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Abstract

A great number of invaluable historical photographs un-

fortunately only exist in the form of halftone prints in old

publications such as newspapers or books. Their origi-

nal continuous-tone films have long been lost or irrepara-

bly damaged. There have been attempts to digitally restore

these vintage halftone prints to the original film quality or

higher. However, even using powerful deep convolutional

neural networks, it is still difficult to obtain satisfactory re-

sults. The main challenge is that the degradation process

is complex and compounded while almost no paired real

data is available for machine learning. In this research, we

develop a novel learning strategy, in which the restoration

task is divided into two stages: the removal of printing ar-

tifacts and the inverse of halftoning. The advantage of our

technique is that only the simple first stage, which makes

the method adapt to real halftone prints, requires unsuper-

vised training, while the more complex second stage of in-

verse halftoning only uses synthetic training data. Exten-

sive experiments demonstrate the efficacy of the proposed

technique for real halftone prints; the new technique signif-

icantly outperforms the existing ones in visual quality.

1. Introduction

In late 1830s camera photographs were first successfully

developed on paper sensitised with silver salt [22]. To mass

reproduce these photographs on regular paper with black

ink, William Henry Fox Talbot invented halftone printing,

a technique that uses ink dots of different sizes to simu-

late different greyscales, shortly after the birth of photog-

raphy [38]. The first examples of printed photos using this

technique appeared in an American periodical as early as

in 1873. Since then, countless of valuable historical pho-

tographs have been preserved in the form of halftone prints,

while their originals were irreversibly damaged or lost. To-
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(a) Original (b) Cleaned (c) Restored

Figure 1: The proposed technique divides the task of real

halftone print restoration into two stages: the removal of

printing artifacts (a)→(b) and the inverse of halftoning

(b)→(c). Only the relatively simple first stage requires un-

supervised training. The second stage of inverse halftoning

can be easily trained with synthetic data.

day, the only possibility to reproduce these lost original

photographs is the process of inverse halftoning.

Recently much publicized successes of deep learning in

image restoration stimulated interests in the use of machine

learning methods for inverse halftoning. Several deep con-

volutional neural network (DCNN) based techniques have

been proposed to tackle the problem [14, 42, 41, 19]. Their

general idea is to train an end-to-end mapping using fab-

ricated image pairs (Y,X), where Y is the digital halfton-

ing result of the latent continuous-tone photograph X . This

practice is, however, a seriously flawed expediency. None

of the DCNN methods can satisfactorily invert scanned

halftone prints of historical photographs, because the dot

patterns of relief halftone printing process from the 1880s to

the 1950s are very different from those of digital halftoning.

A notorious weakness of the black box DCNN methods for

image restoration is that even very small deviations between

the images for training and inference can cause them to

fail. To aggravate the problem further, scanned old halftone

prints have other blemishes as well, such as ink smear, pa-
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per fiber structures, paper damage, etc. How to overcome

these difficulties in learning-based inverse halftoning is the

technical focus of this research.

Deviating from a direct end-to-end DCNN mapping, the

main stream deep learning approach in image restoration,

we adopt a new strategy of two-stage deep learning as ex-

emplified in Figure 1. The two stages are two cascaded DC-

NNs, Ns and Ni, for two tightly coupled learning tasks. The

back end subnet Ni is for the task of inverse halftoning, i.e.,

the inference of X , but the input of Ni is synthetic halftone

images Ŷ rather than real scanned halftone prints Y . The

synthetic halftone images Ŷ play the role of circumventing

the obstacle of no paired vintage photos and their halftone

prints for training. These intermediate training halftone im-

ages Ŷ are generated by a physically-based model M , i.e.,

Ŷ = M(X).
However, this realistic model M cannot simulate all the

compounded noise and artifacts of a vintage halftone print;

its outputs Ŷ are still only approximations of the pertaining

real halftone prints Y that deep learning desires but cannot

have. The model precision gap is closed by the front end

subnet Ns, called artifacts removal stage. In this stage, a

DCNN maps the digitized old halftone print Y to its syn-

thetic counterpart Ŷ , aiming to remove common blemishes

found in old halftone prints mentioned above. Due to the

lack of real paired data, subnet Ns requires unsupervised

learning. However, since the mapping between Y and Ŷ is

quite simple, unsupervised learning can solve this problem

to the needed precision. Therefore, by dividing the origi-

nal problem into two stages and tackling them individually,

the proposed technique can effectively restore high quality

images from old halftone prints.

