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Abstract

Recently, proposal-free instance segmentation has re-

ceived increasing attention due to its concise and effi-

cient pipeline. Generally, proposal-free methods gener-

ate instance-agnostic semantic segmentation labels and

instance-aware features to group pixels into different object

instances. However, previous methods mostly employ sep-

arate modules for these two sub-tasks and require multiple

passes for inference. We argue that treating these two sub-

tasks separately is suboptimal. In fact, employing multiple

separate modules significantly reduces the potential for ap-

plication. The mutual benefits between the two complemen-

tary sub-tasks are also unexplored. To this end, this work

proposes a single-shot proposal-free instance segmentation

method that requires only one single pass for prediction.

Our method is based on a pixel-pair affinity pyramid, which

computes the probability that two pixels belong to the same

instance in a hierarchical manner. The affinity pyramid can

also be jointly learned with the semantic class labeling and

achieve mutual benefits. Moreover, incorporating with the

learned affinity pyramid, a novel cascaded graph partition

module is presented to sequentially generate instances from

coarse to fine. Unlike previous time-consuming graph par-

tition methods, this module achieves 5× speedup and 9%

relative improvement on Average-Precision (AP). Our ap-

proach achieves new state of the art on the challenging

Cityscapes dataset.

1. Introduction

The rapid development of Convolutional networks [30,

29] has revolutionized various vision tasks, enabling us

to move towards more fine-grained understanding of im-

ages. Instead of classic bounding-box level object detec-

tion [19, 18, 46, 39, 44, 15] or class-level semantic segmen-
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Figure 1. Overview of the proposed method. The per-pixel seman-

tic class and pixel-pair affinities are generated with a single pass

of a fully-convolutional network. The final instance segmentation

result is then derived from these predictions by the proposed cas-

caded graph partition module.

tation [41, 6, 49], instance segmentation provides in-depth

understanding by segmenting all objects and distinguishing

different object instances. Researchers are thus showing in-

creasing interests in instance segmentation recently.

Current state-of-the-art solutions to this challenging

problem can be classified into the proposal-based and

proposal-free approaches [34, 28, 40]. The proposal-based

approaches regard it as an extension to the classic object

detection task [46, 39, 44, 15]. After localizing each ob-

ject with a bounding box, a foreground mask is predicted

within each bounding box proposal. However, the perfor-

mances of these proposal-based methods are highly limited

by the quality of the bounding box predictions and the two-

stage pipeline also limits the speed of the systems. By con-

trast, the proposal-free approach has the advantage of its

simple and efficient design. This work also focuses on the

proposal-free paradigm.

The proposal-free methods mostly start by producing

instance-agnostic pixel-level semantic class labels [41, 6,

8, 49], followed by clustering them into different object

instances with particularly designed instance-aware fea-

tures. However, previous methods mainly treat the two sub-

processes as two separate stages and employ multiple mod-
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ules, which is suboptimal. In fact, the mutual benefits be-

tween the two sub-tasks can be exploited, which will further

improve the performance of instance segmentation. More-

over, employing multiple modules may result in additional

computational costs for real-world applications.

To cope with the above issues, this work proposes a

single-shot proposal-free instance segmentation method,

which jointly learns the pixel-level semantic class segmen-

tation and object instance differentiating in a unified model

with a single backbone network, as shown in Fig. 1. Specif-

ically, for distinguishing different object instances, an affin-

ity pyramid is proposed, which can be jointly learned with

the labeling of semantic classes. The pixel-pair affinity

computes the probability that two pixels belong to the same

instance. In this work, the short-range affinities for pixels

close to each other are derived with dense small learning

windows. Simultaneously, the long-range affinities for pix-

els distant from each other are also required to group objects

with large scales or nonadjacent parts. Instead of enlarg-

ing the windows, the multi-range affinities are decoupled

and long-range affinities are sparsely derived from instance

maps with lower resolutions. After that, we propose learn-

ing the affinity pyramid at multiple scales along the hier-

archy of an U-shape network, where the short-range and

long-range affinities are effectively learned from the fea-

ture levels with higher and lower resolutions respectively.

