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Abstract

Exploiting relationships between visual regions and

question words have achieved great success in learn-

ing multi-modality features for Visual Question Answer-

ing (VQA). However, we argue that existing methods [29]

mostly model relations between individual visual regions

and words, which are not enough to correctly answer the

question. From humans’ perspective, answering a visual

question requires understanding the summarizations of vi-

sual and language information. In this paper, we pro-

posed the Multi-modality Latent Interaction module (MLI)

to tackle this problem. The proposed module learns the

cross-modality relationships between latent visual and lan-

guage summarizations, which summarize visual regions and

question into a small number of latent representations to

avoid modeling uninformative individual region-word rela-

tions. The cross-modality information between the latent

summarizations are propagated to fuse valuable informa-

tion from both modalities and are used to update the visual

and word features. Such MLI modules can be stacked for

several stages to model complex and latent relations be-

tween the two modalities and achieves highly competitive

performance on public VQA benchmarks, VQA v2.0 [12]

and TDIUC [20]. In addition, we show that the perfor-

mance of our methods could be significantly improved by

combining with pre-trained language model BERT[6].

1. Introduction

Visual Question Answering [2, 53, 12] has received in-

creasing attention from the research community. Previous

approaches solve the Visual Question Answering (VQA) by

designing better features [25, 44, 13, 17, 1], better bilinear

fusion approaches [10, 7, 22, 3, 52] or better attention mech-

anisms [48, 29, 49, 45, 36]. Recently, relational reasoning

has been explored for solving VQA and significantly im-

proved performance and interpretability of VQA systems.

Despite relationships has been extensively adopted in
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Figure 1: Illustration of the information flow in our pro-

posed MLI compared with previous approaches, namely,

co-attention [29], self-attention [45] and intra-inter modal-

ity attention(DFAF) [36]. Left side of each image represent

visual feature while right side stands for question features.

different tasks, such as object detection [14], language mod-

elling [6], image captioning [51] and VQA [36, 11]. Rela-

tional approaches for VQA were only proposed for mod-

elling relationship between words and visual regions. Thus,

relational reasoning requires large GPU memories because

it needs to model relations between every pair. For VQA,

modeling relationships between individual words and visual

regions is not enough to correctly answer the question.

To model more complex cross-modality relations, we

propose a novel Multi-modality Latent Interaction Network

(MLIN) with MLI modules. Different from existing rela-

tional VQA methods, the MLI module first encodes ques-

tion and image features into a small number of latent vi-

sual and question summarizaiton vectors. Each summariza-

tion vector can be formulated as the weighted pooling over

visual or word features, which summarizes certain aspect

of each modality from a global perspective and therefore

encodes richer information compared with individual word

and region features. After acquiring summarizations for
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each modality, we establish visual-language associations

between the multi-modal summarization vectors and pro-

pose to propagate information between summarization vec-

tors to model the complex relations between language and

vision. Each original visual region and word feature would

finally aggregate information from the updated latent sum-

marizations using attention mechanisms and residual con-

nections to predict the correct answers.

Our proposed MLIN achieves competitive performance

on VQA benchmarks, including VQA v2.0 [12] and

TDIUC [20]. In addition, we experiment how to com-

bine pre-trained language model BERT [6] to improve VQA

models. After integrating with BERT [6], MLIN achieves

better performance compared with state-of-the-art models.

Our proposed MLIN is related to the attention-based ap-

proaches. An illustration between previous approaches can

be seen from Figure 1. Previous attention approaches that

aggregate information can be classified into the following

categories: (1) The co-attention mechanism [29] aggregates

information from the other modality. (2) Transformer [45]

aggregates information inside each modality using key-

query attention mechanism. (3) The intra- & inter-modal

attention(DFAF) [36] propagate and aggregate information

within and across multiple modalities. For intra-modality

feature aggregation, attention is dynamically modulated by

the other modality using the pooled features. Compared

with previous approaches, MLIN does not aggregate fea-

tures just from the large number of individual visual-word

pairs but from the small number of multi-modal latent sum-

marization vectors, which can capture high-level visual-

language interactions with much smaller modal capacity.

