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Abstract

Exploiting relationships between visual regions and
question words have achieved great success in learn-
ing multi-modality features for Visual Question Answer-
ing (VQA). However, we argue that existing methods [29]
mostly model relations between individual visual regions
and words, which are not enough to correctly answer the
question. From humans’ perspective, answering a visual
question requires understanding the summarizations of vi-
sual and language information. In this paper, we pro-
posed the Multi-modality Latent Interaction module (MLI)
to tackle this problem. The proposed module learns the
cross-modality relationships between latent visual and lan-
guage summarizations, which summarize visual regions and
question into a small number of latent representations to
avoid modeling uninformative individual region-word rela-
tions. The cross-modality information between the latent
summarizations are propagated to fuse valuable informa-
tion from both modalities and are used to update the visual
and word features. Such MLI modules can be stacked for
several stages to model complex and latent relations be-
tween the two modalities and achieves highly competitive
performance on public VQA benchmarks, VOQA v2.0 [12]
and TDIUC [20]. In addition, we show that the perfor-
mance of our methods could be significantly improved by
combining with pre-trained language model BERT[6].

1. Introduction

Visual Question Answering [2, 53, 12] has received in-
creasing attention from the research community. Previous
approaches solve the Visual Question Answering (VQA) by
designing better features [25, 44, 13, 17, 1], better bilinear
fusion approaches [10, 7, 22, 3, 52] or better attention mech-
anisms [48, 29, 49, 45, 36]. Recently, relational reasoning
has been explored for solving VQA and significantly im-
proved performance and interpretability of VQA systems.

Despite relationships has been extensively adopted in
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Figure 1: Illustration of the information flow in our pro-
posed MLI compared with previous approaches, namely,
co-attention [29], self-attention [45] and intra-inter modal-
ity attention(DFAF) [36]. Left side of each image represent
visual feature while right side stands for question features.

different tasks, such as object detection [ 4], language mod-
elling [0], image captioning [51] and VQA [36, | 1]. Rela-
tional approaches for VQA were only proposed for mod-
elling relationship between words and visual regions. Thus,
relational reasoning requires large GPU memories because
it needs to model relations between every pair. For VQA,
modeling relationships between individual words and visual
regions is not enough to correctly answer the question.

To model more complex cross-modality relations, we
propose a novel Multi-modality Latent Interaction Network
(MLIN) with MLI modules. Different from existing rela-
tional VQA methods, the MLI module first encodes ques-
tion and image features into a small number of latent vi-
sual and question summarizaiton vectors. Each summariza-
tion vector can be formulated as the weighted pooling over
visual or word features, which summarizes certain aspect
of each modality from a global perspective and therefore
encodes richer information compared with individual word
and region features. After acquiring summarizations for
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each modality, we establish visual-language associations
between the multi-modal summarization vectors and pro-
pose to propagate information between summarization vec-
tors to model the complex relations between language and
vision. Each original visual region and word feature would
finally aggregate information from the updated latent sum-
marizations using attention mechanisms and residual con-
nections to predict the correct answers.

Our proposed MLIN achieves competitive performance
on VQA benchmarks, including VQA v2.0 [12] and
TDIUC [20]. In addition, we experiment how to com-
bine pre-trained language model BERT [6] to improve VQA
models. After integrating with BERT [6], MLIN achieves
better performance compared with state-of-the-art models.

Our proposed MLIN is related to the attention-based ap-
proaches. An illustration between previous approaches can
be seen from Figure 1. Previous attention approaches that
aggregate information can be classified into the following
categories: (1) The co-attention mechanism [29] aggregates
information from the other modality. (2) Transformer [45]
aggregates information inside each modality using key-
query attention mechanism. (3) The intra- & inter-modal
attention(DFAF) [36] propagate and aggregate information
within and across multiple modalities. For intra-modality
feature aggregation, attention is dynamically modulated by
the other modality using the pooled features. Compared
with previous approaches, MLIN does not aggregate fea-
tures just from the large number of individual visual-word
pairs but from the small number of multi-modal latent sum-
marization vectors, which can capture high-level visual-
language interactions with much smaller modal capacity.