Experiments in Table 3 show that the pixel-level semantic

segmentation and pixel-pair affinity pyramid based group-

ing are indeed mutually benefited from the proposed joint

learning scheme. The overall instance segmentation is thus

further improved.

Then, in order to utilize the cues about global con-

text reasoning, this work employs a graph partition method

[26] to derive instances from the learned affinities. Un-

like previous time-consuming methods, a cascaded graph

partition module is presented to incorporate the graph par-

tition process with the hierarchical manner of the affinity

pyramid and finally provides both acceleration and perfor-

mance improvements. Concretely, with the learned pixel-

pair affinity pyramid, a graph is constructed by regarding

each pixel as a node and transforming affinities into the edge

scores. Graph partition is then employed from higher-level

lower-resolution layers to lower-level higher-resolution lay-

ers progressively. Instance segmentation predictions from

lower resolutions produce confident proposals, which sig-

nificantly reduce node numbers at higher resolutions. Thus

the whole process is accelerated.

The main contributions of this paper are as follows:

• A novel instance-aware pixel-pair affinity pyramid

is proposed to distinguish instances, which can be

jointly learned with the pixel-level labeling of seman-

tic class. The mutual benefits between the two sub-

tasks are explored by encouraging bidirectional inter-

actions, which further boosts instance segmentation.

• A single-shot, proposal-free instance segmentation

method is proposed, based on the proposed affinity

pyramid. Unlike most previous methods, our approach

requires only one single pass to generate instances.

On the challenging Cityscapes dataset, our method

achieves new state of art with 37.3% AP (val) / 32.7%

(test) and 61.1% PQ (val).

• Incorporating with the hierarchical manner of the affin-

ity pyramid, a novel cascaded graph partition module

is proposed to gradually segment an image into in-

stances from coarse to fine. Compared with the non-

cascaded way, this module achieves 5× speedup and

9% relative improvement on AP.

2. Related Work

2.1. Instance Segmentation

Existing approaches on instance segmentation could be

divided into two paradigms: proposal-based methods and

proposal-free methods.

Proposal-based methods recognize object instances with

bounding boxes that generated with detectors [46, 39, 15].

MNC [14] decomposes instance segmentation into a cas-

cade of sub-tasks, including box localization, mask refine-

ment and instance classification. Another work [2, 32] com-

bines the predictions of detection and semantic segmenta-

tion with a CRFasRNN [50] to generate instances. FICS

[33] develops the position sensitive score map [13]. Mask

R-CNN [20] extends Faster R-CNN [46] by adding a seg-

mentation mask predicting branch on each Region of Inter-

est (RoI). Following works extend Mask R-CNN by modi-

fying feature layers [38] or the mask prediction head [7].

Proposal-free methods mainly solve instance segmenta-

tion based on the success of semantic segmentation [6, 49,

8]. The segmentation based methods learn instance-aware

features and use corresponding grouping methods to cluster

pixels into instances. DWT [3] learns boundary-aware en-

ergy for each pixel followed by watershed transform. Sev-

eral methods [5, 17, 43] adopt instance level embeddings

to differentiate instances. SGN [37] sequentially groups

instances with three sub-networks. Recurrent Neural Net-

works (RNNs) is adopted in several approaches [47, 45] to

generate one instance mask at each time. Graph based al-

gorithm [26] is also utilized for post-processing [31, 28],

which segments an image into instances with global reason-

ing. However, the graph based algorithm is usually time-

consuming. To speed up, Levinkov et al. [31] down-sample

the outputs before the graph optimization while Kirillov et

al. [28] only derive edges for adjacent neighbors. They all

accelerate at the expense of performance. Recently, Yang et

al. [48] propose a single-shot image parser that achieves a

balance between accuracy and efficiency.
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2.2. Pixel­Pair Affinity

The concept of learning pixel-pair affinity has been de-

veloped in many previous works [36, 23, 1, 4, 42] to

facilitate semantic segmentations during training or post-

processing. Recently, Liu et al. [40] propose learning

instance-aware affinity and grouping pixels into instances

with agglomerative hierarchical clustering. Our approach

also utilizes instance-aware affinity to distinguish object in-

stances, but both the ways to derive affinities and group pix-

els are significantly different. Importantly, Liu et al. [40]

employ two models and require multiple passes for the RoIs

generated from semantic segmentation results. Instead, our

approach is single-shot, which requires only one single pass

to generate the final instance segmentation result.

