
StartNet: Online Detection of Action Start in Untrimmed Videos

Mingfei Gao1∗ Mingze Xu2 Larry S. Davis1 Richard Socher3 Caiming Xiong3†

1University of Maryland 2Indiana University 3Salesforce Research

{mgao,lsd}@umiacs.umd.edu, mx6@indiana.edu, {rsocher,cxiong}@salesforce.com

Abstract

We propose StartNet to address Online Detection of Ac-

tion Start (ODAS) where action starts and their associated

categories are detected in untrimmed, streaming videos.

Previous methods aim to localize action starts by learning

feature representations that can directly separate the start

point from its preceding background. It is challenging due

to the subtle appearance difference near the action starts

and the lack of training data. Instead, StartNet decomposes

ODAS into two stages: action classification (using ClsNet)

and start point localization (using LocNet). ClsNet focuses

on per-frame labeling and predicts action score distribu-

tions online. Based on the predicted action scores of the

past and current frames, LocNet conducts class-agnostic

start detection by optimizing long-term localization rewards

using policy gradient methods. The proposed framework

is validated on two large-scale datasets, THUMOS’14 and

ActivityNet. The experimental results show that StartNet

significantly outperforms the state-of-the-art by 15%-30%
p-mAP under the offset tolerance of 1-10 seconds on THU-

MOS’14, and achieves comparable performance on Activi-

tyNet with ×10 smaller time offset.

1. Introduction

Temporal action localization (TAL) in untrimmed videos

has been widely studied in offline settings, where start and

end times of an action are recognized after the action is

fully observed [4, 7, 8, 13, 32, 42]. With the emerging ap-

plications that require identifying actions in real time, e.g.,

autonomous driving, surveillance system, and collaborative

robots, online action detection (OAD) methods [9,12,31,41]

have been proposed. They typically pose the TAL problem

as a per-frame class labeling task.

However, in some time-sensitive scenarios, detecting ac-

curate action starts in a timely manner is more important

than successfully detecting every frame containing actions.

∗Work done when the author was an intern at Salesforce Research.
†Corresponding author.

Action Score

(b) StartNet

Unseen

Action Start

AS

Action Classification

Start Point Localization

t

No Yes

(a) Previous Method

No Start

No No No No No

No

t

Figure 1. Comparison between (a) the previous method [31] and

(b) the proposed framework. [31] aims to generate an action score

sequence which produces low score for background and high score

for the correct action immediately when the action starts. We pro-

pose a two-stage framework: the first stage only focuses on per-

frame action classification and the second stage learns to localize

the start points given the historical trend of the action scores gen-

erated by the first stage.

For example, an autonomous driving car needs to detect

the start of “pedestrian crossing” as soon as it happens to

avoid collision; a surveillance system should generate alert

as soon as a dangerous event is initiated. Online Detection

of Action Start (ODAS) was proposed to address this prob-

lem specifically [31]. Instead of classifying every frame,

ODAS detects the occurrence and category of an action start

as soon as possible. Thus, it addresses two sub-tasks: (i) if

an action starts at time t and (ii) its associated action class.

The existing method [31] handles the two sub-tasks

jointly by training a classification network that is capable of

localizing the starts of different action classes. The network

attempts to make the representation of a start point close to

that of its associated action class and far from its preceding

background. As shown in Fig. 1 (a), the network is encour-

aged to react immediately when an action starts. However,

it is hard to achieve this goal due to the subtle appearance

difference near start points and the lack of labeled training

data (one action only contains one start point).

Our method is inspired by three key insights. First, de-

5542

composing a complex task properly allows sub-modules to

focus on their own sub-tasks and makes the learning process

easier. A good example is the success of the two-stage ob-

ject detection framework [15,16,29]. Second, as mentioned

in [16], when training data is scarce, learning from a rep-

resentation that is pre-trained on an auxiliary task may lead

to a significant performance boost. Third, OAD (per-frame

labeling) is very related to ODAS. Comparing to the scarce

labeled data of action starts, the amount of per-frame action

labels is much larger. Thus, there may be potential benefits

if we take advantage of the per-frame labeling task.

Instead of focusing on learning subtle difference near

start points, we propose an alternative framework, i.e. start-

Net, and address ODAS in two stages: classification (using

ClsNet) and localization (using LocNet). ClsNet conducts

per-frame labeling as an auxiliary task based on the spatial-

temporal feature aggregation from input videos, and gen-

erates score distributions of action classes as a high-level

representation. Based on the historical trend of score dis-

tributions, LocNet predicts class-agnostic start probability

at each time (see Fig 1 (b)). At the end, late fusion is

applied on the outputs of both modules to generate the fi-

nal result. When designing LocNet, we consider the im-

plicit temporal constraint between action starts – two start

point are unlikely to be close by. To impose the tempo-

ral constraint into the framework under the online setting,

historical decisions are taken into account for later predic-

tions. To optimize the long-term reward for start detection,

LocNet is trained using reinforcement learning techniques.

