the help of a pre-trained object
detector. More importantly, SoP works best when clean
solo videos are available to perform video-level “mix-and-
separate” training. Our method instead disentangles mixed
sounds of objects within an individual training video, allow-
ing more flexible training with multi-source data (though
unlike [52] we do require an object detection step).

Localizing Sounds in Video Frames Localization entails
identifying the pixels where the sound of a video comes
from, but not separating the audio [25, 19, 10, 4, 40, 45].
Different from all these methods, our goal is to separate
the sounds of multiple objects from a single-channel signal.
We localize potential sound sources via object detection,
and use the localized object regions to guide the separation
learning process.
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Generating Sounds from Video Sound generation meth-
ods synthesize a sound track from a visual input [32, 54, 6].
Given both visual input and monaural audio, recent methods
generate spatial (binaural or ambisonic) audio [13, 30]. Un-
like any of the above, our work aims to separate an existing
real audio track, not synthesize plausible new sounds.

3. Approach

Our approach leverages localized object detection to vi-
sually guide audio source separation. We first formalize our
object-level audio-visual source separation task (Sec. 3.1).
Then we introduce our framework for learning object sound
models from unlabeled video and our CO-SEPARATION
deep network architecture (Sec. 3.2). Finally, we present
our training criteria and inference procedures (Sec. 3.3).

3.1. Problem Formulation

Given an unlabeled video clip V with accompanying au-
dio x(¢), we denote the set of N objects detected in the video
frames as V = {Oy,...,On}. We treat each object as a po-
tential sound source, and x(t) = YN, 5,(t) is the observed
single-channel linear mixture of these sources, where s,(r)
are time-discrete signals responsible for each object. Our
goal of object-level audio-visual source separation is to sep-
arate the sound s, (¢) for each object O, from x(r).

Following [21, 18, 50, 52, 31, 13, 8], we start with
the commonly adopted “mix-and-separate” idea to self-
supervise source separation. Given two training videos Vj
and V, with corresponding audios x;(7) and x(¢), we use
a pre-trained object detector to find objects in both videos.
Then, we mix the audios of the two videos and obtain the
mixed signal x,,, () = x; (¢) +x2(¢). The mixed audio x,,()
is transformed into a magnitude spectrogram X" ¢ RiXN
consisting of F frequency bins and N short-time Fourier
transform (STFT) [15] frames, which encodes the change
of a signal’s frequency and phase content over time.

Our learning objective is to separate the sound each ob-
ject makes from x,,(7) conditioned on the localized object
regions. For example, Fig. 3 illustrates a scenario of mixing
two videos V| and V, with two objects O, O, detected in
V1 and one object O3 detected in V;. The goal is to separate
s1(t), s2(1), and s3(¢) for objects Oy, Oy, and O3 from the
mixture signal x,,(¢), respectively. To perform separation,
we predict a spectrogram mask M, for each object. We
use real-valued ratio masks and obtain the predicted magni-
tude spectrogram by soft masking the mixture spectrogram:
X, = XM x M,, Finally, we use the inverse short-time
Fourier transform (ISTFT) [15] to reconstruct the waveform
sound for each object source.

Going beyond video-level mix-and-separation, the key
insight of our approach is to simultaneously enforce sepa-
ration within a single video at the object level. This enables
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Figure 2: Our audio-visual separator network takes a mixed audio
signal and a detected object from its accompanying video as input,
and performs joint audio-visual analysis to separate the portion of
sound responsible for the input object region.

our method to learn object sound models even from multi-
source training videos. Our new co-separation framework
can capture the correlations between sound sources and is
able to learn from noisy Web videos, as detailed next.

3.2. Co-Separation Framework

Next we present our CO-SEPARATION training frame-
work and our network architecture to perform separation.

Object Detection Firstly, we train an object detector for
a vocabulary of C objects. In general, this detector should
cover any potential sound-making object categories that
may appear in training videos. Our implementation uses the
Faster R-CNN [36] object detector with a ResNet-101 [17]
backbone trained with Open Images [26]. For each unla-
beled training video, we use the pre-trained object detector
to automatically? find objects in all video frames. Then, we
gather all object detections across frames to obtain a video-
level pool of objects. See Supp. for details.