3. Proposed Approach

This work proposes a single-shot proposal-free instance

segmentation model based on the jointly learned seman-

tic segmentation and pixel-pair affinity pyramid, which are

equipped with a cascaded graph partition module to differ-

entiate object instances. As shown in Fig. 3, our model con-

sists of two parts: (a) a unified network to learn the seman-

tic segmentation and affinity pyramid with a single back-

bone network, and (b) a cascaded graph partition module to

sequentially generate multi-scale instance predictions using

the jointly learned affinity pyramid and semantic segmenta-

tion. In this section, the affinity pyramid is firstly explained

at Subsection 3.1, then the cascaded graph partition module

is described at Subsection 3.2.

3.1. Affinity Pyramid

With the instance-agnostic semantic segmentation,

grouping pixels into individual object instance is critical for

instance segmentation. This work proposes distinguishing

different object instances based on the instance-aware pixel-

pair affinity, which specifies whether two pixels belong to

the same instance or not. As shown in the second column

of Fig. 2, for each pixel, the short-range affinities to neigh-

boring pixels within a small r × r window are learned. In

this way, a r2 × h × w affinity response map is presented.

For training, the average L2 loss is calculated with the r2

predicted affinities for each pixel:

loss(a, y) =
1

r2

r2
∑

j=1

(

yj − aj
)2
, (1)

where a = [a1, a2, . . . , ar
2

]. aj is the predicted affinity

between the current pixel and the j-th pixel in its affinity

window, representing the probability that two pixels belong

to the same instance. The sigmoid activation is used to let

aj ∈ (0, 1). Here, y = [y1, y2, . . . , yr
2

] and yj represents

the ground truth affinity for aj . yj is set to 1 if two pixels are

: label 1 : label 0

…

…

: current pixels

Figure 2. Illustration of affinity pyramid. Pixel-pair affinity spec-

ifies whether two pixels belong to the same instance or not. For

each current pixel, the affinities to neighboring pixels within a

small r × r window (here, r = 5) are predicted. The short-range

and long-range affinities are decoupled and derived from instance

maps with higher and lower resolutions respectively. In practice,

ground truth affinity is set to 1 if two pixels are from the same

instance, otherwise 0. Best viewed in color and zoom.

from the same instance, 0 if two pixels are from different in-

stances. Importantly, the training data generated in this way

is unbalanced. Specifically, the ground truth affinities are

mostly with all 1 as most pixels are at the inner-regions of

instances. To this end, 80% pixels with all 1 ground truth

affinities are randomly dropped during training. Addition-

ally, we set 3 times loss for pixels belonging to object in-

stances.

Moreover, apart from the short-range affinities above, the

long-range affinities are also required to handle objects of

larger scales or nonadjacent object parts. A simple solution

is to utilize a large affinity window size. However, besides

the cost of GPU memories, a large affinity window would

inevitably conflict with the semantic segmentation during

training, which severely hinders the joint learning of the two

sub-tasks. As shown in experiments (see Table 2), jointly

learning the short-range affinities with semantic segmenta-

tion obtains mutual benefits for the two tasks. However,

the long-range affinities are obviously more difficult to be

jointly learned with the pixel-level semantic class labeling.

Similar observation is also captured by Ke et al. [24].