The remainder of this paper is organized as follows. Sec-

tion 2 overviews related object counting techniques. Sec-

tion 3 discusses the proposed two-stage strategy. Section 4

presents evaluates the our technique with different experi-

ments and Section 5 concludes.

2. Related Work

Fundamentally, halftoning is a resampling process that

transforms the grayscales of an analog signal to the duty cy-

cles of a binary signal. Although the process removes most

of the high frequency components of the original image, the

low frequency components are well preserved in general.

Thus, the most common conventional strategy of inverse

halftoning is to use lowpass filters, such as edge-preserving

filtering [29, 26, 21]. Xiong et al. proposed a wavelet do-

main filtering technique for reducing digital halftone pattern

generated using error diffusion [43]. This technique em-

ploys cross-scale correlations to improve the preservation

of edges during the removal of halftone artifacts. In [32],

Siddiqui et al. adopted a modified locally adaptive SUSAN

filter to suppress halftone patterns. They also developed an

efficient local gradient based method called HFD, which ex-

hibits good performances in smooth area but is ineffective

around edges [33]. In [36], Sun et al. employed BM3D

[6] to remove artifacts in halftone prints. This method also

uses adaptive Guassian filtering to further smooth the im-

age and bilateral filtering to improve the sharpness of edges.

Ciobanu et al. proposed an artifact removal technique to

clean up imperfections in scanned halftone prints as a pre-

processing step for halftone restoration [5].

Statistical learning is also widely adopted in many in-

verse halftoning techniques, such as look-up table (LUT)

[4], least-mean-square (LMS) filtering [3], maximum a pos-

teriori (MAP) [35] and sparse representation [34]. Mese

et al. proposed a recursive template selection algorithm

for vector table generation and pixel value estimation us-

ing a constructed LUT [28]. Stevenson et al. proposed a

MAP-based inverse halftoning technique that utilizes im-

age distribution prior defined in Markov random field [35].

In [49], Zhang et al. presented a structure based multi-

dictionary learning method, which employs feature dictio-

naries learned from image patch groups. In [16], Huang

et al. presented a radial-basis function neural network

(RBFNN) for inverse halftoning images. Pelcastre et al.

proposed a method that use a multilayer neural network to

improve the image quality of lowpass filtered halftone im-

age [30].

Recently, DCNN has shown its great potential in image

restorations and has achieved the state of the art for various

problems including inverse halftoning. For example, for er-

ror diffusion based digital halftone pattern, ResNet and U-

Net based inverse halftoning technique have been studied

in a few researches [41, 14, 42]. Some of these proposed

techniques adopt more complex perceptual constraints [18]

to improve the visual quality of their outputs. For conven-

tional dot-shaped halftone pattern, Kim et al. proposed a

DCNN technique that can incorporate more context infor-

mation by using a segmentation subnet and an edge detec-

tion subnet [19]. Overall, the performance of these methods

is highly dependent on the quality of the training halftone

samples. Using only synthetic halftone images for training,

these methods cannot properly handle the various degrada-

tions in real halftone images scanned from old publications,

resulting inaccurate and noisy outputs.