Our contributions can be summarized into two-fold. (1)
We propose the MLIN for modelling multi-modality inter-
actions via a small number of multi-modal summarizations,
which helps encode the relationships across modalities from
global perspectives and avoids capturing too much unin-
formative region-word relations. (2) We carried out exten-
sive ablation studies over each components of MLIN and
achieve competitive performance on VQA v2.0 [12] and
TDIUC [20] benchmarks. Besides, we provide visualisa-
tion of our LMIN and have a better understanding about
the interactions between multi-modal summarizations. We
also explore how to effectively integrate the pre-trained lan-
guage model [6] into the proposed framework for further
improving the VQA accuracy.

2. Related Work
2.1. Representation Learning

Learning good representations have been the founda-
tions for advancing vision and Natural Language Process-
ing (NLP) research. For computer vision, AlexNet [25],
VGGNet [44], ResNet [13] and DenseNet [17] features

achieved great success on image recognition [5]. For NLP,
word2vec [30], GloVe [37], Skipthough [24], ELMo [39],
GPT [40], VIIBERT [28] and BERT [6] achieved great suc-
cess at language modelling. The successful representation
learning in vision and language has much benefitted multi-
modality feature learning. Furthermore, bottom-up & top-
down features [1] for VQA and image captioning greatly
boosted the performance of multi-modality learning based
on the additional visual region (object detection [41]) infor-
mation.

2.2. Relational Reasoning

Our work is mostly related to the relational reasoning
approaches. Relational reasoning approaches try to solve
VQA by learning the relationships between individual vi-
sual regions and words. Co-attention based [29] approaches
can be seen as modelling the relationship between each
word and visual region pairs using the attention mechanism.
Transformer [45] proposed to use the key-query-value at-
tention mechanism to model the relationship inside each
modality. Simple relational networks [42, 15] reason over
all region pairs in the image by concatenating region fea-
tures. Besides VQA, relational reasoning has improved per-
formance in other research areas. Relational reasoning has
been applied to object detection [14] and show that mod-
elling relationships could help object classification and non-
maximum suppression. Relational reasoning has also been
explored in image captioning [51] using graph neural net-
works. Non-local network [46] shows that modelling rela-
tionship across video frames can significantly boost video
classification accuracy.

2.3. Attention-based Approaches for VQA

Attention-based approaches have been extensively stud-
ied for VQA. Many relational reasoning approaches using
attention mechanisms to aggregate contextual information.
Soft and hard attention [48] has been first proposed by Xu
et al., which has become the main-stream in VQA systems.
Yang et al. [49] proposed to stack several layers of atten-
tion to gradually focus on the most important regions. Lu
et al. [29] proposed co-attention-based methods, which can
aggregate information from the other modality. Vaswani
et al. [45] aggregated information inside each modality for
solving machine translation. Nguyen et al. [31] proposed
a densely connected co-attention mechanism for VQA. Bi-
linear Attention Network [21] generated attention weights
by capturing the interactions between each feature channel.
Structured attention [55] added a Markov Random Field
(MRF) model over the spatial attention map for modelling
spatial importance. Besides VQA, Chen et al. [4] proposed
spatial-wise and channel-wise attention mechanisms, which
can modulate information flow spatial-wise and channel-
wise for image captioning. In referring expression, Xihui
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et al. [27] propose attention guided feature erasing.

2.4. Dynamic Parameter Prediction

Dynamic parameter prediction (DPP) propose another
direction for multi-modality feature fusion. Noh ef al. [33]
firstly proposed a DPP-based multi-modality fusion ap-
proach by predicting the weights of fully connected layer
using question features. Perez et al. [38] achieved compet-
itive VQA performance compared with complex reasoning
approaches on the CLEVR [19] dataset by predicting the
normalisation parameter of visual features. Furthermore,
Gao et al. [9] proposed to modulate visual features by pre-
dicting convolution kernels from the input question. Hybrid
convolution was proposed to reduce the number of param-
eters without hindering the overall performance. Beyond
VQA, DPP-based approaches have been adopted for trans-
fer learning between classification and segmentation [16].