Our contributions can be summarized into two-fold. (1)

We propose the MLIN for modelling multi-modality inter-

actions via a small number of multi-modal summarizations,

which helps encode the relationships across modalities from

global perspectives and avoids capturing too much unin-

formative region-word relations. (2) We carried out exten-

sive ablation studies over each components of MLIN and

achieve competitive performance on VQA v2.0 [12] and

TDIUC [20] benchmarks. Besides, we provide visualisa-

tion of our LMIN and have a better understanding about

the interactions between multi-modal summarizations. We

also explore how to effectively integrate the pre-trained lan-

guage model [6] into the proposed framework for further

improving the VQA accuracy.

2. Related Work

2.1. Representation Learning

Learning good representations have been the founda-

tions for advancing vision and Natural Language Process-

ing (NLP) research. For computer vision, AlexNet [25],

VGGNet [44], ResNet [13] and DenseNet [17] features

achieved great success on image recognition [5]. For NLP,

word2vec [30], GloVe [37], Skipthough [24], ELMo [39],

GPT [40], VilBERT [28] and BERT [6] achieved great suc-

cess at language modelling. The successful representation

learning in vision and language has much benefitted multi-

modality feature learning. Furthermore, bottom-up & top-

down features [1] for VQA and image captioning greatly

boosted the performance of multi-modality learning based

on the additional visual region (object detection [41]) infor-

mation.

2.2. Relational Reasoning

Our work is mostly related to the relational reasoning

approaches. Relational reasoning approaches try to solve

VQA by learning the relationships between individual vi-

sual regions and words. Co-attention based [29] approaches

can be seen as modelling the relationship between each

word and visual region pairs using the attention mechanism.

Transformer [45] proposed to use the key-query-value at-

tention mechanism to model the relationship inside each

modality. Simple relational networks [42, 15] reason over

all region pairs in the image by concatenating region fea-

tures. Besides VQA, relational reasoning has improved per-

formance in other research areas. Relational reasoning has

been applied to object detection [14] and show that mod-

elling relationships could help object classification and non-

maximum suppression. Relational reasoning has also been

explored in image captioning [51] using graph neural net-

works. Non-local network [46] shows that modelling rela-

tionship across video frames can significantly boost video

classification accuracy.

2.3. Attention­based Approaches for VQA

Attention-based approaches have been extensively stud-

ied for VQA. Many relational reasoning approaches using

attention mechanisms to aggregate contextual information.

Soft and hard attention [48] has been first proposed by Xu

et al., which has become the main-stream in VQA systems.

Yang et al. [49] proposed to stack several layers of atten-

tion to gradually focus on the most important regions. Lu

et al. [29] proposed co-attention-based methods, which can

aggregate information from the other modality. Vaswani

et al. [45] aggregated information inside each modality for

solving machine translation. Nguyen et al. [31] proposed

a densely connected co-attention mechanism for VQA. Bi-

linear Attention Network [21] generated attention weights

by capturing the interactions between each feature channel.

Structured attention [55] added a Markov Random Field

(MRF) model over the spatial attention map for modelling

spatial importance. Besides VQA, Chen et al. [4] proposed

spatial-wise and channel-wise attention mechanisms, which

can modulate information flow spatial-wise and channel-

wise for image captioning. In referring expression, Xihui

5826



et al. [27] propose attention guided feature erasing.

2.4. Dynamic Parameter Prediction

Dynamic parameter prediction (DPP) propose another

direction for multi-modality feature fusion. Noh et al. [33]

firstly proposed a DPP-based multi-modality fusion ap-

proach by predicting the weights of fully connected layer

using question features. Perez et al. [38] achieved compet-

itive VQA performance compared with complex reasoning

approaches on the CLEVR [19] dataset by predicting the

normalisation parameter of visual features. Furthermore,

Gao et al. [9] proposed to modulate visual features by pre-

dicting convolution kernels from the input question. Hybrid

convolution was proposed to reduce the number of param-

eters without hindering the overall performance. Beyond

VQA, DPP-based approaches have been adopted for trans-

fer learning between classification and segmentation [16].

3. Multi-modality Latent Interaction Network

Figure 2 illustrate the overall pipeline of our proposed

Multi-modality Latent Interaction Network (MLIN). The

proposed MLIN consists of a series of stacking Multi-

modality Latent (MLI) modules, which aims to summa-

rize input visual-region and question-word information into

a small number of latent summarization vectors for each

modality. The key idea is to propagate visual and lan-

guage information among the latent summarization vec-

tors to model the complex cross-modality interactions from

global perspectives. After information propagation among

the latent interaction summarization vectors, visual-region

and word features would aggregate information from the

cross-domain summarizations to update their features. The

inputs and outputs of the MLI module has the same dimen-

sions and the overall network stacks the MLI module for

multiple stages to gradually refine the visual and language

features. In the last stage, we conduct elementwise multi-

plication between the average features of visual regions and

question words to predict the final answer.