The proposed framework and its variants are validated on

THUMOS’14 [21] and ActivityNet [11]. Experimental re-

sults show that our approach significantly outperforms the

state-of-the-art by 10%-30% p-mAP under offsets of 1-10
seconds on THUMOS’14, and achieves comparable p-mAP

with 10 times smaller time offset on ActivityNet.

2. Related Work

Temporal Action Detection. Most existing methods [4,

7, 8, 13, 32, 42] on temporal action detection formulate the

problem in an offline manner. These methods segment ac-

tions from long, untrimmed videos and require observing

the entire video before making a decision. S-CNN [32] lo-

calizes actions with three stages: action proposal genera-

tion, proposal classification, and proposal regression. Dai et

al. [8] proposed TCN which incorporates local context of

each proposal for proposal ranking. By sharing features be-

tween proposal generation and classification, R-C3D [40]

reduces computational cost significantly. Buch et al. [4]

propose an efficient proposal generation model that avoids

working on overlapping regions. Instead of treating tempo-

ral action detection as segment-level classification, Shou et

al. [30] propose CDC network to produce per-frame predic-

tions using 3D convolutional networks.

Online Action Detection. Online action detection is usu-

ally solved as a per-frame labeling task [9] on live, stream-

ing videos. As soon as a video frame arrives, it is classified

to an action class or background without accessing future

frames. De Geest et al. [9] first introduced the problem and

proposed several models as baselines. Gao et al. [12] pro-

pose a Reinforced Encoder-Decoder network for action an-

ticipation and treat online action detection as a special case

of their framework. Temporal Recurrent Networks [41] set

a new state-of-the-art performance by conducting current

and future action detection jointly. With the same goal

of online per-frame labeling, these methods can serve as

ClsNet in our framework.

Early Action Detection. Early action detectors detect ac-

tions after only processing a fraction of videos. The earlier a

detector recognizes an action, the better it performs. Hoai et

al. [18] solve this problem by proposing a max-margin

framework with structured SVMs. However, this method

works on simple scenarios, e.g., one video contains only

one action. Ma et al. [26] design a ranking loss for train-

ing assuming that the gaps of predicted scores between cor-

rect and incorrect actions should be non-decreasing when

an model observes more of an activity.

Online Detection of Action Start (ODAS). As with early

action detection, ODAS also aims to recognize actions as

soon as possible. Specifically, it focuses on detecting action

starts and tries to minimize the time delay of identifying the

start point of an action. To the best of our knowledge, [31]

is the first and only work that is designed to address ODAS.

They solve the problem by encouraging a classification net-

work to learn a representation that can separate action starts

from their preceding backgrounds. To achieve the goal, they

force the learned representation of an action start window to

be similar to that of the following action window and differ-

ent from that of the preceding background.

Sequential Search with RL. Reinforcement learning (RL)

is popular for sequential search problems, since it allows

models to be optimized for long-term rewards. Caicedo et

al. [5] propose a framework based on Deep Q-learning [28]

that transforms an initial bounding box iteratively until it

lands on an object. Huang et al. propose a self-adaptive

model [20] which continuously adjusts the boundary of the

temporal localization window for action detection. In order

to speed up object detection on large images, Gao et al. [14]

design a coarse-to-fine framework with Deep Q-learning

that sequentially selects regions to zoom in only when it

is needed. Wu et al. [38] propose BlockDrop that trains

with policy gradient [35] and improved computational ef-

ficiency by dropping unnecessary blocks of ResNets [17].

AdaFrame [39] is also optimized with policy gradient to re-

duce computations of LSTM by skipping input frames. Our

method is related to the above approaches in terms of using

5543

similar RL techniques, but our contributions are mainly for-

mulating ODAS as a two-stage framework and start point

detection as a long-term selection process.

3. Action Start Detection Network (StartNet)

The input of an ODAS system is untrimmed, streaming

video frames {I1, I2, ..., It}. The system processes each

video frame sequentially and detects the start of each action

instance. At time step t, it outputs a probability distribution,

ask
t
, which indicates the start probability of the action class

k, without accessing any future information.