Besides the purposefully designed inverse halftoning

DCNNs, some general purpose DCNN can also be retrained

for the inverse halftoning task. For example, style trans-

fer networks, which map an input image to a different style

without requiring strictly paired training data [9], can trans-

form a halftone image to a regular clean image given suffi-

cient samples of such images. GAN [10], which is widely

adopted to bridge the gap between different distributions in

the learning of end-to-end mapping, is also helpful in allevi-

ating the problem of lack of paired training data for inverse
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Vintage halftone print Synthetic halftone image

Figure 2: It is difficult to simulate real halftone prints pre-

cisely, as they are often plagued by various types of blem-

ishes such as ink smear, paper wear, etc.

halftoning. Many recent image restoration techniques have

incorporated GAN in their designs [46, 8, 40]. Another

interesting technique that can potentially solve the inverse

halftoning problem is CycleGAN [50, 44]. CycleGAN em-

ploys two image-to-image translation networks of opposite

directions to generate and validate paired training data from

unpaired data. In theory, CycleGAN is capable of solving

image restoration problems without given an explicit model

of the degradation.

3. Two-Stage Restoration

As we discussed previously, the main challenge of using

deep learning techniques for inverse halftoning is the lack of

paired data. As low quality halftone prints in old publica-

tions are often the only surviving copies of the photographs,

it is impossible to build a sufficiently large training set of

real image pairs. One common solution to the problem is to

use synthetic data for training [14, 19]. The main drawback

of this approach is that synthetic data trained DCNNs tend

to only work for synthetic input. Due to the vastly differ-

ent types of blemishes plaguing real old halftone prints as

exemplified in Figure 2, it is very difficult to simulate the

complex compound effects of multiple degradation causes

to the desired precision. As a result, the performance of syn-

thetic data trained techniques often deteriorate significantly

when dealing with real halftone images. Another solution is

to use unsupervised learning [17, 50]. While this approach

does not need strictly paired training data, a trained network

might not be able to accurately learn the semantic connec-

tion between the degraded images and clean images, result-

ing various types of artifacts in the output.

Our approach is a mixture of the two aforementioned so-

lutions. Instead of using a direct end-to-end mapping net-

work N from real halftone print Y to its continuous tone

counterpart X , we adopt a strategy of two-stage deep learn-

ing. The key idea of this strategy is to add a new inter-

mediate objective, synthetic halftone image Ŷ , splitting the

original mapping network N : Y → X into two cascaded

subnets Ns : Y → Ŷ and Ni : Ŷ → X . The first stage

subnet Ns is the artifacts removal subnet, which maps the

input real halftone image Y to its synthetic counterpart Ŷ .

Despite the lack of strictly paired data, Ns is easy to train

using unsupervised learning techniques, as removing arti-

facts from the real halftone prints into synthetic clean im-

ages is quite straightforward. The second stage subnet Ni

is the inverse halftoning subnet, which maps the input syn-

thetic halftone image Ŷ to its continuous tone counterpart

X . Since sufficient paired images can be easily generated

using the halftone synthesizer M , Ni is easy to train as

well. Therefore, by dividing the original direct end-to-end

mapping, we break the restoration task into two much more

tractable sub-problems.

3.1. Architecture

The goal of the first stage halftone artifacts removal

subnet Ns is to remove common blemishes found in old

halftone prints, making the resulting image statistically

close to synthetic halftone prints. The subnet should only

fix the defects of the halftone print and reconstruct the ink

dots, i.e., the shape, size and grayscale of the dots, leav-

ing the content of the image unchanged. To achieve such

an objective, subnet Ns does not need to have a large num-

ber of parameters, but a sufficiently large receptive field is

necessary for preserving halftone patterns. As shown in the

left part of Figure 3, the architecture of the artifacts removal

subnet is based on autoencoder [13, 7]. The encoder section

of the network removes the details of the original halftone

pattern and transforms the image content into compact fea-

ture representations. The details are then reconstructed in

the decoder section according to the image content using the

ideal halftone patterns found in synthetic halftone images.

Both the encoder and decoder sections are consist of 8 con-

volution layers with stride 2 and kernel size 4. In order to

decrease the unnecessary information extraction, skip con-

nections [12, 27, 17] are employed in corresponding layers

between the encoder and decoder.