3. Multi-modality Latent Interaction Network

Figure 2 illustrate the overall pipeline of our proposed
Multi-modality Latent Interaction Network (MLIN). The
proposed MLIN consists of a series of stacking Multi-
modality Latent (MLI) modules, which aims to summa-
rize input visual-region and question-word information into
a small number of latent summarization vectors for each
modality. The key idea is to propagate visual and lan-
guage information among the latent summarization vec-
tors to model the complex cross-modality interactions from
global perspectives. After information propagation among
the latent interaction summarization vectors, visual-region
and word features would aggregate information from the
cross-domain summarizations to update their features. The
inputs and outputs of the MLI module has the same dimen-
sions and the overall network stacks the MLI module for
multiple stages to gradually refine the visual and language
features. In the last stage, we conduct elementwise multi-
plication between the average features of visual regions and
question words to predict the final answer.

3.1. Question and Visual Feature Encoding

Given an input image [ and a question (), the task
of VQA requires joint reasoning over the multi-modal in-
formation to estimate an answer. Following previous ap-
proaches [1, 21, 36], we extract visual-region features from
I using the Faster RCNN object detector [41, 18] and the
word features from () using a bidirectional Transformer
model [45]. The feature extraction stage is shown in the
upper part of Figure 2. Each image will be encoded as a se-
ries of M visual-region features, denoted as R € RM*512,
while sentence will be padded to a maximum length of 14
and be encoded by bidirectional Transformer with random
initialization, denoted as E € RY*512 The multi-modal

feature encoding can be formulated as

R = RCNN(I7 9RCNN)7 (1)

E = Transformer(Q; OTransformer )

where Orenn and Oqansformer denote the network parameters
for visual and language feature encoding.

3.2. Modality Summarizations in MLI Module

Summarization module can be seen from the Summa-
rization part of Figure 2. After acquiring visual and ques-
tion features, we add a lightweight neural network to gener-
ate k sets of latent visual or language summarization vectors
for each modality. The k sets of linear combination weights
are first generated via

L = softmax, (WrRT + bg), )
Lg = softmax.,(WgET + bg), 3)

where Wr, Wg € RFX512 and bg, by € R* are the k sets
of learnable linear transformation weights for each of the
modality, and “softmax.,” denotes the softmax operation
along the horizontal dimension. The individual visual and
word features, R and E, can then be converted into £ latent
summarization vectors, B € R¥*512 gnd F € RF*512 for
the visual and language modalities,

R=1Lgr-R, “)
E=Lg-E. &)

Each of the k latent visual or language summarization
vectors (i.e., each row of R or E) is a linear combina-
tion of the input individual features, which is able to bet-
ter capture high-level information compared with individual
region-level or word-level features. The k£ summarization
vectors in each modality can capture k different aspects of
the input features from global perspectives.

3.3. Relational Learning on Multi-modality Latent
Summarizations

Relational Latent Summarizations. Relational latent
summarization is in correspondence with the Interaction
part of Figure 2 .The obtained latent summarization vectors
encode high-level information from one of the modalties.
To reason the correct answer corresponding to the input im-
age and question, it is important to understand the complex
cross-domain relations between the inputs. We therefore
propose to utilize a relation learning network to establish the
associations across domains. Motivated by the simple rela-
tion network [42], we create k x k latent visual-question fea-
ture pairs from the above introduced k& latent summarization
vectors, R and F, in the two modalities. Such k x k pairs
can be represented as a 3D relation tensor A € RF>*k*512;

A(i?j7 :) = WA[E(Z> :) © E(]7 )] +ba (6)
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Figure 2: An overview of our proposed stack Multi-modality Latent Interaction Network. Multi-modality reasoning is
accomplished inside our proposed MLI modules. After MLI module, residual connection is used for stacking multiple MLI
modules. Inside MLI, visual and question features will be summarised into a few summarization vectors, which are fused to
create question and visual summarization pairs. After acquiring latent interaction features, we propagate information between
latent summarization pairs. After feature propagation, each question and visual feature will gather information from latent

summarization vectors using key-query attention mechanism.

where “®” denotes elementwise multiplication, W, €
R212%512 ', € R512 are the linear transformation parame-
ters that further transforms the cross-domain features.
Relational Modeling and Propagation. It is important to
propagate information across the two modalities to learn
complex relations for answer prediction. Based on our
cross-modality relation tensor A, we introduce two oper-
ations that passes and aggregate information between the
paired features. Before information propagation, the ten-
sor A € RFXkX512 ig reshaped to A € R¥**512, The first
cross-modal message passing operation performs an addi-
tional linear transformation on each paired feature,