Audio-Visual Separator We use the detected object re-
gions to guide the source separation process. Fig. 2 il-
lustrates our audio-visual separator network that performs
audio-visual feature aggregation and source separation. A
related design for multi-modal feature fusion is also used
in [13, 30, 31] for audio spatialization and separation. How-
ever, unlike those models, our separator network combines
the visual features of a localized object region and the audio
features of the mixed audio to predict a magnitude spectro-
gram mask for source separation.

The network takes a detected object region and the mixed
audio signal as input, and separates the portion of the sound
responsible for the object. We use a ResNet-18 network to
extract visual features after the 4 ResNet block with size
(H/32) x (W/32) x D, where H, W, D denote the frame
and channel dimensions. We then pass the visual feature
through a 1 x 1 convolution layer to reduce the channel di-

2No manual object annotations are used for co-separation train-/testing.
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Figure 3: Co-separation training pipeline: our object-level co-separation framework first automatically detects objects in a pair of videos,
then mixes the audios at the video-level, and separates the sounds for each visual object. The network is trained by minimizing the
combination of the co-separation and object-consistency losses defined in Sec. 3.2.

mension, and use a fully-connected layer to obtain an ag-
gregated visual feature vector.

On the audio side, we adopt a U-NET [37] style net-
work for its effectiveness in dense prediction tasks, similar
to [52, 31, 13]. The network takes the magnitude spectro-
gram XM as input and passes it through a series of con-
volution layers to extract an audio feature of dimension
(T/128) x (F/128) x D. We replicate the visual feature
vector (7/128) x (F/128) times, tile them to match the au-
dio feature dimension, and then concatenate the audio and
visual feature maps along the channel dimension. Then a
series of up-convolutions are performed on the concatenated
audio-visual feature map to generate a multiplicative spec-
trogram mask M. We find spectrogram masks to work bet-
ter than direct prediction of spectrograms or raw waveforms
for source separation, confirming reports in [49, 8, 13]. The
separated spectrogram for the input object is obtained by
multiplying the mask and the spectrogram of the mixed au-
dio: X = XM x M. Finally, ISTFT is applied to the spec-
trogram to produce the separated real-time signal.
Co-Separation Our proposed CO-SEPARATION frame-
work first detects objects in a pair of videos, then mixes their
audios at the video level, and finally separates the sounds
for each detected object class. As shown in Fig. 3, for each
video pair, we randomly sample a high confidence object
window for each class detected in either video, and use the
localized object region to guide audio source separation us-
ing the audio-visual separator network. For each object O,,,
we predict a mask M, and then generate the corresponding
magnitude spectrogram.

Let V| and V), denote the set of objects for the two
videos. We want to separate the sounds of their corre-
sponding objects from the audio mixture of V| and V,. For

each video, summing up the separated sounds of all objects
should ideally reconstruct the audio signal for that video.
Namely,

Vil Vol

1) = Zs,-(t) and x(t) = Z’si(t)7 (1)

where |V;| and || are the number of detected objects for
Vi and V,. For simplicity of notation, we defer present-
ing how we handle background sounds (those unattributable
to detected objects) until later in this section. Because we
are operating in the frequency domain, the above relation-
ship will only hold approximately due to phase interference.
As an alternative, we approximate Eq. (1) by enforcing the
following relationship on the predicted magnitude spectro-

grams:
Vi1 Wl
XV~ Zx and X"~ Zx,, )

where XV1 and X n' are the magnitude spectrograms for
x1(t) and x(¢). Therefore, we minimize the following co-
separation loss over the separated magnitude spectrograms:

V1] Va|
Lcoseparattonjpect—HZX XV1||1+HZX XVZHh 3)

i= i=
which approximates to mlmmlzmg the followmg loss func-
tion over their predicted ratio masks:

Vil [V,
1% 1%

Lco-separationmask = || Z M;— MM Hl + H Z M;—M 2||1a

i=1 i=1

. § @)

where M1 and M"2 are the ground-truth spectrogram ratio
masks for the two videos, respectively. Namely,
Vi XV2

Vo
and M" = XX &)
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In practice, we find that computing the loss over masks
(vs. spectograms) makes the network easier to learn. We
hypothesize that the sigmoid after the last layer of the audio-
visual separator bounds the masks, making them more con-
strained and structured compared to spectrograms. In short,
the proposed co-separation loss provides supervision to the
network to only separate the audio portion responsible for
the input visual object, so that the corresponding audios for
each of the pair of input videos can be reconstructed.