The goal of the second stage inverse halftoning subnet

Ni is to remove synthetic halftone pattern and reconstruct a

high-quality image. The basic architecture of this subnet is

shown in the right part of Figure 3. During the halftoning

process, the low frequency components of the original im-

age are mostly preserved, while the high frequency compo-

nents are heavily distorted. The semantic information of the

original high-quality image can only be revealed by exam-

ining the big picture. Thus, we add skip connections at the

beginning of the subnet in order to provide a path for gra-

dient propagation in optimization, reducing the difficulty of

training. We also use two strided convolutional layers for

expanding the receptive field. Inspired by the dense block
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Figure 3: The network architecture of the proposed technique. Symbols C, U, I, L, R, T denote convolution layer, transposed

convolution layer, instance normalization, LeakyReLU (α = 0.2), ReLU, and Tanh respectively

Figure 4: RRDB block. Symbols C, L, M denote convolu-

tion layer, LeakyReLU (α = 0.2), residual scaling, respec-

tively

[15, 48, 40], we increase network capacity using dense con-

nection. High frequency information prediction is based on

the abstract context feature space with 16 stacked residual in

residual dense blocks (RRDB) as shown in Figure 4. Resid-

ual scaling [24, 37] is also employed for preventing insta-

bility.

3.2. Objective Functions

In the training of the proposed technique, the two sub-

nets Ns and Ni are first trained separately using different

objective functions. Then we combine the two subnets to-

gether, forming the complete network as shown in Figure 3,

and train them jointly.

Objective function for halftone artifacts removal. The

mapping function Ns from Y to Ŷ is trained using the GAN

technique, where the adversarial loss is defined as:

LNs
= EY [− log(D(Ns(Y )))] (1)

Discriminative network D is trained jointly with Ns [10].

To improve the performance of the network and stabilize

the training, we add an inverse mapping network N ′

s from

Ŷ to Y sharing the same architecture as Ns to form a cycle

as in CycleGAN [50]. In addition to the adversarial loss of

the inverse mapping network, cycle-consistency loss is also

employed, which is defined as,

Lcycle = EY [‖N
′

s(Ns(Y ))− Y ‖1]

+ E
Ŷ
[‖Ns(N

′

s(Ŷ ))− Ŷ ‖1] (2)

The overall objective function for the halftone artifacts re-

moval subnet is as follows,

Lstage1 = LNs
+ LN ′

s

+ Lcycle (3)

Objective function for inverse halftoning. In this

stage, large quantities of paired synthetic data {Ŷ , X} are

available. Thus, the training can be carried out using

straightforward end-to-end supervised learning. As in many

other DCNN-based image restoration techniques, we use

L1 norm as the objective function as follows,

Lstage2 = E
Ŷ ,X

‖Ni(Ŷ )−X‖1. (4)

Objective function for joint training. To further im-

prove the performance of the technique, we jointly fine-

tune subnets Ns and Ni after completing their individual

training. Since there is no real paired training data {Y,X}
of real halftone prints and their high-quality counterparts,

simple end-to-end supervised learning is infeasible for this

task. To solve this problem. we borrow the idea of deep

learning with surrogate ground truth [25]. For each input

real halftone prints Y , we generate a surrogate ground truth

image S(Y ) using a filtering-based inverse halftoning oper-

ator called Sattva [1]. While Sattva preserves low frequency

components of the input image very well, it often fails to re-

construct the high frequency components to desired preci-

sion for real halftone prints. Thus, in the surrogate loss, only

the low frequency components of the results of the joint net-

work N are compared against the surrogate ground truth, as

follows,

Ls = EY ‖F(N(Y ))−F(S(Y ))‖1, (5)

where F is a function that removes high frequency informa-

tion of the input image. In all of the presented experiments,

we use a pre-trained 19-layer VGG network as F . To pre-

vent over-smoothing and to generate photorealistic results,

adversarial loss Ladv is also added in the joint training. By

combining the loss used in the previous individual training,

we arrive at the final formulation of the joint training objec-

tive function,

Ljoint = λ1Lstage1 + λ2Ls + λ3Ladv (6)

where λ1, λ2 and λ3 are the weights balancing the different

objective terms.
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4. Experiments