The overview of the proposed framework is illustrated in

Fig. 2. The framework contains two sub-networks, i.e., a

classification network (ClsNet) and a localization network

(LocNet). ClsNet focuses on per-frame class labeling. It

takes the raw video frames as input and outputs action class

probabilities at every time step in an online manner. ClsNet

serves two purposes. First, it learns simpler but useful rep-

resentation for localizing action starts. Second, the classi-

fication results can be combined later with the localization

results to produce the action starts for each class. LocNet

takes the output of ClsNet together with the historical deci-

sion vector as inputs. At each time step, it outputs a two-

dimensional probability distribution indicating the probabil-

ity that this frame contains an action start. The historical de-

cision vector records its predictions in the previous n steps

in order to model the effect of historical decisions on later

ones. Finally, the results of the two networks are fused to

construct the final output.

3.1. Classification Network (ClsNet)

Inspired by recent online action detection methods [9,12,

41], we utilize recurrent networks, specifically, LSTM [19],

to construct ClsNet. At each time t, it uses the previous hid-

den state h
(cls)
t−1 , the cell c

(cls)
t−1 , and the feature, ft, extracted

from the current video frame, It, as inputs, to update its

hidden state h
(cls)
t and cell c

(cls)
t . Then, the likelihood dis-

tribution over all the action classes can be obtained in Eq. 1,

p
t
= softmax(WT

cls
h
(cls)
t + b), (1)

where p
t

is a K dimensional vector and K indicates the

number of action classes including background.

To learn ClsNet, action class label for each frame is

needed. The cross-entropy loss, Lcls(Wc), is used for opti-

mization during training, where Wc represents the parame-

ter set of ClsNet.

We observe that ClsNet can be implemented with dif-

ferent architectures. Thus, we validate our framework us-

ing two additional structures as the backbone of ClsNet,

i.e., CNN and C3D [36]. CNN conducts action classifica-

tion based only on the arriving frame, It. It focuses on the

spatial information of the current frame without consider-

ing temporal patterns of actions. C3D labels It based on

each temporal segment consisting of 16 consecutive video

frames, from It−15 to It. It captures spatial and tempo-

ral information jointly using 3D convolutional operations.

Comparisons and explanations are discussed in Sec. 4.

3.2. Localization Network (LocNet)

As discussed in Sec. 1, historical action scores can pro-

vide useful cues for identifying action starts. At time t, Loc-

Net observes the action score distribution over classes of

each frame, p
t
, obtained from ClsNet and outputs a two-

dimensional vector, st, indicating the start and non-start

probability distribution.

The start probability is generated sequentially. In gen-

eral, if an action starts at time step t, there is a low prob-

ability that another action also starts at time t + 1, given

reasonable frames per second (FPS). Thus, there are im-

plicit temporal constraints between nearby start points. To

enable the model to consider constraints between decisions,

we record the historical decisions made by LocNet and use

the history to influence later decisions. To enable long-term

decision planning, we formulate the problem as a Markov

Decision Process (MDP) and use reinforcement learning to

optimize our model. When making a decision1, the model

not only considers the effect of the decision at the current

step, but also how it will influence the later ones by max-

imizing the expected long-term reward. In the following,

we first discuss the inference phase of LocNet and then the

training phase in detail.

Inference Phase. LocNet is built upon a LSTM structure. It

acts as an agent which interacts with historical action scores

recurrently. During testing, at each state, the agent makes a

decision (predicts start probability) that produces the max-

imum expected long-term reward and updates the state ac-

cording to the decision. To model the dependency between

decisions, we incorporate the record of historical decisions

(the decisions made by the agent at previous steps) as a part

of the state. The state update procedure is described in Eq. 2

and 3, where Ht−1 = st−n:t−1 indicates historical decisions

from step t − n to t − 1 and [p
t
,Ht−1] indicates the con-

catenation of the vectors. At the beginning, H is initialized

with zeros.

h
(loc)
t , c

(loc)
t = LSTM(h

(loc)
t−1 , c

(loc)
t−1 , [p

t
,Ht−1]). (2)

st = softmax(WT

loc
h
(loc)
t + b). (3)

Training Phase. We train an agent that acts optimally

based on the state of the environment. The goal is to maxi-

mize the reward by changing the predicted start probability

1The term “action” is generally used in reinforcement learning, we use

“decision” instead to remove the confusion with action class.

5544

…

LSTM

LSTM

𝒔𝒕

𝑽$𝒕

𝒅𝒕~𝓝(𝒔𝒕, 𝟎. 𝟏
𝟐)

policy

Reward

𝑳𝒄𝒍𝒔

𝑳𝒃

𝒅𝑱𝒔

𝒈𝒕

Update

𝑯𝒕6𝟏

Action
Start

𝑰𝒕

𝑰𝒕8𝟏

𝑰𝒕8𝟐

Action Labels

Action Score Distribution

ClsNet

LocNet Fusion

𝒇𝒕

𝒉𝒕6𝟏
(𝒄𝒍𝒔)

𝒑𝒕

𝒉𝒕6𝟏
(𝒍𝒐𝒄)