A.=A-W,+b, 7)

where W, € R512%512 3nd b, € R5!? are the relation lin-
ear transformation parameters that transforms each paired
feature A(4, 7, :) into a new 512-dimensional feature. The
second cross-modal information propagation operation per-
forms information passing between different paired fea-
tures. The k x k 36 paired cross-modal features
pass messages to each other, which can be considered as
“second-order” information for learning even higher non-

linear cross-modal relations,

A, =W, -A+b, ®)
where W), € R36x36 and by, € R36 are the linear trans-
formation parameters that propagates information across
paired features. The results of the two cross-modal transfor-
mations focus on different aspects of the cross-modal paired
features to model the complex relations between the input
image and question. The first operation focuses on mod-
eling the relation between each individual visual-question
latent pair, while the second operation tries to propagate
higher-order information between all visual-question pairs
to model more complex relations. The summation of the
results of the two above operations A € RF* X512
A=A, +4, 9)
can be considered as a latent representation that deeply en-
codes the cross-domain relations between the latent sum-
marization vectors in the two modalities.
Feature Aggregation. The latent multi-modality represen-
tation A € R¥*512 contains fused question and region

5828



features. Each original visual feature R(i,:) and word fea-
ture E(i,:) can aggregate information from the latent rep-
resentations A for improving their feature discriminative-
ness, which has paramount impact on final VQA accuracy.
The feature aggregation process can be modeled by the key-
query attention mechanism from Transformer [45]. Each
of the region and word features, i.e., R, F € RMorNx512/

would be converted to 128-d query features, Qr,Qr €
R]VIOtNX128 as

QR:R'qu+bqra EQ:E'qu+bqe (10)

where W, W, € R?12X128 b, € R512X128 gre the
linear transformation parameters for calculating the query
features. Each feature of the latent representations, i.e.,
A € R¥*512 ywould be converted to 128-d key and value
features I,V € RK* <128

K=AWy+b, V=A-W,+b,, (1)

where W, W, € R®12x128 b < RI?® are the linear
transformation parameters that calculate the key and value
features from latent representations A. The query features
of the region and word features, Qr, @ g, would be used
to weight different entries from latent representations with
their key features K,

Qr-K T)
Ugr = softmaxy | —— |, 12
f : ( Vdim. (12
Q- K T)
Ug = softmaxy | ———— |, 13
o ' ( Vdim. )
where softmaxy denotes conducting softmax operation
along the vertical dimension and “dim.” = 128 is a nor-
malization constant. Ug, Up € RMONxk? giores each re-

gion or word feature’s weights to aggregate the k2 latent
representations. The original region and word features can
therefore be updated as

Ru=R+Ugr-A (14)

Ey=E+Ug-A (15)

where Up - Aand Ug - A aggregate the informamtion from
the latent representations to obtain the updated region and
word features Ry and Fyy. The feature aggregation process
has been illustrated in the Aggregation module in Figure 2.

The input features R, E' and output features Ry, Eyy of
the above introduced MLI module shares the same dimen-
sion. Motivated by previous approaches [21, 36], we stack
MLI modules for multiple stages to recursively refine the
visual and language features. After several stages of MLI
modules, we average pool the visual and word features sep-
arately and elementwisely multiplicate the deeply refined
region and word features for multi-modal feature fusion. A

final linear classifier (W, b.s as parameters) with soft-
max non-linearity function is adopted for answer prediction,

1 M
Rioot = M;RU@:), (16)
1 N
Epool = N;EU(“’ (17)
Answer = Classifier [Rpoo1 © Epool (18)

Accordingly, the overall system is trained in an end-to-end
manner with cross-entropy loss function.

3.4. Comparison of Message Passing Complexity

In this section, we compared the message passing com-
plexity between co-attention [29], self-attention [45] and
intra-inter attention [36]. The information flow pattern has
been illustrated in Figure 1. For co-attention, the num-
ber of message passings is O(2 x M x N) because each
word would calculate an attention matrix from each visual
region and vice versa. For self-attention, the number of
message passings is O(M x M + N x N). The num-
ber of message passings for intra- and inter-modality at-
tention is the summation of those of self-attention and co-
attention, O((M +N) x (M +N)). Generally, in bottom-up
& top-down attention [1], 100 region proposals would be
used for multi-modal feature fusion. The quadratic num-
ber of message passings in self attention [45] and intra-
and inter-modality attention flow [8] would requires large
GPU memories and hinders the relational learning as well.
For our proposed MLIN framework, the MLI module gen-
erates k latent summarization vectors for each modality.
After relational reasoning, k x k features are generated.
In the final feature redistribution stage, O(k x k x N)
message passings are performed for question feature up-
date, and O(k x k x M) message passings are required
for updating region features. The total number of message
passings for our proposed MLIN in each stage is therefore
O(k x k x (M + N)). Our proposed multi-modality latent
representations could better capture multi-modality interac-
tions with much fewer message passings and achieved com-
petitive performance compared with DFAF. A performance
comparison has been conducted in the experiments session.