In addition to the co-separation loss that enforces separa-
tion, we also introduce an object-consistency loss for each
predicted audio spectrogram. The intuition is that if the
sources are well-separated, the predicted “category” of the
separated spectrogram should be consistent with the cate-
gory of the visual object that initially guides its separation.
Specifically, for the predicted spectrogram of each object,
we introduce another ResNet-18 audio classifier’ that tar-
gets the weak labels of the input visual objects. We use the
following cross-entropy loss:

1 Vil+va| €

ST —Yiclog(pic),
Vi|+ ,; L:Zl o8P

where C is the number of classes, y; . is a binary indicaggz
on whether c is the correct class for predicted spectrogram
X;, and p; . is the predicted probability for class c. We stress
that these audio “classes” are discovered during training; we
have no pre-trained sound models for different objects.

Not all sounds in a video will be attributable to a visu-
ally detected object. To account for ambient sounds, off-
screen sounds, and noise, we incorporate a C + 1% “adapt-
able” audio class, as follows. During training, we pair each
video with a visual scene feature in addition to the detected
objects from the pre-trained object detector. Then an ad-
ditional mask Mgy responsible for the scene context is
also predicted in Eq. (4) for both V; and V, to be opti-
mized jointly. This step arms the network with the flexi-
bility to assign noise or unrelated sounds to the “adaptable”
class, leading to cleaner separation for sounds of the de-
tected visual objects. These adaptable objects (ideally am-
bient sounds, noise, efc.) are collectively designated as hav-
ing the “extra” C + 1*' audio label. The separated spectro-
grams for these adaptable objects are also trained to match
their category label by the object-consistency loss in Eq. (6).

Putting it all together, during training the network needs
to discover separations for the multi-source videos that 1)
minimize the co-separation loss, such that the two source
videos’ object sounds reassemble to produce their original
video-level audio tracks, respectively, while also 2) min-
imizing the object consistency loss, such that separated

L()bject—com'istency =

3The ResNet-18 audio classifier is ImageNet pre-trained to accelerate
convergence, but not pre-trained for audio classification. Our co-separation
training aims to automatically discover the audio classes.

sounds for any instances of the same visual object are re-
liably identifiable as that sound. We stress that our model
achieves the latter without any pre-trained audio model and
without any single-source audio examples for the object
class. The object consistency loss only knows that same-
object sounds should be similar after training the network—
not what any given object is expected to sound like.

3.3. Training and Inference

We minimize the following combined loss function and
train our network end to end:

L= Lco—separationmask + /’LLobject-consistency; (7)

where A is the weight for the object-consistency loss.

We use per-pixel L1 loss for the co-separation loss, and
weight the gradients by the magnitude of the spectrogram of
the mixed audio. The network uses the weighted gradients
to perform back-propagation, thereby emphasizing predic-
tions on more informative parts of the spectrogram.

During testing, our model takes a single realistic multi-
source video to perform source separation. Similarly, we
first detect objects in the video frames by using the pre-
trained object detector. For each detected object class, we
use the most confident object region(s) as the visual input
to separate the portion of the sound responsible for this ob-
ject category from its accompanying audio. We use a slid-
ing window approach to process videos segment by segment
with a small hop size, and average the audio predictions on
all overlapping parts.

We perform audio-visual source separation on video
clips of 10s, and we pool all the detected objects in the video
frames. Therefore, our approach assumes that each detected
object within this period of 10s is a potential sound source,
although it may only sound in some of the frames. For ob-
jects that are detected but do not make sound at all, we treat
it as learning noise and expect our deep network to adapt
by learning from large-scale training videos. We leave it as
future work to explicitly model silent visual objects.

4. Experiments

We now validate our approach for audio-visual source
separation and compare to existing methods.

4.1. Datasets

MUSIC This MIT dataset contains YouTube videos
crawled with keyword queries [52]. It contains 685
untrimmed videos of musical solos and duets, with 536
solo videos and 149 duet videos. The dataset is relatively
clean and collected for the purpose of training audio-visual
source separation models. It includes 11 instrument cate-
gories: accordion, acoustic guitar, cello, clarinet, erhu, flute,
saxophone, trumpet, tuba, violin and xylophone. Follow-
ing the authors’ public dataset file of video IDs, we hold
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out the first/second video in each category as validation/test
data, and the rest as training data. We split all videos into
10s clips during both training and testing, for a total of
8,928/259/269 train/val/test clips, respectively.