𝑯𝒕

Figure 2. Our method works in two stages with ClsNet and LocNet. ClsNet: at time t, features, ft, are extracted by deep convolutional

networks and input to an one-layer LSTM; The LSTM generates action score distributions at each time step and ClsNet is optimized

with cross-entropy loss between action labels and the generated action scores. LocNet: after action score generation, it inputs together

with a historical decision vector, H, to a second one-layer LSTM which works as an agent to generate two-dimensional start probability

sequentially; H is updated and the state is changed accordingly; The agent is trained using policy gradient mechanism to optimize long-

term reward of start localization. At the end, results from ClsNet and LocNet are fused to obtain the final action start detection results at

each time step. Here, ClsNet is implemented with LSTM. CNN and C3D can also be used to construct ClsNet (see Sec. 3.1 for details).

distribution: at a given state, the start probability should

be increased when the decision introduces bigger reward

and be decreased otherwise. The start prediction proce-

dure is formulated as a decision making policy defined us-

ing Gaussian distribution. Following [27, 39], the policy is

trained by optimizing with dt, where dt, is sampled from

π(.|h
(loc)
t , p

t
,Ht−1) = N (st, 0.1

2) and st indicates the

output start probability.

Reward function. Each decision at a given state is as-

sociated with an immediate reward to measure the decision

made by the agent at the current time. With the goal of lo-

calizing start points, we define the immediate reward func-

tion in Eq. 4, where gt ∈ {0, 1} indicates the ground-truth

label of action start and dt is the sampled start probability.

The reward function encourages a high probability when

there is an actual start and a low probability when there is

not by giving a negative reward. Considering the sample

imbalance between start points and background, weighted

rewards are used by setting a parameter α. In particular, we

set α to be the ratio between the number of negative samples

to positive samples for each dataset.

rt = αgtdt − (1− gt)dt. (4)

The long-term reward is the summation of discounted fu-

ture rewards. In order to maximize the expected long-term

reward, the policy is trained by maximizing the objective in

Eq. 5, where Ws represents the parameters of the network

and γ is a constant scalar for calculating the discounted re-

wards over time.

Js(Ws) = E
dt∼π(.|Ws)

[
∑

i=0

γirt+i]. (5)

Optimization. When optimizing Eq. 5, it is not possible

to train the network using error back propagation directly,

since the objective is not differentiable. Following [35], we

use policy gradient to calculate the expected gradient of Js
as in Eq. 6, where Rt =

∑

i=0 γ
irt+i indicates the long-

term reward at time step t and V̂t is a baseline value (gen-

erated by an fully-connected (FC) layer as shown in Fig. 2)

which is widely used in policy gradient frameworks to re-

duce the variance of the gradient. The principle of policy

gradient is to maximize the probability of an action with

high reward given a state.

▽Ws
Js = E[

∞
∑

t=0

(Rt − V̂t)▽Ws
logπ(.|Ws)]. (6)

Following [39], we use the expected long-term reward

at the current state as the baseline value and approximate it

by minimizing the l2 loss: Lb(Wb) = 1
2 ||Rt − V̂t||2. The

training procedure of LocNet is summarized in Alg. 1.

Algorithm 1 Training Process of LocNet

Initialize parameters, Ws, of LocNet

for iteration = 1:N do

Obtain training sequence samples of length Tloc

for t = 1:Tloc do

Obtain st based on current policy

Sample decisions: dt ∼ N (st, 0.1
2)

Obtain rt and V̂t for each sample

end for

Compute R1:Tloc
, ▽Ws

Js and Lb(Wb)
Update parameters, Ws, of LocNet

end for

5545

The full objective including the loss term in ClsNet is

shown in Eq. 7, where λ1 and λ2 are constant scalars.

minLcls(Wc) + λ1Lb(Wb)− λ2Js(Ws). (7)

Late Fusion. ClsNet outputs an action score distribution

and LocNet produces class-agnostic start probabilities at

each time step. Then, late fusion is applied to obtain the

start probability for each action class, ask
t
, using Eq. 8,

where superscript 1:K-1 indicates positive classes and 0 in-

dicates background.

ask
t
=

{

stp
1:K−1
t k = 1 : K − 1

(1− st)p
0
t

k = 0
. (8)

Action start generation. Follow [31], final action starts

are generated online if all of the three conditions are satis-

fied: (i) ct = argmax
k

(ask
t
) is an action; (ii) ct 6= ct−1 and

(iii) asctt exceeds a threshold. We set this threshold to 0 by

default. An action score sequence generated by ClsNet can

also generate action start points online following this proce-

dure. LocNet can locally adjust the start point by boosting

time points with higher start probabilities and suppressing

those with lower start probabilities.