4. Experiments
4.1. Dataset

We conduct experiments on VQA v2.0 [2] and
TDIUC [20] datasets. Both VQA v2.0 and TDIUC contain
question-image pairs collected from Microsoft COCO [26]
dataset and annotated questions. VQA v2.0 is an updated
version of VQA v1.0 by reducing data bias. VQA v2.0 con-
tains train, validation and test-standards and 25% of test-

5829



standards serve as the test-dev set. Performance evalua-
tion on VQA v2.0 includes evaluating accuracies of dif-
ferent types of questions: YES/NO, Number, Others and
overall accuracy. Train, validation and test sets contain
82,743, 40,504 and 81,434 images, with 443,757, 214,354
and 447,793 questions, respectively. We carry out exten-
sive ablation studies on the validation set of VQA v2.0
trained on train split. Also, we report final performance on
VQA v2.0 test set trained on the combination of train and
validation set, which is a common practice of most previ-
ous approaches listed in Table 2. Although VQA v2.0 has
been commonly adopted as the most important benchmark
on VQA. However, Kafke er al. [20] found that the per-
formance of VQA v2.0 is dominated by simple questions,
which make it difficult to compare different approaches. To
solve the bias problem existing in VQA v2.0, TDIUC col-
lect 1.6 million questions divided into 12 categories.

4.2. Experimental Setup

We use common feature extraction, preprocessing and
loss function as most previous approaches listed in Table 2.
For visual features, we extract the first 100 region proposals
with dimension of 2048 for VQA v2.0. While on TDIUC,
we extract the first 36 region features. Region features are
generated by Faster RCNN [41]. For the question encoder,
we pad all questions with 0 to a maximum length of 14 and
extract R14*786 question features using a single layer Bidi-
rectional Transformer [45] with random initialization. After
acquiring visual and word features, we transform them into
512 dimension using linear transform. For all layers, we
use a dropout rate 0.1 and clip the gradients to 0.25. De-
fault batch size is 512 with Adamax [23] optimiser with
a learning rate of 0.005. We gradually increase the learn-
ing rate to 0,005 in the first 1000 iterations because our
Bidirectional Transformer Encoder is initialised randomly
while previous approaches use pretrained Glove [37] and
Skipthought [24] embedding. We also augment our MLIN
with a Masked Word Prediction for transformer regulari-
sation. We trained the model for 7 epochs and decay the
learning rate 0.0005 and fix it for the following epochs. All
layers are initialised randomly with Pytorch’s [35] random
initialisation. For pretrained language models, we adopt a
base BERT [6] model which is trained by randomly mask-
ing words.

4.3. Ablation Study on VQAZ2 Validation

We carried out extensive ablation studies on evaluating
the effectiveness of each module in our proposed MLIN in
Table 1. The default setting is one stage MLIN where all
features are transformed into dimension of 512. We cre-
ate 6 summarizations for each modality. For the feature
aggregation key-query attention module, we adopted a 12
head multi-head attention with each head calculating 128-

Component Setting Accuracy
Bottom-up [1] Bottom-up 63.37
Bilinear BAN-1 65.36
Attention [21] BAN-4 63.81
BAN-12 66.04
DFAF-1 66.21
DFAF [36] DFAF-8 66.66
DFAF-8 + BERT 67.23
MLI-1 66.04
Default MLI-8 + BERT 67.83
# of stacked MLI-5 66.32
blocks MLI-8 66.53
# of Question 3by3 65.63
and Visual 6 by 6 66.04
Summary 6 by 12 66.15
Heads 12 by 12 66.21
Concat 65.99
Latent Interaction Product 66.04
Operator Addition 65.69
MUTAN 66.20
Embedding 512 66.04
dimension 1024 66.18
Latent Linear 66.04
Propagation Self Attention 65.84
Operator Dual Attention 66.01
Feature Gathering Key-query 66.04
Operator Transpose 65.78
# of Parallel Heads in 8 heads 65.84
Feature Gathering 12 heads 66.04
Operator 16 heads 66.19
Freezing 65.51
BERT Finetuning Ir /10 fintuning 67.83