Instead of enlarging the affinity window, we propose to

learn multi-scale affinities as an affinity pyramid, where the

short-range and long-range affinities are decoupled and the

latter is sparsely derived from instance maps with lower res-

olutions. More concretely, as shown in Fig. 2, the long-

range affinities are achieved with the same small affin-

ity window at the lower resolutions. Note that the win-

dow sizes can be different, however they are fixed in this

work for simplicity. In this way, the 5 × 5 windows from

the 1

64
resolution can produce affinities between pixels at

most 128 pixel-distance. With the constructed affinity pyra-

mid, the finer short-range and coarser long-range affinities

are learned from the higher and lower resolutions, respec-

tively. Consequently, multi-scale instance predictions are

generated by affinities under corresponding resolutions. As
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Figure 3. Our instance segmentation model consists of two parts: (a) a unified U-shape framework that jointly learns the semantic seg-

mentation and affinity pyramid. The affinity pyramid is constructed by learning multi-range affinities from feature levels with different

resolutions separately. (b) a cascaded graph partition module that utilizes the jointly learned affinity pyramid and semantic segmentation to

progressively refine instance predictions starting from the deepest layer. Instance predictions in the lower-level layers with higher resolution

are guided by the instance proposals generated from the deeper layers with lower resolution. Best viewed in color and zoom.

shown in Fig. 2, the predictions of larger instances are pro-

posed by the lower resolution affinities, and are further de-

tailed by higher resolution affinities. Meanwhile, although

the smaller instances have too weak responses to be pro-

posed at lower resolutions, they can be generated by the

affinities with higher resolutions.

After that, the affinity pyramid can be easily learned

by adding affinity branches in parallel with the existing

branches for semantic segmentation along the hierarchy of

the decoder network. As shown in Fig. 3 (a), affinities are

predicted under { 1

4
, 1

8
, 1

16
, 1

32
, 1

64
} resolutions of the orig-

inal image. In this way, the short-range and long-range

affinities can be effectively learned at different feature lev-

els in the feature pyramid of the U-shape architecture. The

formed affinity pyramid can thus be jointly learned with the

semantic segmentation in a unified model, resulting in mu-

tual benefits.

3.2. Cascaded Graph Partition

With the jointly learned semantic segmentation and

affinity pyramid, a graph-based partition mechanism is em-

ployed in this work to differentiate object instances. In par-

ticular, incorporating with the hierarchical manner of the

affinity pyramid, a cascaded graph partition module is pre-

sented. This module sequentially generates instances with

multiple scales, guided by the cues encoded in the deeper-

level layers of the affinity pyramid.

Graph Partition With the learned pixel-pair affinity pyra-

mid, an undirected graph G = (V,E) is constructed, where

V is the set of pixels and E ⊆ V 2 is the set of pixel-pairs

within affinity windows. eu,v ∈ E represents the edge be-

tween the pixels {u, v}. Furthermore, au,v, av,u ∈ (0, 1)
are the affinities for pixels {u, v}, which are predicted at

pixels u and v, respectively. The average affinity αu,v is

then calculated and transformed into the score wu,v of edge

eu,v by:

αu,v = (au,v + av,u)/2, (2)

wu,v = log(
αu,v

1− αu,v

). (3)

As the affinities predict how likely two pixels belong to

the same instance, the average affinities higher than 0.5 are

transformed into positive and negative otherwise. In this

way, instance segmentation is transformed into a graph par-

tition problem [11] and can be addressed by solving the fol-

lowing optimization problem [26]:

min
y∈{0,1}

∑

e∈E

weye, (4)

s.t. ∀C ∀e
′

∈ C :
∑

e∈C\{e′}

ye ≥ ye′ . (5)

Here, ye = yu,v ∈ {0, 1} is a binary variable and yu,v = 1
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(e)(b) (d)(a) (c)

Figure 4. Influence of segmentation refinement (SR). (a) Input im-

age. (b) Semantic segmentation. (c) Instance segmentation with-

out SR (d) Instance segmentation with SR. (e) Ground truth. SR

significantly improves the errors in instance segmentation which

are caused by the semantic segmentation failures. Best viewed in

color and zoom.

represents nodes u and v belong to different partitions. C is

the set of all cycles of the graph G. The objective in formu-

lation 4 is about to maximize the total score of the selected

edges, and the inequality 5 constrains each feasible solu-

tion representing a partition. A search-based algorithm [26]

is developed to solve the optimization problem. However,

when this algorithm is employed to segment instances, the

inference time is not only long but also rises significantly

w.r.t. the number of nodes, which brings potential problem

for real-world applications.