3.1. Question and Visual Feature Encoding

Given an input image I and a question Q, the task

of VQA requires joint reasoning over the multi-modal in-

formation to estimate an answer. Following previous ap-

proaches [1, 21, 36], we extract visual-region features from

I using the Faster RCNN object detector [41, 18] and the

word features from Q using a bidirectional Transformer

model [45]. The feature extraction stage is shown in the

upper part of Figure 2. Each image will be encoded as a se-

ries of M visual-region features, denoted as R ∈ R
M×512,

while sentence will be padded to a maximum length of 14

and be encoded by bidirectional Transformer with random

initialization, denoted as E ∈ R
N×512. The multi-modal

feature encoding can be formulated as

R = RCNN(I; θRCNN), (1)

E = Transformer(Q; θTransformer),

where θRCNN and θTransformer denote the network parameters

for visual and language feature encoding.

3.2. Modality Summarizations in MLI Module

Summarization module can be seen from the Summa-

rization part of Figure 2. After acquiring visual and ques-

tion features, we add a lightweight neural network to gener-

ate k sets of latent visual or language summarization vectors

for each modality. The k sets of linear combination weights

are first generated via

LR = softmax↔(WRR
T + bR), (2)

LE = softmax↔(WEE
T + bE), (3)

where WR,WE ∈ R
k×512 and bR, bE ∈ R

k are the k sets

of learnable linear transformation weights for each of the

modality, and “softmax↔” denotes the softmax operation

along the horizontal dimension. The individual visual and

word features, R and E, can then be converted into k latent

summarization vectors, R ∈ R
k×512 and E ∈ R

k×512, for

the visual and language modalities,

R = LR ·R, (4)

E = LE · E. (5)

Each of the k latent visual or language summarization

vectors (i.e., each row of R or E) is a linear combina-

tion of the input individual features, which is able to bet-

ter capture high-level information compared with individual

region-level or word-level features. The k summarization

vectors in each modality can capture k different aspects of

the input features from global perspectives.

3.3. Relational Learning on Multi­modality Latent
Summarizations

Relational Latent Summarizations. Relational latent

summarization is in correspondence with the Interaction

part of Figure 2 .The obtained latent summarization vectors

encode high-level information from one of the modalties.

To reason the correct answer corresponding to the input im-

age and question, it is important to understand the complex

cross-domain relations between the inputs. We therefore

propose to utilize a relation learning network to establish the

associations across domains. Motivated by the simple rela-

tion network [42], we create k×k latent visual-question fea-

ture pairs from the above introduced k latent summarization

vectors, R and E, in the two modalities. Such k × k pairs

can be represented as a 3D relation tensor A ∈ R
k×k×512:

A(i, j, :) = WA[R(i, :)⊙ E(j, :)] + bA (6)
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Figure 2: An overview of our proposed stack Multi-modality Latent Interaction Network. Multi-modality reasoning is

accomplished inside our proposed MLI modules. After MLI module, residual connection is used for stacking multiple MLI

modules. Inside MLI, visual and question features will be summarised into a few summarization vectors, which are fused to

create question and visual summarization pairs. After acquiring latent interaction features, we propagate information between

latent summarization pairs. After feature propagation, each question and visual feature will gather information from latent

summarization vectors using key-query attention mechanism.

where “⊙” denotes elementwise multiplication, WA ∈
R

512×512, bA ∈ R
512 are the linear transformation parame-

ters that further transforms the cross-domain features.

Relational Modeling and Propagation. It is important to

propagate information across the two modalities to learn

complex relations for answer prediction. Based on our

cross-modality relation tensor A, we introduce two oper-

ations that passes and aggregate information between the

paired features. Before information propagation, the ten-

sor A ∈ R
k×k×512 is reshaped to Ã ∈ R

k2×512. The first

cross-modal message passing operation performs an addi-

tional linear transformation on each paired feature,

Ãc = Ã ·Wc + bc (7)