To evaluate the performance of the proposed two-stage

technique, we implement the DCNN-based algorithm using

PyTorch and compare it against several other popular tech-

niques for inverse halftoning. In this section, we discuss the

details of the experiments.

4.1. Datasets and Training Details

The ground truth images for the training of the inverse

halftoning subnet Ni are collected from several popular im-

age datasets, including DIV2K [2], OutdoorScene [39], He-

len [23], IBUG [31], UTKFace [47]. From the total 12436

high quality images collected, 8700 are randomly selected

for training. The corresponding synthetic halftone images

are generated from these images by the aforementioned

halftone image synthesizer with random halftone scales and

angles. Using real vintage halftone prints as references, the

distances of adjacent halftone dots are set between 3 and 9;

and angles of the patterns are set between 15◦ and 75◦ in

the our experiments. For evaluating the halftone artifacts

removal subnet and the joint network, 379 vintage photo

prints are scanned from old newspapers and books, where

195 images are used for training.

The two subnets Ns, Ni are first trained separately for

120 and 500 epochs, respectively. In both cases, the learn-

ing rate is set to 0.0002 for the first half of the training pro-

cess and then decreased to 0 linearly. Kaiming initializa-

tion is adopted for all the networks [11]. Adam optimizer is

used in optimization with β1 = 0.5 [20]. After the training

of the two subnets, the whole network is trained jointly for

another 120 epochs at learning rate 0.00005. The discrim-

inator of Ns shares a similar architecture as the discrim-

inator of DCGAN. Their main difference is that the pro-

posed method uses instance normalization instead of batch

normalization. The discriminator of Ni employs a VGG-

style architecture but with max pooling replaced by strided

convolution. For the joint training objective function as in

Eq. (6), the weights λ1, λ2, λ3 are empirically set to 1, 0.5

and 1, respectively. All the experiments are carried out on a

computer with a NVIDIA GTX Titan X GPU.

4.2. Baseline Algorithms

To evaluate the performance of the proposed technique,

the following algorithms are also tested for comparison.

Sattva [1]. This is a low-pass filtering based method

implemented as a plugin for Photoshop. It automatically

detects the density of halftone, and apply low-pass filters

accordingly to prevent over-smoothing and moiré patterns.

Sattva is one of the best conventional inverse halftoning

technique in terms of visual quality.

ESRGAN [40]. This is originally a state-of-the-art

learning based single image super-resolution algorithm. To

ESRGAN Unet Proposed

PSNR 29.94 28.60 30.10

SSIM 0.8904 0.8561 0.8951

Table 1: Average PSNR and SSIM performances of the

tested techniques on synthetic data.

Halftone ESRGAN Unet Proposed Original

Figure 5: Sample results of algorithms on synthetic image.

repurpose ESRGAN as an inverse halftoning technique, we

first downsample the given halftone image by a factor of 4

using a Guassian kernel, and then feed the result to ESR-

GAN to restore the image to the original scale. In general,

this method performs much better than direct end-to-end

mapping networks, even with the help of GAN. The rea-

son is that, since most high-frequency components of the

original image are severely distorted during the halftoning

process, the fine details of a real halftone image, including

paper fiber structure, ink smear, etc., offer little or no use-

ful information and can often become a source of interfer-

ence. Downsampling greatly reduces this problem, making

the ESRGAN method more effective for inverse halftoning.

To further improve the baseline performance, we retrain the

official implementation of ESRGAN using our dataset.