4. Experiments

To validate the proposed framework, we conduct ex-

tensive experiments on two large-scale action recognition

datasets, i.e., THUMOS’14 [21] and ActivityNet v1.3 [11].

Evaluation protocol. To permit fair comparisons, we use

the point-level average precision (p-AP) proposed in [31] to

evaluate our framework. Under this protocol, each action

start prediction is associated with a time point. For each

action class, predictions of all frames are first sorted in de-

scending order based on their confidence scores and then

measured accordingly. An action start prediction is counted

as correct only if it matches the correct action class and its

temporal distance from a ground-truth point is smaller than

an offset threshold (offset tolerance). Similar to segment-

level average precision, no duplicate detections are allowed

for the same ground-truth point. p-mAP is then calculated

by averaging p-AP over all the action classes.

Following [31], we use two metrics based on p-AP to

evaluate our framework on THUMOS’14. First, we use

p-AP under different offset tolerances, varying from 1 to

10 seconds. Also, we adopt the metric AP depth at re-

call (Rec) X% which averages p-AP on the Precision-Recall

curve with the recall rate from 0% to X%. p-mAPs under

different offset thresholds are then averaged to obtain the fi-

nal average p-mAP at each depth. This metric is particularly

used to evaluate top ranked predictions and to measure what

precision a system can achieve if low recall is allowed. For

ActivityNet, we evaluate our methods using p-mAP under

offset thresholds of 1-10 seconds at depth Rec=1.0.

Baselines. We compare our framework with the state-of-

the-art method, i.e., Shou et al. [31] and two baselines that

were presented in [31], i.e., SceneDetect and ShotDetect.

The numbers were obtained from the authors [31]. Compar-

ison results with Shou et al. [31] demonstrate the superior

performance of StartNet. SceneDetect and ShotDetect are

also two-stage methods. Similar to two-stage frameworks

of object detection, they first conduct localization by getting

action start proposals, which are generated by soft bound-

ary detectors, and then classify them to different classes.

Comparison with SceneDetect and ShotDetect shows the ef-

fectiveness of our decomposition design. Our framework

trained by policy gradient is indicated by StartNet-PG.

Implementation details. Following [12, 31, 41], decisions

are made on short temporal chunks, Ct, where It is its cen-

tral frame. The appearance feature (RGB) of Ct is extracted

from It and the motion feature (optical flow) is computed

using the whole chunk as input. Following [12, 41], chunk

size is fixed to 6 and image frames are obtained at 24 FPS.

Two adjacent chunks are not overlapping, thus, there are ex-

actly 4 chunks per second. Following [41], for ClsNet, we

set the size of LSTM’s hidden state to 4096 and the length

of each training sequence to 64. When using CNN, we fine-

tune an FC layer with different CNN features as input (see

feature descriptions for each dataset). C3D is pretrained

on Sports-1M [23] and finetuned for the per-frame labeling

task on each dataset. Hidden state of LocNet is set to 128
and the length of each training sequence, Tloc, is fixed to 16.

Following [39], γ in Eq. 5 is fixed to 0.9. The length of the

historical decision vector, n, is set to 8. λ1 and λ2 in Eq. 7

are fixed to 1. We adopt an alternating strategy for classifi-

cation and localization training: ClsNet is first trained and

fixed afterwards, and then LocNet is trained upon the pre-

trained ClsNet. We implement the models in PyTorch [3],

and set batch size to 32 for THUMOS’14 and 64 for Activ-

ityNet. For parameter optimization, we used the Adam [24]

optimizer with learning rate 5e−4 and weight decay 5e−4.

4.1. Experiments on THUMOS’14

Dataset. THUMOS’14 [21] is a popular benchmark for

temporal action detection. It contains 20 action classes re-

lated to sports. There are only trimmed videos in the train-

ing set which makes it not appropriate for training ODAS

methods. Following [31], we use the validation set (includ-

ing 200 untrimmed videos, 3K action instances) for training

and the test set (including 213 untrimmed videos, 3.3K ac-

tion instances) for testing.

Feature description. Two types of features are adopted on

THUMOS’14 dataset, RGB and Two-Stream (TS) features.

Following [12, 41], we extract appearance (RGB) feature at

5546

Offsets (second) 1 2 3 4 5 6 7 8 9 10

Baselines

SceneDetect [1] 1.0 2.0 2.3 3.1 3.6 4.1 4.7 5.0 5.1 5.2

ShotDetect [2] 1.1 1.9 2.3 3.0 3.4 3.9 4.3 4.5 4.6 4.9

Shou et al. [31] 3.1 4.3 4.7 5.4 5.8 6.1 6.5 7.2 7.6 8.2

StartNet-PG

C3D [36] + LocNet 6.8 8.0 9.4 10.1 10.6 10.9 10.9 11.1 11.2 11.2

CNN [37] + LocNet 17.0 23.6 27.6 29.9 31.3 32.1 33.2 33.5 33.9 34.5

LSTM [19] + LocNet 19.5 27.2 30.8 33.9 36.5 37.5 38.3 38.8 39.5 39.8

Table 1. Comparisons using p-mAP at depth Rec=1.0 on THUMOS’14. Results are under different offset thresholds. ClsNet is imple-

mented with different structures, i.e., C3D, CNN and LSTM. CNN and LSTM are using TS features.