where Wc ∈ R
512×512 and bc ∈ R

512 are the relation lin-

ear transformation parameters that transforms each paired

feature A(i, j, :) into a new 512-dimensional feature. The

second cross-modal information propagation operation per-

forms information passing between different paired fea-

tures. The k × k = 36 paired cross-modal features

pass messages to each other, which can be considered as

“second-order” information for learning even higher non-

linear cross-modal relations,

Ãp = Wp · Ã+ bp (8)

where Wp ∈ R
36×36 and bp ∈ R

36 are the linear trans-

formation parameters that propagates information across

paired features. The results of the two cross-modal transfor-

mations focus on different aspects of the cross-modal paired

features to model the complex relations between the input

image and question. The first operation focuses on mod-

eling the relation between each individual visual-question

latent pair, while the second operation tries to propagate

higher-order information between all visual-question pairs

to model more complex relations. The summation of the

results of the two above operations Â ∈ R
k2×512,

Â = Ãc + Ãp (9)

can be considered as a latent representation that deeply en-

codes the cross-domain relations between the latent sum-

marization vectors in the two modalities.

Feature Aggregation. The latent multi-modality represen-

tation Â ∈ R
k2×512 contains fused question and region
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features. Each original visual feature R(i, :) and word fea-

ture E(i, :) can aggregate information from the latent rep-

resentations Â for improving their feature discriminative-

ness, which has paramount impact on final VQA accuracy.

The feature aggregation process can be modeled by the key-

query attention mechanism from Transformer [45]. Each

of the region and word features, i.e., R,E ∈ R
MorN×512,

would be converted to 128-d query features, QR, QE ∈
R

MorN×128, as

QR = R ·Wqr + bqr, EQ = E ·Wqe + bqe (10)

where Wqr,Wqe ∈ R
512×128, bqr, bqe ∈ R

512×128 are the

linear transformation parameters for calculating the query

features. Each feature of the latent representations, i.e.,

Â ∈ R
k2×512, would be converted to 128-d key and value

features K,V ∈ R
k2×128,

K = Â ·Wk + bk, V = Â ·Wv + bv, (11)

where Wk,Wv ∈ R
512×128, bk, bv ∈ R

128 are the linear

transformation parameters that calculate the key and value

features from latent representations Â. The query features

of the region and word features, QR, QE , would be used

to weight different entries from latent representations with

their key features K,

UR = softmaxl

(

QR ·KT

√
dim.

)

, (12)

UE = softmaxl

(

QE ·KT

√
dim.

)

, (13)

where softmaxl denotes conducting softmax operation

along the vertical dimension and “dim.” = 128 is a nor-

malization constant. UR, UE ∈ R
MorN×k2

stores each re-

gion or word feature’s weights to aggregate the k2 latent

representations. The original region and word features can

therefore be updated as

RU = R+ UR · Â (14)

EU = E + UE · Â (15)

where UR · Â and UE · Â aggregate the informamtion from

the latent representations to obtain the updated region and

word features RU and EU . The feature aggregation process

has been illustrated in the Aggregation module in Figure 2.

The input features R,E and output features RU , EU of

the above introduced MLI module shares the same dimen-

sion. Motivated by previous approaches [21, 36], we stack

MLI modules for multiple stages to recursively refine the

visual and language features. After several stages of MLI

modules, we average pool the visual and word features sep-

arately and elementwisely multiplicate the deeply refined

region and word features for multi-modal feature fusion. A

final linear classifier (Wcls, bcls as parameters) with soft-

max non-linearity function is adopted for answer prediction,

Rpool =
1

M

M
∑

i=1

RU (i, :), (16)

Epool =
1

N

N
∑

i=1

EU (i, :), (17)

Answer = Classifier [Rpool ⊙ Epool] (18)

Accordingly, the overall system is trained in an end-to-end

manner with cross-entropy loss function.

3.4. Comparison of Message Passing Complexity

In this section, we compared the message passing com-

plexity between co-attention [29], self-attention [45] and

intra-inter attention [36]. The information flow pattern has

been illustrated in Figure 1. For co-attention, the num-

ber of message passings is O(2 × M × N) because each

word would calculate an attention matrix from each visual

region and vice versa. For self-attention, the number of

message passings is O(M × M + N × N). The num-

ber of message passings for intra- and inter-modality at-

tention is the summation of those of self-attention and co-

attention, O((M+N)×(M+N)). Generally, in bottom-up

& top-down attention [1], 100 region proposals would be

used for multi-modal feature fusion. The quadratic num-

ber of message passings in self attention [45] and intra-

and inter-modality attention flow [8] would requires large

GPU memories and hinders the relational learning as well.