AudioSet-Unlabeled AudioSet [14] consists of challeng-
ing 10s video clips, many of poor quality and containing
a variety of sound sources. Following [12], we filter the
dataset to extract video clips of 15 musical instruments. We
use the videos from the “unbalanced” split for training, and
videos from the “balanced” split as validation/test data, for
a total of 113,756/456/456 train/val/test clips, respectively.

AudioSet-SingleSource A dataset assembled by [12] of
AudioSet videos containing only a single sounding object.
We use the 15 videos (from the “balanced” split) of musical
instruments for evaluation only.

AV-Bench This dataset contains the benchmark videos
(Violin Yanni, Wooden Horse, and Guitar Solo) used in pre-
vious studies [12, 34] on visually-guided audio denoising.

On both MUSIC and AudioSet, we compose the test
sets following standard practice [5, 52, 31, 12]—by mix-
ing the audio from two single-source videos. This ensures
the ground truth separated sounds are known for quantita-
tive evaluation. There are 550 and 105 such test pairings for
MUSIC and AudioSet, respectively (the result of pairwise
mixing 10 random clips per the 15 classes for MUSIC and
pairwise mixing all 15 clips for AudioSet). For qualitative
results (Supp.), we apply our method to real multi-source
test videos. In either case, we train our method with multi-
source videos, as specified below.

4.2. Implementation Details

Our CO-SEPARATION deep network is implemented in
PyTorch. For all experiments, we sub-sample the audio
at 11kHz, and the input audio sample is approximately 6s
long. STFT is computed using a Hann window size of
1022 and a hop length of 256, producing a 512 x 256 Time-
Frequency audio representation. The spectrogram is then
re-sampled on a log-frequency scale to obtain a 7 X F mag-
nitude spectrogram of T = 256,F = 256. The settings are
the same as [52] for fair comparison.

Our object detector is trained on images of C = 15 object
categories from the Open Images dataset [26]. We filter out
low confidence object detections for each video, and keep
the top two® detected categories. See Supp. for details. Dur-
ing co-separation training, we randomly sample 64 pairs of
videos for each batch. We sample a confident object de-
tection for each class as its input visual object, paired with
a random scene image sampled from the ADE dataset [53]
as the adaptable object. The object window is resized to
256 x 256, and a randomly cropped 224 x 224 region is

“4This is the number of objects detected in most training videos; relaxing
this limit does not change the overall results (see Supp.).

used as the input to the network. We use horizontal flip-
ping, color and intensity jittering as data augmentation. A
is set to 0.05 in Eq. (7). The network is trained using an
Adam optimizer with weight decay 1 x 10~* with the start-
ing learning rate set to 1 x 10™*. We use a smaller starting
learning rate of 1 x 107> for the ResNet-18 visual feature
extractor because it is pre-trained on ImageNet.

4.3. Quantitative Results on Source Separation

We compare to the following baselines:

* Sound-of-Pixels [52]: We use the authors’ publicly
available code’ to train 1-frame based models with
ratio masks for fair comparison. Default settings are
used for other hyperparameters.

* AV-Mix-and-Separate: A “mix-and-separate” base-
line using the same audio-visual separation network as
our model to do video-level separation. We use multi-
label hinge loss to enforce video-level consistency, i.e.,
the class of each separated spectrogram should agree
with the objects present in that training video.

* AV-MIML [12]: An existing audio-visual source sep-
aration method that uses audio bases learned from un-
labeled videos to supervise an NMF separation pro-
cess. The audio bases are learned from a deep multi-
instance multi-label (MIML) learning network. We
use the results reported in [12] for AudioSet and AV-
Bench; the authors do not report results in SDR and do
not report results for MUSIC.

e NMF-MFCC [43]: An off-the-shelf audio-only
method that performs NMF based source separation
using Mel frequency cepstrum coefficients (MFCC).
This non-learned baseline is a good representation of a
well established pipeline for audio-only source separa-
tion [47, 23, 24, 16].

¢ AV-Loc [34], JIVE [28], Sparse CCA [25]: We use
results reported in [12] to compare to these methods
for the audio denoising benchmark AV-Bench.

We use the widely used mir eval library [35] to evalu-
ate the source separation and report the standard metrics:
Signal-to-Distortion Ration (SDR), Signal-to-Interference
Ratio (SIR), and Signal-to-Artifact Ratio (SAR).

Separation Results. Tables 1 and 2 show the results for
the MUSIC and AudioSet datasets, respectively.