Depth Rec. @0.1 @0.2 @0.3 @0.4 @0.5 @0.6 @0.7 @0.8 @0.9 @1.0

Baselines

SceneDetect [1] 30.0 18.3 12.2 9.1 7.2 6.1 5.2 4.6 4.0 3.6

ShotDetect [2] 26.3 15.9 11.3 8.6 6.8 5.8 4.9 4.3 3.8 3.4

Shou et al. [31] 42.7 27.3 19.8 14.9 11.8 10.0 8.5 7.4 6.6 5.9

StartNet-PG

C3D [36] + LocNet 34.8 27.7 22.6 19.0 16.3 14.4 12.9 11.8 10.8 10.0

CNN [37] + LocNet 71.8 64.7 58.0 52.4 47.2 43.3 39.5 35.9 32.5 29.6

LSTM [19] + LocNet 77.4 70.2 64.5 59.1 54.2 49.3 45.1 41.2 37.6 34.2

Table 2. Comparisons using average p-mAP at different depths on THUMOS’14. Average p-mAP means averaging p-mAP over offsets

from 1 to 10 seconds. ClsNet is implemented with different structures, i.e., C3D, CNN and LSTM. CNN and LSTM are using TS features.

the Flatten 673 layer of ResNet-200 [17] and motion feature

at the global pool layer of BN-Inception [22] with optical

flows of 6 consecutive frames as inputs. The TS feature is

the concatenation of appearance and motion features, which

are extracted with models2 pre-trained on ActivityNet.

4.1.1 Evaluation Results

Comparisons with previous methods are shown in Table 1

and Table 2. Table 1 shows comparisons based on p-mAP at

depth Rec=1.0 under different offset thresholds. All previ-

ous methods are under 4% p-mAP at 1 second offset, while

StartNet with LSTM achieves 19.5% p-mAP, outperform-

ing the state-of-the-arts largely by over 15%. At 10 sec-

onds offset, previous methods obtain less than 9% p-mAP

and StartNet (LSTM) improves over Shou et al. [31] by

30% p-mAP. Table 2 shows comparisons based on aver-

age p-mAP (averaging over offsets from 1 to 10 seconds)

at different depths. The results demonstrate that StartNet

with LSTM outperforms previous methods significantly (by

around 30%-20% average p-mAP) at depth from Rec=0.1
to Rec=1.0. Obviously, under both metrics, StartNet out-

performs previous methods by a very large margin.

To measure the performance gap between online and of-

fline methods. We obtain scores of two recent offline meth-

ods [42] and [25] from the authors and evaluate start detec-

tion using p-mAP. The p-mAP are 32.7 and 35.7 (Rec=1.0,

offset is 1 second). As expected, they outperform StartNet,

since they observe the entire action before prediction.

4.1.2 Ablation Experiments

ClsNet implemented with different structures. Compar-

isons among StartNet with different ClsNet’s backbones are

shown in Table 1 and Table 2. LSTM+LocNet achieves the

best performance among the three structures and C3D per-

forms worse than CNN and LSTM. Shou et al. [31] chose

2https://github.com/yjxiong/anet2016-cuhk.

No No Yes

0.58 0.57

0.55

t
ActivityNet: RidingBumpercars

0.21

THUMOS’14: BasketballDunk

NoNo

Figure 3. Qualitative results on THUMOS’14 and ActivityNet

after action start generation in late fusion. × means no starts are

detected at those times. Numbers indicate the scores of detected

action starts. Results of ClsNet and StartNet are marked in blue

and red, respectively. Yes/No (ground-truth) indicates if an action

of the associated class starts at the time. Best viewed in color.

0 2 4 6 8 10 12

(a) Historical Vector Length

18

18.5

19

19.5

p
-m

A
P

 (
%

)

0 0.2 0.4 0.6 0.8 1

(b) Gamma

18

18.5

19

19.5

p
-m

A
P

 (
%

)

Figure 4. Ablation study of LocNet: (a) effect of length of his-

torical decision vector (b) effect of different gamma values in

Eq. 5. Generally, the model performs better with bigger gamma

and longer historical decision vector.