For our proposed MLIN framework, the MLI module gen-

erates k latent summarization vectors for each modality.

After relational reasoning, k × k features are generated.

In the final feature redistribution stage, O(k × k × N)
message passings are performed for question feature up-

date, and O(k × k × M) message passings are required

for updating region features. The total number of message

passings for our proposed MLIN in each stage is therefore

O(k× k× (M +N)). Our proposed multi-modality latent

representations could better capture multi-modality interac-

tions with much fewer message passings and achieved com-

petitive performance compared with DFAF. A performance

comparison has been conducted in the experiments session.

4. Experiments

4.1. Dataset

We conduct experiments on VQA v2.0 [2] and

TDIUC [20] datasets. Both VQA v2.0 and TDIUC contain

question-image pairs collected from Microsoft COCO [26]

dataset and annotated questions. VQA v2.0 is an updated

version of VQA v1.0 by reducing data bias. VQA v2.0 con-

tains train, validation and test-standards and 25% of test-
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standards serve as the test-dev set. Performance evalua-

tion on VQA v2.0 includes evaluating accuracies of dif-

ferent types of questions: YES/NO, Number, Others and

overall accuracy. Train, validation and test sets contain

82,743, 40,504 and 81,434 images, with 443,757, 214,354

and 447,793 questions, respectively. We carry out exten-

sive ablation studies on the validation set of VQA v2.0

trained on train split. Also, we report final performance on

VQA v2.0 test set trained on the combination of train and

validation set, which is a common practice of most previ-

ous approaches listed in Table 2. Although VQA v2.0 has

been commonly adopted as the most important benchmark

on VQA. However, Kafke et al. [20] found that the per-

formance of VQA v2.0 is dominated by simple questions,

which make it difficult to compare different approaches. To

solve the bias problem existing in VQA v2.0, TDIUC col-

lect 1.6 million questions divided into 12 categories.

4.2. Experimental Setup

We use common feature extraction, preprocessing and

loss function as most previous approaches listed in Table 2.

For visual features, we extract the first 100 region proposals

with dimension of 2048 for VQA v2.0. While on TDIUC,

we extract the first 36 region features. Region features are

generated by Faster RCNN [41]. For the question encoder,

we pad all questions with 0 to a maximum length of 14 and

extract R14×786 question features using a single layer Bidi-

rectional Transformer [45] with random initialization. After

acquiring visual and word features, we transform them into

512 dimension using linear transform. For all layers, we

use a dropout rate 0.1 and clip the gradients to 0.25. De-

fault batch size is 512 with Adamax [23] optimiser with

a learning rate of 0.005. We gradually increase the learn-

ing rate to 0,005 in the first 1000 iterations because our

Bidirectional Transformer Encoder is initialised randomly

while previous approaches use pretrained Glove [37] and

Skipthought [24] embedding. We also augment our MLIN

with a Masked Word Prediction for transformer regulari-

sation. We trained the model for 7 epochs and decay the

learning rate 0.0005 and fix it for the following epochs. All

layers are initialised randomly with Pytorch’s [35] random

initialisation. For pretrained language models, we adopt a

base BERT [6] model which is trained by randomly mask-

ing words.

4.3. Ablation Study on VQA2 Validation

We carried out extensive ablation studies on evaluating

the effectiveness of each module in our proposed MLIN in

Table 1. The default setting is one stage MLIN where all

features are transformed into dimension of 512. We cre-

ate 6 summarizations for each modality. For the feature

aggregation key-query attention module, we adopted a 12

head multi-head attention with each head calculating 128-

Component Setting Accuracy

Bottom-up [1] Bottom-up 63.37

Bilinear

Attention [21]

BAN-1 65.36

BAN-4 65.81

BAN-12 66.04

DFAF [36]