Ir 1/100 finetuning 66.99
Ir 1/1000 finetuning 66.74

Table 1: Ablation studies of our proposed MLIN on VQA
v2.0 validation dataset. Default setting is represented by
underline while best performance will be highlighted. Our
proposed MLIN takes both simplicity and performance into
consideration.

dimensional features. In ablation study, we check the in-
fluence of the number of MLIN stacks, number of latent
summarisation vectors, latent interaction, latent propaga-
tion, feature aggregation and final feature fusion operator.

Similarly with BAN [21] and DFAF [36], we stack the
proposed MLI module for 5 and 8 times denoted as MLIN-
5 and MLIN-8 for multiple stage reasoning. We observe
that deeper layers will improve the performance and can be
optimized by SGD thanks to the residual connections [13].

Then we study the influence of the number of question
and visual summarization vectors. Too few summarization
vectors will be unable to capture different aspects of the in-
put which deteriorates the overall performance. Too many
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summarization vectors will require too much GPU memory
and computations with marginal improvement. We choose
6 question summarization and 6 visual summarization vec-
tors as a trade-off between performance and computation.

For the interaction operator to create paired summariza-
tion vectors, we compare between element-wise product,
element-wise addition and bilinear fusion (MUTAN) [3] for
multi-modality summarization fusion. Bilinear fusion [3]
gives the best performance. However, we choose elemen-
twise product in our final model considering the overall
simplicity and efficiency of the network design. Differ-
ent from our approaches, Simple Relational Reasoning Net-
work [42] choose concatenation by default.

For the simplicity of hyper-parameter selection, we set
all layers have the same dimension. Extracted visual and
question features are transformed into the same dimension
by linear transform. 1024 leads to better performance than
512. However, stacking multiple MLI modules can lead to
more performance improvement than being wide. Our final
model chooses 512 dimensions by default.

Among the latent paired summarization vectors, there
exist several ways for propagating information between
them. Self-attention [45] uses key-query attention to ag-
gregate information from the other latent summarizations.
while dual attention aggregate information inside and out-
side each feature vector simultaneously using self attention.
In our experiment, our proposed relational propagation op-
erations (e.g. Equation 7,8,9) could achieve better perfor-
mance than the complicated dual attention.

After acquiring latent interaction features, the original
question and visual features will gather information from
the latent vectors to complete multi-modality relational
learning. We tested two approaches for feature gathering
from latent vectors. We use the key of visual and word fea-
ture to gather information from the query of latent vectors
and perform weighted pooling of latent summarization vec-
tors. Motivated by the dynamic attention weight prediction
network [47], we use the the transpose of attention weight
in the summarization stage to gather information from la-
tent summarization vectors. Key-query attention approach
outperform dynamic attention weight prediction.

Another hyper-parameter in feature gathering stage is the
number of attention heads and head dimension in the feature
aggregation stage, we keep the dimension of each heads as
128 and test the number of parallel attention head with num-
ber of 8, 12 and 16. The obtained features of different heads
are concatenated to obtain the final features.

Language model has been actively investigated in NLP
related tasks. Language models [30, 37, 39, 6] can generate
feature that better capture language meanings. BERT [6]
is a language model pretrained by randomly masking a
word or predicting whether one sentence is next to the other
sentence. As can be seen from the table, finetuning the

Model test-dev test-std
Y/N No. Other All All

Feature Fusion

BUTP [I1] 81.82 4421 56.05 65.32 65.67

MFH [12] n/a n/a n/a 66.12 n/a

MFH+BUTD [12] 8427 49.56 59.89 68.76 n/a
BAN+Glove [21] 8546 50.66 60.50 69.66 n/a
Relation Learning

DCN [31] 83.51 46.61 5726 66.87 66.97
Relation Prior [50] 82.39 4593 56.46 65.94 66.17
Graph [34] 8291 47.13 56.22 n/a 66.18
Counter [54] 83.14 51.62 5897 68.09 68.41
DFAF [54] 86.09 5332 6049 70.22 70.34
DFAF-BERT [54] 86.73 5292 61.04 70.59 70.81
MLIN(ours) 8596 5293 6040 70.18 70.28

MLIN-BERT(ours)  87.07 5339 6049 71.09 71.27

Table 2: Comparison with previous state-of-the-art methods
on VQA 2.0 test dataset.