Cascade Scheme The sizes of instances in the Cityscapes

dataset are various significantly. For large instances, the

pixels are mostly at the inner-regions which cost long in-

ference time although are easy for segmentation. Motivated

by this observation, a cascaded strategy is developed to in-

corporate the graph partition mechanism with the hierarchi-

cal manner of the affinity pyramid. As shown in Fig. 3

(b), the graph partition is firstly utilized on a low resolu-

tion where it has fewer pixels and requires a short running

time for graph partition. Although only coarse segments

for large instances are generated, the inner-regions for these

segments are still reliable. In this case, these inner-regions

can be up-sampled and regarded as proposals for the higher

resolution. At the higher resolution, the pixels in each pro-

posal are combined to generate a node and the remaining

pixels are each treated as a node. To construct a graph with

these nodes, the edge score wti,tj between nodes ti and tj
is calculated by adding all pixel-pair edge scores between

the two nodes: wti,tj =
∑

u∈ti,v∈tj
wu,v . In this way, the

proposals for instance predictions are progressively refined.

Because the number of nodes decreases significantly at each

step, the entire graph partition is accelerated.

Segmentation Refinement In previous steps, the partition

is made within each class to speed up. At this step, the

cues from both semantic segmentation and affinity branches

are integrated to segmentation instances from all the pixels

which are classified as foreground. In practice, the average

affinity αu,v for pixels {u, v} is refined to α
′

u,v by:

α
′

u,v = αu,v ∗ exp[−DJS(su∥sv)], (6)

DJS(P∥Q) =
1

2

[

DKL

(

P∥
P +Q

2

)

+DKL

(

Q∥
P +Q

2

)

]

,

(7)

DKL(P∥Q) =
∑

i

Pi log
Pi

Qi

. (8)

Here, su = [s1u, s
2
u, . . . , s

c
u] and sv = [s1v, s

2
v, . . . , s

c
v] are

the semantic segmentation scores for c object classes at the

pixel u and v, which represent the classification possibil-

ity distributions on the c object classes. The distance be-

tween the two distributions can be measured with the popu-

lar Jensen-Shannon divergence, as described in Eq. 7-8. Af-

ter the refinement for the initial affinities, graph partition is

conducted for all the foreground pixels at the 1

4
resolution.

By combining the information from semantic segmentation

and affinity branches, the errors in instance segmentation

which are caused by the semantic segmentation failures are

significantly improved, as shown in Fig. 4.

Finally, the class label for each instance is obtained by

voting among all pixels based on semantic segmentation

labels. Following DWT [3], small instances are removed

and semantic scores from semantic segmentation are used

to rank predictions.

4. Experiments

Dataset Our model is evaluated on the challenging urban

street scenes dataset Cityscapes [12]. In this dataset, each

image has a high resolution of 1,024×2,048 pixels. There

are 5,000 images with high quality dense pixel annota-

tions and 20,000 images with coarse annotations. Note that

only the fine annotated dataset is used to train our model.

Cityscapes benchmark evaluates 8 classes for instance seg-

mentation. Together with another 11 background classes,

19 classes are evaluated for semantic segmentation.

Metrics The main metric for evaluation is Average-

Precision (AP), which is calculated by averaging the preci-

sions under IoU (Intersection over Union) thresholds from

0.50 to 0.95 at the step of 0.05. Our result is also reported

with three sub-metrics from Cityscapes: AP50%, AP100m

and AP50m. They are calculated at 0.5 IoU threshold or

only for objects within specific distances.

This paper also evaluates the results with a new metric

Panoptic Quality (PQ) [27], which is further divided into

Segmentation Quality (SQ) and Recognition Quality (RQ)

to measure recognition and segmentation performances re-

spectively. The formulation PQ is defined as :

PQ =

∑

p,g∈TP
IoU(p, g)

|TP |
︸ ︷︷ ︸

Segmentation Quality (SQ)

×
|TP |

|TP |+ 1

2
|FP |+ 1

2
|FN |

︸ ︷︷ ︸

Recognition Quality (RQ)

, (9)
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α λ AP (%) PQTh (%) PQ (%)