Table 1 presents results on MUSIC as a function of the
training source: single-source videos (solo) or multi-source
videos (solo + duet). Our method consistently outperforms
all baselines in separation accuracy, as captured by the SDR
and SIR metrics.® While the SoP method [52] works well

Shttps://github.com/hangzhaomit/Sound-of-Pixels

SNote that SAR measures the artifacts present in the separated sig-
nal, but not the separation accuracy. So, a less well-separated signal can
achieve high(er) SAR values. In fact, naively copying the original input
twice (i.e., doing no separation at all) results in SAR ~ 80 in our setting.
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Single-Source Multi-Source
SDR SIR SAR | SDR SIR SAR
Sound-of-Pixels [52] 730 119 119 | 6.05 981 124
AV-Mix-and-Separate 3.16 674 889 | 323 7.01 9.14
NMF-MFCC [43] 092 568 684 ] 092 568 6.84
CO-SEPARATION (Ours) | 7.38 13.7 108 | 7.64 13.8 11.3

Table 1: Average audio source separation results on a held out MUSIC test set. We show the performance of our method and the baselines
when training on only single-source videos (solo) and multi-source videos (solo + duet). NMF-MFCC is non-learned, so its results do
not vary across training sets. Higher is better for all metrics. Note that SDR and SIR capture separation accuracy; SAR captures only the
absence of artifacts (and hence can be high even if separation is poor). Standard error is approximately 0.2 for all metrics.

SDR SIR SAR

Sound-of-Pixels [52] 1.66 358 11.5
AV-MIML [12] 1.83 - -

AV-Mix-and-Separate 1.68 3.30 122

NMF-MFCC [43] 025 4.19 5.78

CO-SEPARATION (Ours) | 426 7.07 13.0

Table 2: Average separation results on AudioSet test set. Standard
error is approximately 0.3.

when training only on solo videos, it fails to make use of the
additional duets, and its performance degrades when train-
ing on the multi-source videos. In contrast, our method
actually improves when trained on a combination of solos
and duets, achieving its best performance. This experiment
highlights precisely the limitation of the mix-and-separate
training paradigm when presented with multi-source train-
ing videos, and it demonstrates that our co-separation idea
can successfully overcome that limitation.

Our method also outperforms all baselines, including
[52], when training on solos. Our better accuracy ver-
sus the AV-Mix-and-Separate baseline and [52] shows that
our object-level co-separation idea is essential. The NMF-
MEFCC baseline can only return ungrounded separated sig-
nals. Therefore, we evaluate both possible matchings and
take its best results (to the baseline’s advantage). Also, our
gains are similar even if we give [52] the advantage of tem-
poral pooling over 3 frames. Overall our method achieves
large gains, and also has the benefit of matching the sep-
arated sounds to semantically meaningful visual objects in
the video.

Table 2 shows the results when training on AudioSet-
Unlabeled and testing on mixes of AudioSet-SingleSource.
Our method outperforms all prior methods and the baselines
by a large margin on this challenging dataset. It demon-
strates that our framework can better learn from the noisy
and less curated “in the wild” videos of AudioSet, which
contains many multi-source videos. See Supp. for addi-
tional results on removing the limit of two objects per video.

Next we devise an experiment to test explicitly how well
our method can learn to separate sound for objects it has not

Sound-of-Pixels [52] CO-SEPARATION (Ours)

SDR SIR SAR | SDR SIR SAR
Violin/Saxophone 152 148 129 8.10 11.7 11.2
Violin/Guitar 695 112 158 10.6  16.7 12.3

Saxophone/Guitar 0.57  0.90 16.5 5.08  7.90 9.34

Table 3: Toy experiment to demonstrate learning to separate
sounds for objects never heard individually during training.

observed individually during training. We train our model
and the best baseline [52] on the following four categories:
violin solo, saxophone solo, violin+guitar duet, and vio-
lin+saxophone duet, and test by randomly mixing and sep-
arating violin, saxophone, and guitar test solo clips. Table 3
shows the results. We can see that although our system
is not trained on any guitar solos, it can learn better from
multi-source videos that contain guitar and other sounds.
Our method consistently performs well on all three combi-
nations, while [52] performs well only on the violin+guitar
mixture. We hypothesize the reason is that it can learn by
mixing the large quantity of violin solos and the guitar solo
moments within the duets to perform separation, but it fails
to disentangle other sound source correlations. Our method
scores worse in terms of SAR, which again measures arti-
facts, but not separation quality.