C3D as its backbone and proposed sophisticated train-

ing strategies for optimization. With C3D, StartNet still

significantly outperforms Shou et al., which demonstrates

the effectiveness of our framework. Since LSTM+LocNet

achieves the best performance, the following ablation stud-

ies are conducted using ClsNet implemented with LSTM.

5547

Features Offsets (second) 1 2 3 4 5 6 7 8 9 10

RGB

ClsNet-only 11.8 17.2 21.3 24.9 27.9 28.7 29.5 30.0 30.4 30.7

StartNet-CE 13.7 20.7 23.8 27.2 29.4 30.7 31.9 32.5 33.2 33.6

StartNet-PG 15.9 21.0 24.8 28.4 30.7 31.8 33.0 33.5 34.0 34.4

Two Stream

ClsNet-only 13.9 21.6 25.8 28.9 31.1 32.5 33.5 34.3 34.8 35.2

StartNet-CE 17.4 25.4 29.8 33.0 34.6 36.3 37.2 37.7 38.6 38.8

StartNet-PG 19.5 27.2 30.8 33.9 36.5 37.5 38.3 38.8 39.5 39.8

Table 3. Ablation study of our framework using p-mAP at depth Rec=1.0 on THUMOS’14. LSTM is used to implement ClsNet. Different

offset thresholds are used to evaluate our framework with different features. Best performance is marked in bold.

Features Depth Rec. @0.1 @0.2 @0.3 @0.4 @0.5 @0.6 @0.7 @0.8 @0.9 @1.0

RGB

ClsNet-only 71.2 61.1 52.8 47.0 42.0 37.7 34.0 30.6 27.5 25.3

StartNet-CE 73.2 64.5 56.8 50.2 45.1 40.5 36.6 33.5 30.5 27.7

StartNet-PG 73.6 65.0 58.0 51.2 45.9 41.5 37.8 34.3 31.5 28.8

Two Stream

ClsNet-only 71.3 63.0 56.9 52.0 46.9 42.3 38.7 35.0 31.8 29.2

StartNet-CE 72.7 65.6 60.2 55.3 51.0 46.8 43.0 39.2 36.0 32.9

StartNet-PG 77.4 70.2 64.5 59.1 54.2 49.3 45.1 41.2 37.6 34.2

Table 4. Ablation study of our framework using average p-mAP at different depths on THUMOS’14. At each depth, we average p-mAP

over offset thresholds from 1 to 10 seconds. LSTM is used to implement ClsNet. Best performance is marked in bold.

Effectiveness of LocNet. The results from ClsNet alone

can be used to generate action starts by following the ac-

tion start generation procedure in late fusion. To evaluate

the contribution of LocNet, we construct ClsNet-only by re-

moving LocNet from our framework. Results of ClsNet-

only can also demonstrate the performance of OAD meth-

ods if applied on the ODAS task directly. As shown in Ta-

ble 3, ClsNet-only has already achieved good results, out-

performing C3D based methods. When adding LocNet,

StartNet-PG improves ClsNet-only by 5%-6% p-mAP with

TS feature and by 4%-5% p-mAP with RGB features under

varying offsets. We can also observe a trend that the gaps

between StartNet-PG and ClsNet-only are larger when the

offset is smaller. As shown in Table 4, StartNet-PG outper-

forms ClsNet-only by 5%-6% p-mAP with TS features and

about 3%-5% p-mAP with RGB features at different depths.

The qualitative comparison in Fig. 3 shows an example that

ClsNet-only generates a false positive at the last frame. It

may be because that the frame contains a classic appear-

ance of the action, i.e., Basketball Dunk. With the help of

LocNet, the false positive is corrected by StartNet-PG.

Effectiveness of long-term planning. In order to investi-

gate the effect of long-term planning, we replace the policy

gradient training strategy with simple cross-entropy loss –

−βgtlog(st)− (1− gt)log(1− st) – such that every frame

is considered independently. This baseline is referred as

StartNet-CE. Similar to StartNet-PG, weight factor, β, is

used to handle sample imbalance. Same as α in Eq. 4, we

set β equal to the ratio between the number of negative sam-

ples and positive ones. As shown in Table 3 and 4, StartNet-

PG significantly outperforms StartNet-CE under each offset

threshold and at different depths, which proves the useful-

ness of the long-term planning.

In order to further investigate effects of parameter set-

tings for LocNet, we conduct an ablation study on differ-

ent values of the length of historical decision vector, n, and

gamma in Eq. 5 when offset threshold is set to 1 second

and depth Rec=1.0. Results are shown in Fig. 4. Increasing

the length of the historical decision vector means increas-

ing the dependency of later decisions on previous ones. As

is shown, the model performs much better when incorpo-

rating historical decisions and it reaches its highest perfor-

mance when 8 historical decisions are considered. Increas-

ing gamma indicates increasing the effect of future rewards

to the total long-term reward. It shows that when increasing

values of gamma, the model performs better.