0.0003 diff. 27.5 45.0 54.6

0.001 diff. 29.5 48.0 55.8

0.003 diff. 31.5 49.2 56.6

0.003 same 31.0 48.7 56.2

0.01 diff. 31.0 49.2 56.3

0.03 diff. 28.1 46.4 53.4

Table 1. Influence of the balancing parameters.

r AP (%) PQTh (%) PQ (%) mIoU (%)

0 - - - 74.5

3 30.5 48.5 56.4 75.0

5 31.3 49.0 56.5 75.0

7 31.2 48.1 56.0 75.1

9 30.0 46.2 55.0 74.3

Table 2. Influence of affinity window size r. mIoU for semantic

segmentation evaluation is also provided. r = 0 means to train

semantic segmentation only.

Feature JL AP (%) PQTh (%) PQ (%) mIoU (%)

Single 29.4 46.9 54.9 74.5

(w/o dilation)
√

30.2 47.6 55.0 74.2

Single 30.6 48.2 55.5 74.5

(w/ dilation)
√

30.8 48.8 55.8 74.5

Hierarchical
30.0 47.7 55.2 74.5

√
31.3 49.0 56.5 75.0

Table 3. JL: joint learning. Comparing with learning all layers of

the affinity pyramid from the single 1/4 resolution feature map, our

hierarchical manner with joint learning performs better.

where p and g are the predicted and ground truth seg-

ments, while TP , FP and FN represent matched pairs

of segments, unmatched predicted segments and unmatched

ground truth segments respectively. Moreover, both count-

able objects (thing) and uncountable regions (stuff) are eval-

uated in PQ and are separately reported with PQTh and PQSt.

As the stuff is not concerned in this work, only PQ and PQTh

is reported.

Implementation Details Our model predicts semantic seg-

mentation and pixel-pair affinity with a unified U-shape

framework based on ResNet-50 [21]. The training loss L
is defined as:

L =
∑

i

(Li
s + αλiL

i
a), (10)

where Li
s and Li

a are multi-class focal loss [35] and av-

erage L2 loss (see Eq. 1) for semantic segmentation and

affinity branches at the ith resolution in [ 1
4
, 1

8
, ..., 1

64
] res-

olutions respectively. To combine losses from each scale,

we firstly tune the balancing parameter λi to make losses

of each scale are in the same order, which are finally set to

[0.01, 0.03, 0.1, 0.3, 1] respectively. After that, α is set to

0.003 to balance the losses of affinity pyramid and seman-

tic segmentation. The influence of α and λi are shown in

Table 1. We run all experiments using the MXNet frame-

Figure 5. Running time for the cascaded graph partition module

under different object sizes. The cascade scheme significantly re-

duces the time for large objects. Best viewed in color.

work [9]. Our model is trained with Nadam [16] for 70,000

iterations using synchronized batch normalization [22] over

8 TitanX 1080ti GPUs and the batch size is set to 24. The

learning rate is initialized to 10−4 and divided by 10 at the

30,000 and 50,000 iterations, respectively.

Influence of Joint Learning Our separately trained seman-

tic segmentation model achieves 74.5% mIoU. This result

is significantly improved after being jointly trained with the

affinity pyramid, as shown in Table 2. However, the per-

formance for both instance and semantic segmentation is

affected by the affinity window size. Similar phenomenon

is also observed by Ke et al. [24] and they explain that small

windows and large windows benefit small objects and large

objects, respectively. Due to the limitation of GPU mem-

ory, the window size is tested from 3 to 9. Among them,

5× 5 affinity window balances the conflict and achieves the

best performance, which is used in the other experiments.

Furthermore, in our proposed model, the semantic segmen-

tation and affinity pyramid are jointly learned along the hi-

erarchy of the U-shape network. We compare this approach

with generating all layers of the affinity pyramid from the

single 1

4
resolution feature map with corresponding strides.

The employing of dilated convolution [6] is also tested. Ta-

ble 3 shows our approach performs best, where the mutually

benefits of the two tasks are explored and finally improve

the performance on instance segmentation.