See Supp. for additional experiments where we train only
on duets as well as an ablation study to isolate the impact of
each loss term.

Denoising Results. As a side product of our audio-visual
source separation system, we can also use our model to
perform visually-guided audio denoising. As mentioned in
Sec. 3.3, we use an additional scene image to capture am-
bient/unseen sounds and noise, efc. Therefore, given a test
video with noise, we can use the top detected visual object
in the video to guide our system to separate out the noise.

Table 4 shows the results on AV-Bench [34, 12]. Though
our method learns only from unlabeled video and does not
explicitly model the low-rank nature of noise as in [34],
we obtain state-of-the-art performance on 2 of the 3 videos.
The method of [34] uses motion in manually segmented re-
gions, which may help on Guitar Solo, where the hand’s
motion strongly correlates with the sound.
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1: Banjo

2: Cello

3: Drum

4: Guitar

5: Harp

6: Harmonica
7: Oboe

8: Piano

9: Saxophone
10: Trombone
11: Trumpet
12: Violin

13: Flute

14: Accordion
15: Horn

Figure 4: Embedding of separated sounds in AudioSet visualized
with t-SNE in two ways: (top) categories are color-coded, and
(bottom) visual objects are shown at their sound’s embedding.

Wooden Horse | Violin Yanni |, Guitar Solo
Sparse CCA [25] 4.36 5.30 5.71
JIVE [28] 4.54 4.43 2.64
AV-Loc [34] 8.82 5.90 14.1
AV-MIML [12] 12.3 7.88 114
Ours 14.5 8.53 11.9

Table 4: Visually-assisted audio denoising on AV-Bench, in terms
of NSDR (in dB, higher is better).

4.4. Qualitative Results

Audio-Visual Separation Video Examples.
results (see Supp.) show qualitative separation results. We
use our system to discover and separate object sounds for
realistic multi-source videos. They lack ground truth, but
the results can be manually inspected for quality.

Our video

c
o
2

9]

o

9]
<

Figure 5: Top object proposals according to our discovered audio
classifier. Last column shows typical failure cases.

tion for the separated spectrograms. The sounds our method
learned from multi-source videos tend to cluster by object
category, demonstrating that the separator discovers sounds
characteristic of the corresponding objects.

Using Discovered Sounds to Detect Objects. Finally, we
use our trained audio-visual source separation network for
visual object discovery using 912 noisy unseen videos from
AudioSet. Given the pool of videos, we generate object re-
gion proposals using Selective Search [46]. Then we pass
these region proposals to our network together with the au-
dio of its accompanying video, and retrieve the visual pro-
posals that achieve the highest audio classification scores
according to our object consistency loss.

Fig. 5 shows the top retrieved proposals for several cat-
egories after removing duplicates from the same video. We
can see that our method has learned a good mapping be-
tween the visual and audio modalities; the best visual ob-
ject proposals usually best activate the audio classifier. The
last column shows failure cases where the wrong object is
detected with high confidence. They usually come from ob-
jects of similar texture or shape, like the stripes on the man’s
t-shirt and the shadow of the harp.

5. Conclusion

We presented an object-level audio-visual source sepa-
ration framework that associates localized object regions in
videos to their characteristic sounds. Our CO-SEPARATION
approach can leverage noisy object detections as supervi-
sion to learn from large-scale unlabeled videos. We achieve
state-of-the-art results on visually-guided audio source sep-
aration and audio denoising. As future work, we plan to ex-
plore spatio-temporal object proposals and incorporate ob-

Learned Audio Embedding. To visualize that our CO-
SEPARATION network has indeed learned to separate sounds
of visual objects, Fig. 4 displays a t-SNE [29] embedding of
the discovered sounds for various input objects in 20K Au-
dioSet clips. We use the features extracted at the last layer
of the ResNet-18 audio classifier as the audio representa-

ject motion to guide separation, which may especially ben-
efit object sounds with similar frequencies.

Acknowledgements: Thanks to Dongguang You for help with ex-
periments setup, and Yu-Chuan Su, Tushar Nagarajan, Santhosh Ramakr-
ishnan and Xingyi Zhou for helpful discussions and reading paper drafts.
UT Austin is supported in part by DARPA Lifelong Learning Machines.