MLIN+BERT model by setting its learning rate to 1/10 of
the main learning rate will awaken the full power of BERT.

4.4. Comparison with State of the art methods

In this section, we compare our proposed MLIN with
previous state-of-the-art methods on VQA v2.0 and TDIUC
datasets in Table 2 and 3. Following previous methods, we
compare our methods on VQA v2.0 test dataset trained with
train, validation split and visual genome augmentation.

On VQA v2.0, we divide previous approaches into non-
relational and relational approaches which are two orthog-
onal research directions and can assist each other. Bottom-
Up-Top-Down(BUTD) [1] approach proposed to use object
detection features in a simple attention module for answer-
ing the question related to the input image. MFH [52] is the
state-of-the-art bilinear fusion approach. By switching from
Residual features to Bottom-up-top-down features, better
accuracy can be achieved. BAN [21] proposed a bilinear at-
tention mechanism which generates a multi-modality atten-
tion using information of each channel and has won the first
place in the single model task of VQA competition 2018.

Besides feature fusion, relational reasoning has been
paid much attention in solving VQA. DCN [31] proposed a
densely connected co-attention module for cross-modality
feature learning. < subject, predicate, object > triples
are created for VQA reasoning in Relation prior [50]. Con-
ditional Graph [34] built a graph among all region pro-
posals and condition this graph on visual question. Al-
though Conditional Graph is less competitive compared
with other approaches. However, the interpretation from
conditional graph is quite useful for diagnosing VQA prob-
lem. Counter [54] dives into the number question of VQA
by utilising the relative position between bounding box
for learning efficient Non Maximum Suppression(NMS).
DFAF [36] is a multi-layer stacked network by combining
intra- and inter- modality information flow for feature fu-
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Figure 3: We visualize the first three visual attention weights for creating visual summarization vectors. Bounding boxes
generated by Faster RCNN are shown in the first column. For visual summarization, the colors ranging from clear to white in
bounding boxes denote the attention weights from O to 1. After training, the first attention focuses on the background regions.
The second and the third attention weights concentrate on single and multiple foreground objects

Model RAU [32] MCB|[7] QTA[43] DFAF [36] ‘ MLI

Accuracy 84.26 81.86 85.03 85.55 ‘ 87.60

Table 3: Comparison with previous state-of-the-art methods
on TDIUC test dataset.

sion. Furthermore, DFAF can dynamically modulate the
intra modality information flow using the average pooled
features from the other modality. MLI use 100 region pro-
posals for fair comparison.

VQA 2.0 has been mostly adopted as the most impor-
tant benchmark in VQA. Since VQA 2.0 is dominated by
simple samples, which is hard to discriminate between dif-
ferent methods. We also compare with approaches on the
TDIUC dataset. QTA [43] is the state-of-the-art methods
on TDIUC, which proposed a question type guided atten-
tion with both bottom-up-top-down features and residual
features. Our proposed MLIN can achieve better perfor-
mance even with bottom-up-top-down features only. Our
method also outperform DFAF on this dataset.

4.5. Visualization

We visualize the attention weight of summarization vec-
tor in Figure 3. We discover the following patterns. Dif-
ferent summarization have a specific function. As can be
seen from the visualization of attention weight, different
summarization vectors focus on different global informa-
tion. The first attention weight collect information from

the background, while the second attention weight focuses
on the most important regions for answering the question.
While the third attention performs weighted pooling of re-
gions with a strong interaction for answering the question.

5. Conclusion

In this paper, we proposed a novel MLIN for exploring
relationship for solving VQA. Inside MLIN, multi-modality
reasoning is realized through the process of Summarisation,
Interaction, Propagation and Aggregation. MLIN can be
stacked several layers for better relationship reasoning. Our
method achieved competitive performance on benchmark
VQA dataset with much smaller message passing times.
Furthermore, we show a good pre-trained language model
question encoder is important for VQA performance.
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