Influence of Cascaded Graph Partition At this part, the

proposed cascaded graph partition module is analyzed by

being initialized from each resolution. As shown in Fig. 5,

the running time for graph partition increases rapidly w.r.t.

the size of object regions when conducting the partition at

the 1

4
resolution directly, without the guidance of instance

proposals. However, the time significantly reduces when

initializing the cascaded graph partition from lower reso-

lutions, like the 1

16
resolution, where the graph partition

is constructed at the [ 1

16
, 1

8
, 1

4
] resolutions sequentially, and

the latter two are guided by the proposals from the previous
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Init. Res. GP time (s) AP (%) PQTh (%) PQ (%)

1/4 1.26 28.9 45.1 54.9

1/8 0.33 31.3 49.2 56.6

1/16 0.26 31.5 49.2 56.6

1/32 0.26 30.9 48.8 56.5

1/64 0.26 30.9 48.7 56.5

Table 4. Influence of the initial resolution for the cascaded graph

partition. With the decreasing of initial resolution, the GP time

(running time for cascaded graph partition per image) keeps de-

creasing. Comparing with 1

4
resolution initialization, initializ-

ing cascaded graph partition from the 1

16
resolution achieves 5×

speedup with 9% AP improvement.

Affinities Used AP (%) PQTh (%) PQ (%)

A1 only 25.7 41.2 53.2

+A2 29.8 46.5 55.4

+A3 30.8 48.6 56.3

+A4 31.4 49.2 56.5

+A5 31.5 49.2 56.6

Table 5. Effectiveness of the long-range affinities. [A1, A2, ..., A5]
are affinities of the [ 1

4
, 1

8
, ..., 1

64
] resolutions respectively. Affini-

ties with longer-range are gradually added.

BD OL Kernel AP (%) PQTh (%) PQ (%)

3 29.1 46.4 55.8
√

3 30.0 48.8 56.0
√ √

3 31.3 49.0 56.5
√ √

5 31.5 49.2 56.6

Table 6. BD: balance the training data by randomly dropping 80%

pixels with all 1 ground truth affinities. OL: set 3 times affinity

loss for pixels belonging to object instances. Kernel: kernel size.

stage. The quantitative results are shown in Table 4. Com-

paring with the 1

4
resolution initialization (non-cascaded),

the 1

64
resolution initializing scheme achieves 5× accelera-

tion. Importantly, the cascaded approach achieves speeding

up without scarifying precisions. As shown in Table 4, ini-

tializing from the 1

64
resolution has 2.0% absolute improve-

ment on AP, which is achieved due to that the proposals

from lower resolutions can reduce the disturbing informa-

tion for prediction. Meanwhile, the 1

16
resolution initializ-

ing approach achieves better performance than the 1

64
and

1

32
manner, which indicates proposals from too low resolu-

tions still bring errors for prediction. In the other experi-

ments, cascaded graph partitions are initialized from the 1

16

resolution.

Quantitative Results Firstly, to show the effectiveness of

the long-range affinities, we start with just using the affini-

ties from the 1/4 resolution, and gradually add longer-range

affinities. Results are shown in Table 5. Then, the influ-

ences of balancing training data, setting larger affinity loss

and employing a large kernel are evaluated and shown in

Table 6. After that, as shown in Table 7, the segmentation

refinement improves the performance with 2.8% AP. With

test tricks, our model achieves 34.4% AP and 58.4% PQ on

Backbone SR HF MS AP (%) PQTh (%) PQ (%)

ResNet-50 28.7 45.4 55.1

ResNet-50
√

31.5 49.2 56.6

ResNet-50
√ √

32.8 50.4 57.6

ResNet-50
√ √ √

34.4 50.6 58.4

ResNet-101
√ √ √

37.3 55.0 61.1

Table 7. SR: segmentation refinement. HF: horizontal flipping

test. MS: multiscale test.