3886



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

Bryan lucas band - acoustic guitar and cello wedding cer-
emony music. https://www.youtube.com/watch?
v=_oRFIsHn2ek. 1

Shape of my heart violin and guitar wedding ceremony syd-
ney manly q station. https://www.youtube.com/
watch?v=ul2_qgzOrivg. 1

Triantafyllos Afouras, Joon Son Chung, and Andrew Zisser-
man. The conversation: Deep audio-visual speech enhance-
ment. In Interspeech, 2018. 2

Relja Arandjelovi¢ and Andrew Zisserman.
sound. In ECCV, 2018. 2

Zohar Barzelay and Yoav Y Schechner. Harmony in motion.
In CVPR, 2007. 2,6

Lele Chen, Sudhanshu Srivastava, Zhiyao Duan, and Chen-
liang Xu. Deep cross-modal audio-visual generation. In on
Thematic Workshops of ACM Multimedia, 2017. 3

Daniel Patrick Whittlesey Ellis. Prediction-driven compu-
tational auditory scene analysis. PhD thesis, Massachusetts
Institute of Technology, 1996. 2

Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin
Wilson, Avinatan Hassidim, William T Freeman, and
Michael Rubinstein. Looking to listen at the cocktail party:
A speaker-independent audio-visual model for speech sepa-
ration. In SSIGGRAPH, 2018. 1,2,3,4

Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Non-
negative matrix factorization with the itakura-saito diver-
gence: With application to music analysis. Neural compu-
tation, 2009. 1, 2

John W Fisher III, Trevor Darrell, William T Freeman, and
Paul A Viola. Learning joint statistical models for audio-
visual fusion and segregation. In NeurlPS, 2001. 2

Aviv Gabbay, Asaph Shamir, and Shmuel Peleg. Visual
speech enhancement. In Interspeech, 2018. 2

Objects that

Ruohan Gao, Rogerio Feris, and Kristen Grauman. Learning
to separate object sounds by watching unlabeled video. In
ECCV,2018. 2,6,7,8

Ruohan Gao and Kristen Grauman. 2.5d visual sound. In
CVPR, 2019. 2,3, 4

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,
and Marvin Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In ICASSP, 2017. 2, 6
Daniel Griffin and Jae Lim. Signal estimation from modified
short-time fourier transform. IEEE Transactions on Acous-
tics, Speech, and Signal Processing, 1984. 3

Xin Guo, Stefan Uhlich, and Yuki Mitsufuji. Nmf-based
blind source separation using a linear predictive coding er-
ror clustering criterion. In JCASSP, 2015. 6

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji
Watanabe. Deep clustering: Discriminative embeddings for
segmentation and separation. In /CASSP, 2016. 2, 3

(19]

[20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

3887

John R Hershey and Javier R Movellan. Audio vision: Using
audio-visual synchrony to locate sounds. In NeurIPS, 2000.
2

Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and
Paris Smaragdis. Deep learning for monaural speech separa-
tion. In /ICASSP, 2014. 2

Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and
Paris Smaragdis. Joint optimization of masks and deep
recurrent neural networks for monaural source separation.
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2015. 2, 3

Aapo Hyvirinen and Erkki Oja. Independent component
analysis: algorithms and applications. Neural networks,
2000. 1,2

Satoshi Innami and Hiroyuki Kasai. Nmf-based environmen-
tal sound source separation using time-variant gain features.
Computers & Mathematics with Applications, 2012. 6
Rajesh Jaiswal, Derry FitzGerald, Dan Barry, Eugene Coyle,
and Scott Rickard. Clustering nmf basis functions us-
ing shifted nmf for monaural sound source separation. In
ICASSP, 2011. 6

Einat Kidron, Yoav Y Schechner, and Michael Elad. Pixels
that sound. In CVPR, 2005. 2, 6, 8

Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari,
Sami Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper
Uijlings, Stefan Popov, Shahab Kamali, Matteo Malloci,
Jordi Pont-Tuset, Andreas Veit, Serge Belongie, Victor
Gomes, Abhinav Gupta, Chen Sun, Gal Chechik, David Cai,
Zheyun Feng, Dhyanesh Narayanan, and Kevin Murphy.
Openimages: A public dataset for large-scale multi-label
and multi-class image classification. Dataset available from
https://storage.googleapis.com/openimages/web/index.html,
2017. 3,6

Bochen Li, Karthik Dinesh, Zhiyao Duan, and Gaurav
Sharma. See and listen: Score-informed association of sound
tracks to players in chamber music performance videos. In
ICASSP, 2017. 2