DFAF-1 66.21

DFAF-8 66.66

DFAF-8 + BERT 67.23

Default
MLI-1 66.04

MLI-8 + BERT 67.83

# of stacked

blocks

MLI-5 66.32

MLI-8 66.53

# of Question

and Visual

Summary

Heads

3 by 3 65.63

6 by 6 66.04

6 by 12 66.15

12 by 12 66.21

Latent Interaction

Operator

Concat 65.99

Product 66.04

Addition 65.69

MUTAN 66.20

Embedding

dimension

512 66.04

1024 66.18

Latent

Propagation

Operator

Linear 66.04

Self Attention 65.84

Dual Attention 66.01

Feature Gathering

Operator

Key-query 66.04

Transpose 65.78

# of Parallel Heads in

Feature Gathering

Operator

8 heads 65.84

12 heads 66.04

16 heads 66.19

BERT Finetuning

Freezing 65.51

lr 1/10 fintuning 67.83

lr 1/100 finetuning 66.99

lr 1/1000 finetuning 66.74

Table 1: Ablation studies of our proposed MLIN on VQA

v2.0 validation dataset. Default setting is represented by

underline while best performance will be highlighted. Our

proposed MLIN takes both simplicity and performance into

consideration.

dimensional features. In ablation study, we check the in-

fluence of the number of MLIN stacks, number of latent

summarisation vectors, latent interaction, latent propaga-

tion, feature aggregation and final feature fusion operator.

Similarly with BAN [21] and DFAF [36], we stack the

proposed MLI module for 5 and 8 times denoted as MLIN-

5 and MLIN-8 for multiple stage reasoning. We observe

that deeper layers will improve the performance and can be

optimized by SGD thanks to the residual connections [13].

Then we study the influence of the number of question

and visual summarization vectors. Too few summarization

vectors will be unable to capture different aspects of the in-

put which deteriorates the overall performance. Too many
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summarization vectors will require too much GPU memory

and computations with marginal improvement. We choose

6 question summarization and 6 visual summarization vec-

tors as a trade-off between performance and computation.

For the interaction operator to create paired summariza-

tion vectors, we compare between element-wise product,

element-wise addition and bilinear fusion (MUTAN) [3] for

multi-modality summarization fusion. Bilinear fusion [3]

gives the best performance. However, we choose elemen-

twise product in our final model considering the overall

simplicity and efficiency of the network design. Differ-

ent from our approaches, Simple Relational Reasoning Net-

work [42] choose concatenation by default.

For the simplicity of hyper-parameter selection, we set

all layers have the same dimension. Extracted visual and

question features are transformed into the same dimension

by linear transform. 1024 leads to better performance than

512. However, stacking multiple MLI modules can lead to

more performance improvement than being wide. Our final

model chooses 512 dimensions by default.

Among the latent paired summarization vectors, there

exist several ways for propagating information between

them. Self-attention [45] uses key-query attention to ag-

gregate information from the other latent summarizations.

while dual attention aggregate information inside and out-

side each feature vector simultaneously using self attention.

In our experiment, our proposed relational propagation op-

erations (e.g. Equation 7,8,9) could achieve better perfor-

mance than the complicated dual attention.

After acquiring latent interaction features, the original

question and visual features will gather information from

the latent vectors to complete multi-modality relational

learning. We tested two approaches for feature gathering

from latent vectors. We use the key of visual and word fea-

ture to gather information from the query of latent vectors

and perform weighted pooling of latent summarization vec-

tors. Motivated by the dynamic attention weight prediction

network [47], we use the the transpose of attention weight

in the summarization stage to gather information from la-

tent summarization vectors. Key-query attention approach

outperform dynamic attention weight prediction.

Another hyper-parameter in feature gathering stage is the

number of attention heads and head dimension in the feature

aggregation stage, we keep the dimension of each heads as

128 and test the number of parallel attention head with num-

ber of 8, 12 and 16. The obtained features of different heads

are concatenated to obtain the final features.

Language model has been actively investigated in NLP

related tasks. Language models [30, 37, 39, 6] can generate

feature that better capture language meanings. BERT [6]

is a language model pretrained by randomly masking a

word or predicting whether one sentence is next to the other

sentence. As can be seen from the table, finetuning the

Model
test-dev test-std

Y/N No. Other All All

Feature Fusion

BUTP [1] 81.82 44.21 56.05 65.32 65.67

MFH [12] n/a n/a n/a 66.12 n/a

MFH+BUTD [12] 84.27 49.56 59.89 68.76 n/a

BAN+Glove [21] 85.46 50.66 60.50 69.66 n/a

Relation Learning

DCN [31] 83.51 46.61 57.26 66.87 66.97

Relation Prior [50] 82.39 45.93 56.46 65.94 66.17

Graph [34] 82.91 47.13 56.22 n/a 66.18

Counter [54] 83.14 51.62 58.97 68.09 68.41

DFAF [54] 86.09 53.32 60.49 70.22 70.34

DFAF-BERT [54] 86.73 52.92 61.04 70.59 70.81

MLIN(ours) 85.96 52.93 60.40 70.18 70.28

MLIN-BERT(ours) 87.07 53.39 60.49 71.09 71.27

Table 2: Comparison with previous state-of-the-art methods

on VQA 2.0 test dataset.