Method AP (%) PQTh (%) PQ (%) Backbone

Li et al. [32] 28.6 42.5 53.8 ResNet-101

SGN [37] 29.2 - - -

Mask R-CNN [20] 31.5 49.61 - ResNet-50

GMIS [40] 34.1 - - ResNet-101

Deeperlab [48] - - 56.5 Xception-71 [10]

PANet [38] 36.5 - - ResNet-50

SSAP (ours) 34.4 50.6 58.4 ResNet-50

SSAP (ours) 37.3 55.0 61.1 ResNet-101

Table 8. Results on Cityscapes val set. All results are trained with

Cityscapes data only.

Method PQ [val] PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

DeeperLab [48] 33.8 34.3 77.1 43.1 37.5 77.5 46.8 29.6 76.4 37.4

SSAP (ours) 36.5 36.9 80.7 44.8 40.1 81.6 48.5 32.0 79.4 39.3

Table 9. Results on COCO val (‘PQ [val]’ column ) and test-dev

(remaining columns) sets. Results are reported as percentages.

the validation set. Our model is also trained with ResNet-

101, which achieves 37.3% AP and 61.1% PQ, as shown in

Table 8. For the test set, our model attains a performance of

32.7% AP, which exceeds all previous methods. Details are

in Table 10.

Visual Results The proposals generated from the 1

16
and 1

8

resolutions are visualized in Fig 6. A few sample results on

the validation set are visualized in Fig 7, where fine details

are precisely captured. As shown in the second column, the

cars occluded by persons or poles and separated into parts

are successfully grouped.

Results on COCO To show the effectiveness of our

method in scenarios other than streets, we evaluate it on the

COCO dataset. The annotations for COCO instance seg-

mentation are with overlaps, making it unsuitable to train

and test a proposal-free method like ours. So our method

is evaluated in the panoptic segmentation task. To train on

COCO, we resize the longer edge to 640 and train the model

with 512 × 512 crops. The number of iterations is 80,000

and the learning rate is divided by 10 in 60,000 and 70,000

iterations. Other experimental settings are remained the

same. The performance of our model (ResNet-101 based)

is summarized in Table 9. To the best of our knowledge,

DeeperLab [48] is currently the only proposal-free method

to report COCO result. Our method outperformes Deeper-

Lab (Xception-71 based) in all sub metrics.

1This result is reported by Kirillov et al. [27].

648



Method Training data AP AP50% AP50m AP100m person rider car trunk bus train motor bicycle

InstanceCut [28] fine+coarse 13.0 27.9 26.1 22.1 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7

Multi-task [25] fine 21.6 39.0 37.0 35.0 19.2 21.4 36.6 18.8 26.8 15.9 19.4 14.5

SGN [37] fine+coarse 25.0 44.9 44.5 38.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

Mask RCNN [20] fine 26.2 49.9 40.1 37.6 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0

GMIS [40] fine+coarse 27.3 45.6 - - 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8

Neven et al. [43] fine 27.6 50.9 - - 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9

PANet [38] fine 31.8 57.1 46.0 44.2 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8

SSAP (ours) fine 32.7 51.8 51.4 47.3 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2

Table 10. Results on Cityscapes test set. All results are trained with Cityscapes data only. Results are reported as percentages.

Image Proposals from 1

16
Res. Proposals from 1

8
Res. Instance Seg. Ground Truth

Figure 6. Visualizations of proposals generated from lower resolutions within the cascaded graph partition module and the final instance

segmentation results. Best viewed in color and zoom.

Semantic Seg. Instance Seg. Semantic Seg. Instance Seg.

Figure 7. Visualizations of sampled results on the validation set. Best viewed in color and zoom.

5. Conclusion

This work has proposed a single-shot proposal-free in-

stance segmentation method, which requires only one sin-

gle pass to generate instances. Our method is based on a

novel affinity pyramid to distinguish instances, which can

be jointly learned with the pixel-level semantic class labels

using a single backbone network. Experiment results have

shown the two sub-tasks are mutually benefited from our

joint learning scheme, which further boosts instance seg-

mentation. Moreover, a cascaded graph partition module

has been developed to segment instances with the affin-

ity pyramid and semantic segmentation results. Compar-

ing with the non-cascaded way, this module has achieved

5× speedup and 9% relative improvement on AP. Our ap-

proach has achieved a new state of the art on the challenging

Cityscapes dataset.
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