CycleGAN [50]. This is an unpaired image-to-image

translation DCNN. Since CycleGAN learns a mapping from

source domain to target domain without the necessity of

paired training samples, it could solve the problem of the

lack of ground truth image for vintage halftone prints. We

trained CycleGAN directly using unpaired real halftone im-

ages and continuous tone images from our dataset.

Unet [14] and DescreenNet [19]. Both are learning

based inverse halftoning method that produce excellent re-

sults for synthetic halftone images. The implementation of

Unet [14] is from the original authors. We fine-tuned their

pre-trained model using our dataset. For DescreenNet [19],

since its implementation is not made available publicly, we

only compare the results published by the authors in the our

evaluation.

4.3. Comparison of Algorithms

Shown in Table 1 are the quantitative evaluation results

of the tested algorithms on synthetic dataset. For fair com-
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Hafltone Sattva ESRGAN

Accuracy 0.6012 0.7484 0.7086

CycleGAN Unet Proposed

Accuracy 0.7465 0.7331 0.7576

Table 2: Accuracy of the MTCNN face detection algorithm

on images restored by inverse halftoning techniques.

parison, adversarial optimization is disabled for ESRGAN

and the proposed method. As shown in the table, the pro-

posed method achieved the best result, but the differences

are insignificant. Some samples of the synthetic test results

are presented in Figure 5. For synthetic halftone images,

the proposed method exhibits more details than the compe-

tition. The results from ESRGAN and Unet look blurry in

comparison.

When it comes to real scanned halftone prints, the per-

formance of the proposed algorithm is far superior than

the other tested algorithms. Figure 6 shows the results on

real halftone prints provided by the authors of DescreenNet

[19]. As shown in the figure, the proposed method produces

sharper and more natural looking details than Sattva and the

other DCNN-based approaches. The proposed algorithm

also works well on our scanned halftone print set, which in-

cludes portraits and outdoor scenery, as shown in Figure 7.

In comparison, our algorithm produces much cleaner and

refined results. It also generates more realistic looking de-

tails than the other DCNN approaches. The results of the

compared techniques are often plagued by high frequency

noise and unpleasant artifacts. More experimental results

and comparison with other methods are available in the sup-

plementary material.

Since the originals of most real vintage halftone prints

have long been lost in the past, it is difficult to evaluate

the performance of inverse halftoning techniques on real

halftone prints objectively without the ground truth. There-

fore, instead of using direct quantitative measurement, we

evaluate the performance of face detection on images re-

stored by the inverse halftoning methods as a circumstantial

evidence of the restoration quality. Shown in Table 2 is the

average face recognition accuracy of pre-trained MTCNN

[45] on the input halftone prints and the corresponding re-

sults by the tested inverse halftoning methods. MTCNN

achieves the best performance when its input image is the

result of the proposed method. This shows that the proposed

method produces the least amount of artifacts on halftone

portraits in comparison with the other tested techniques.

4.4. Ablation Study of the Proposed Method

In this subsection, we test various ablations of our full

architecture to evaluate the effects of each components of

the proposed algorithm.

Artifacts removal subnet. Figure 8b shows the results

of the proposed algorithm without the artifacts removal sub-

net. While the results look realistic in coarse scale, lots of

the imperfections, such as paper fiber patterns and blemish,

are carried over from the input halftone prints, making the

results look noisy in fine scale. The results of ESRGAN and

Unet also exhibit this problem, as shown in Figure 7.

Inverse halftoning subnet. Figure 8c presents the re-

sults of the proposed algorithm without the inverse halfton-

ing subnet. As demonstrated in the figure, the results are

rich in detail, but they look unrealistic overall and contain

severe artifacts in smooth regions, similar to the results of

CycleGAN as shown in Figure 7. Although it is still pos-

sible to train a DCNN using unpaired data in the absences

of the inverse halftoning subnet, it is too difficult to make

it learn the complex and compounded degradation of vin-

tage halftone prints precisely. The intermediate synthetic

halftone image provides an important guide, greatly reduc-

ing the difficulty of the problem.