MLIN+BERT model by setting its learning rate to 1/10 of

the main learning rate will awaken the full power of BERT.

4.4. Comparison with State of the art methods

In this section, we compare our proposed MLIN with

previous state-of-the-art methods on VQA v2.0 and TDIUC

datasets in Table 2 and 3. Following previous methods, we

compare our methods on VQA v2.0 test dataset trained with

train, validation split and visual genome augmentation.

On VQA v2.0, we divide previous approaches into non-

relational and relational approaches which are two orthog-

onal research directions and can assist each other. Bottom-

Up-Top-Down(BUTD) [1] approach proposed to use object

detection features in a simple attention module for answer-

ing the question related to the input image. MFH [52] is the

state-of-the-art bilinear fusion approach. By switching from

Residual features to Bottom-up-top-down features, better

accuracy can be achieved. BAN [21] proposed a bilinear at-

tention mechanism which generates a multi-modality atten-

tion using information of each channel and has won the first

place in the single model task of VQA competition 2018.

Besides feature fusion, relational reasoning has been

paid much attention in solving VQA. DCN [31] proposed a

densely connected co-attention module for cross-modality

feature learning. < subject, predicate, object > triples

are created for VQA reasoning in Relation prior [50]. Con-

ditional Graph [34] built a graph among all region pro-

posals and condition this graph on visual question. Al-

though Conditional Graph is less competitive compared

with other approaches. However, the interpretation from

conditional graph is quite useful for diagnosing VQA prob-

lem. Counter [54] dives into the number question of VQA

by utilising the relative position between bounding box

for learning efficient Non Maximum Suppression(NMS).

DFAF [36] is a multi-layer stacked network by combining

intra- and inter- modality information flow for feature fu-
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Q: How many animals in this photo?

A: 2

Q: What color is the car interior?

A: Red

Image with Bounding Box First Visual Attention Weight Second Visual Attention Weight Third Visual Attention Weight

Figure 3: We visualize the first three visual attention weights for creating visual summarization vectors. Bounding boxes

generated by Faster RCNN are shown in the first column. For visual summarization, the colors ranging from clear to white in

bounding boxes denote the attention weights from 0 to 1. After training, the first attention focuses on the background regions.

The second and the third attention weights concentrate on single and multiple foreground objects

Model RAU [32] MCB [7] QTA [43] DFAF [36] MLI

Accuracy 84.26 81.86 85.03 85.55 87.60

Table 3: Comparison with previous state-of-the-art methods

on TDIUC test dataset.

sion. Furthermore, DFAF can dynamically modulate the

intra modality information flow using the average pooled

features from the other modality. MLI use 100 region pro-

posals for fair comparison.

VQA 2.0 has been mostly adopted as the most impor-

tant benchmark in VQA. Since VQA 2.0 is dominated by

simple samples, which is hard to discriminate between dif-

ferent methods. We also compare with approaches on the

TDIUC dataset. QTA [43] is the state-of-the-art methods

on TDIUC, which proposed a question type guided atten-

tion with both bottom-up-top-down features and residual

features. Our proposed MLIN can achieve better perfor-

mance even with bottom-up-top-down features only. Our

method also outperform DFAF on this dataset.

4.5. Visualization

We visualize the attention weight of summarization vec-

tor in Figure 3. We discover the following patterns. Dif-

ferent summarization have a specific function. As can be

seen from the visualization of attention weight, different

summarization vectors focus on different global informa-

tion. The first attention weight collect information from

the background, while the second attention weight focuses

on the most important regions for answering the question.

While the third attention performs weighted pooling of re-

gions with a strong interaction for answering the question.

5. Conclusion

In this paper, we proposed a novel MLIN for exploring

relationship for solving VQA. Inside MLIN, multi-modality

reasoning is realized through the process of Summarisation,

Interaction, Propagation and Aggregation. MLIN can be

stacked several layers for better relationship reasoning. Our

method achieved competitive performance on benchmark

VQA dataset with much smaller message passing times.

Furthermore, we show a good pre-trained language model

question encoder is important for VQA performance.
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