Eric F Lock, Katherine A Hoadley, James Stephen Marron,
and Andrew B Nobel. Joint and individual variation ex-
plained (jive) for integrated analysis of multiple data types.
The annals of applied statistics, 2013. 6, 8

Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. JMLR, 2008. 8

Pedro Morgado, Nono Vasconcelos, Timothy Langlois, and
Oliver Wang. Self-supervised generation of spatial audio for
360° video. In NeurIPS, 2018. 3

Andrew Owens and Alexei A Efros. Audio-visual scene
analysis with self-supervised multisensory features. In
ECCV,2018. 1,2,3,4,6

Andrew Owens, Phillip Isola, Josh McDermott, Antonio Tor-
ralba, Edward H Adelson, and William T Freeman. Visually
indicated sounds. In CVPR, 2016. 3

Sanjeel Parekh, Slim Essid, Alexey Ozerov, Ngoc QK
Duong, Patrick Pérez, and Gaél Richard. Motion informed
audio source separation. In ICASSP, 2017. 2

Jie Pu, Yannis Panagakis, Stavros Petridis, and Maja Pantic.
Audio-visual object localization and separation using low-
rank and sparsity. In ICASSP, 2017. 2,6,7, 8



(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

Colin Raffel, Brian McFee, Eric ] Humphrey, Justin Sala-
mon, Oriol Nieto, Dawen Liang, Daniel PW Ellis, and
C Colin Raffel. mir_eval: A transparent implementation of
common mir metrics. In ISMIR, 2014. 6

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NeurIPS, 2015. 3

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, 2015. 4

Carsten Rother, Tom Minka, Andrew Blake, and Vladimir
Kolmogorov. Cosegmentation of image pairs by histogram
matching-incorporating a global constraint into mrfs. In
CVPR, 2006. 2

Farnaz Sedighin, Massoud Babaie-Zadeh, Bertrand Rivet,
and Christian Jutten. Two multimodal approaches for sin-
gle microphone source separation. In 24th European Signal
Processing Conference, 2016. 2

Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan
Yang, and In So Kweon. Learning to localize sound source
in visual scenes. In CVPR, 2018. 2

Andrew JR Simpson, Gerard Roma, and Mark D Plumbley.
Deep karaoke: Extracting vocals from musical mixtures us-
ing a convolutional deep neural network. In International
Conference on Latent Variable Analysis and Signal Separa-
tion, 2015. 1

Paris Smaragdis and Michael Casey. Audio/visual indepen-
dent components. In International Conference on Indepen-
dent Component Analysis and Signal Separation, 2003. 2
Martin Spiertz and Volker Gnann. Source-filter based clus-
tering for monaural blind source separation. In /2th Interna-
tional Conference on Digital Audio Effects, 2009. 6,7
Daniel Stoller, Sebastian Ewert, and Simon Dixon. Ad-
versarial semi-supervised audio source separation applied to
singing voice extraction. In JCASSP, 2018. 2

Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu. Audio-visual event
localization in unconstrained videos. In ECCV, 2018. 2
Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers,
and Arnold WM Smeulders. Selective search for object
recognition. IJCV, 2013. 8

Tuomas Virtanen. Sound source separation using sparse
coding with temporal continuity objective. In International
Computer Music Conference, 2003. 6

Tuomas Virtanen. Monaural sound source separation by non-
negative matrix factorization with temporal continuity and
sparseness criteria. IEEE transactions on audio, speech, and
language processing, 2007. 1,2

DeLiang Wang and Jitong Chen. Supervised speech sep-
aration based on deep learning: An overview. IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
2018. 4

Dong Yu, Morten Kolbzk, Zheng-Hua Tan, and Jesper
Jensen. Permutation invariant training of deep models
for speaker-independent multi-talker speech separation. In
ICASSP,2017. 1,2,3

Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Tor-
ralba. The sound of motions. In /CCV, 2019. 2

(52]

(53]

[54]

3888

Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-
drick, Josh McDermott, and Antonio Torralba. The sound of
pixels. In ECCV,2018. 1,2,3,4,5,6,7

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In CVPR, 2017. 6

Yipin Zhou, Zhaowen Wang, Chen Fang, Trung Bui, and
Tamara L Berg. Visual to sound: Generating natural sound
for videos in the wild. In CVPR, 2018. 3