Joint training. Figure 8d shows the results of the pro-

posed algorithm without the final joint training. While most

paper fiber and halftone patterns are successfully removed

as shown, there are still some artifacts in smooth regions.

In comparison, the results of the jointly optimized version

show no sign of these problems, as demonstrated in Fig-

ure 8e.

4.5. Improving Existing Methods

We also investigate the possibility of improving existing

inverse halftoning methods using our artifacts removal sub-

net Ns. As shown in Figure 9b, using Unet directly on real

scanned halftone prints often leaves objectionable noise in

the resulting image. By first pre-processing the input real

halftone prints with the artifacts removal subnet Ns, the

visual quality of the output image by Unet is greatly im-

proved, as demonstrated in Figure 9c. Many similar inverse

halftoning methods can benefit from a pre-trained subnet

Ns when dealing with real vintage halftone prints.

4.6. Generating Realistic Halftone Images

Interestingly, with the inverse artifacts removal subnet

N ′

s used in the training of Ns, we can also generate pho-

torealistic halftone image from clean synthetic halftone im-

age, as exemplified in Figure 10. Thus, subnet N ′

s can be

utilized potentially as a more realistic halftone image syn-

thesizer for future research of halftone image restoration.

4.7. Model Size and Computation Time

Summarized in Table 3 are the model sizes and compu-

tation times for processing an image of size of 512×512

with existing methods. The time cost of DescreenNet [19]

reported by the original authors is also listed as a reference.
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Halftone Sattva [1] ESRGAN [40] CycleGAN [50] Unet [14] DescreenNet [19] Proposed

Figure 6: Sample results of algorithms on real halftone prints provided by [19].

Halftone Sattva [1] ESRGAN [40] CycleGAN [50] Unet [14] Proposed

Figure 7: Sample results of algorithms on real halftone prints scanned from old publications.
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(a) Input (b) No artifacts removal (c) No inverse halftoning (d) No joint training (e) Full version

Figure 8: Ablation study of the proposed technique. The network performs the best when the artifacts removal and inverse

halftoning subnets are both employed.

(a) Halftone print (b) Unet (c) Ns+Unet

Figure 9: By pre-processing the input halftone print with the

proposed artifacts removal subnet Ns, the output quality of

Unet is greatly improved.

(a) Input (b) Synthetic (c) Realistic

Figure 10: With the inverse artifacts removal subnet N ′

s, we

can generate realistic halftone images.

4.8. Limitation

The proposed method might not be able to fully re-

cover the original photos to the desired quality if the in-

put halftone prints are severely damaged. As exemplified in

Figure 11, the proposed method often fails to restore faded

or poorly illuminated parts in a halftone print. It can also

mistake ink spots as true signal and leave them in restored

images. A possible solution to the problem is to add a pre-

processing stage to detect ink spots or other types of im-

perfections. Then, we can use other restoration techniques,

such as inpainting, to recover these regions separately.

Table 3: Comparison of model sizes and computation times

for processing an input image of size 512×512 with existing

methods.

Method Time (s) Parameters (×106)

Unet[14] 0.003 13.603

DNIH[42] 0.003 3.478

ESRGAN[40] 0.054 16.696

CycleGAN[50] 0.005 11.366

DescreenNet[19] 0.070 N/A

Proposed 0.042 71.283

Figure 11: Sample of failure cases. Some severse blemishes

can disrupt the restoration.

5. Conclusion

In this research, we propose a novel strategy that divides

the task of real halftone prints restoration into two stages:

the removal of printing artifacts and the inverse of halfton-

ing. The advantage of our technique is that only the simple

first stage requires unsupervised training, while the more

complex second stage of inverse halftoning can be easily

trained with synthetic data. Extensive experimental results

demonstrate the superiority of the proposed algorithm over

the state of the art for vintage halftone prints.
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