Results with different features. To investigated the per-

formance of our framework when using different features,

we add experiments with ClsNet-only, StartNet-CE and

StartNet-PG using appearance features (RGB) only. Re-

sults are displayed in Table 3 and Table 4. We see that when

using only RGB features, performance of the three models

drops. However, even with RGB features, our method still

outperforms Shou et al. [31] largely.

Effectiveness of two-stage design. We validate our two-

stage design by comparing with one-stage network which

has similar structure as ClsNet (LSTM) except that we mod-

ify it to directly predict action starts for all classes and op-

timize it with cross-entropy loss. We get 6.5% and 10.2%
p-mAP at 1 second offset (depth Rec=1.0) using RGB and

TS features, respectively. The results are much worse than

StartNet-CE and StartNet-PG (drops about 7% and 9%),

demonstrating that simply learning classification and local-

ization of action starts jointly is not a good strategy.

Learning from low-level features. Our framework uses

action score distributions pretrained on an auxiliary task as

inputs of LocNet. We believe that learning from this high-

level representation is better than learning from low-level

noisy features for our task due to the lack of training data.

5548

Offsets (second) 1 2 3 4 5 6 7 8 9 10

Baselines

SceneDetect [1] – – – – – – – – – 4.7

ShotDetect [2] – – – – – – – – – 6.1

Shou et al. [31] – – – – – – – – – 8.3

StartNet

ClsNet-only-VGG 2.7 4.1 5.1 5.9 6.7 7.5 8.1 8.7 9.2 9.8

StartNet-CE-VGG 4.2 6.1 7.4 8.7 9.7 10.5 11.4 12.0 12.6 13.1

StartNet-PG-VGG 6.0 7.6 8.8 9.8 10.7 11.5 12.2 12.6 13.1 13.5

ClsNet-only-TS 4.2 6.1 7.7 8.8 9.8 10.7 11.3 12.2 13.0 13.6

StartNet-CE-TS 6.0 8.3 10.1 11.7 12.9 13.9 15.0 15.8 16.7 17.5

StartNet-PG-TS 8.1 10.2 11.8 13.3 14.4 15.3 16.1 16.7 17.4 18.0

Table 5. Comparisons using p-mAP under various offset thresholds at depth Rec=1.0 on ActivityNet. ClsNet is implemented with LSTM.

Numbers of baseline methods are cited from [31]. – indicates that numbers are not provided in [31].

To prove this point, we construct StartNet-img where Loc-

Net learns directly from the low-level image features. The

p-mAP using RGB and TS features under offsets of 1 sec-

ond (depth is 1.0) is 10.2% and 14.0%, respectively, which

much under perform our framework (drops about 5%).

Efficiency analysis. We test our method with a single

Quadro P6000 GPU. It takes 8ms and 0.3ms on average to

forward pass ClsNet(C3D) and LocNet. When using ClsNet

(LSTM-TS), LSTM takes 0.3ms. The bottleneck is RGB

and motion feature extraction including flow computation

with FlowNet-V2 (97ms). Even so, our method can process

each frame within 0.1s in total. One can reduce time largely

by using real-time flow extractors, e.g. PWC-Net [34].

4.2. Experiments on ActivityNet

Dataset. ActivityNet v1.3 [11] is one of the largest datasets

for action recognition. It contains annotations of 200 ac-

tion classes. There are around 10K untrimmed videos (15K

action instances) in the training set and 5K (7.6K action in-

stances) untrimmed videos in the validation set. Averagely,

there are around 1.6 action instances in each video. Follow-

ing [31], we train our models on the train set and test them

on the validation set.

Feature description. TS feature is constructed by concate-

nating appearance and motion features that are extracted

from TSN model (with BN-Inception) [37] pretrained on

Kinetics [6]. Besides, we validate our method using appear-

ance features extracted from fc6 layer of VGG-16 [33]. The

VGG-16 model is pretrained on ImageNet [10]. VGG-16

features are not as good as ResNet and InceptionNet fea-

tures for action recognition tasks. We use VGG-16 features

to show that our framework can produce reasonable results

even when using simple features pretrained only on images.

Training sample strategy of LocNet. Unlike THU-

MOS’14 which contains around 16 action instances per

video in average, ActivityNet has only one action instance

in most of the videos. Thus, ActivityNet has much sev-

erer imbalance problem between start and non-start classes.

To balance the samples, we randomly select equal numbers

of positive and negative sequences for each training batch.

Positive sequence is defined as containing at least one ac-

tion start and negative one contains no action start. Then, α

is set to the ratio between the number of negative samples

over the number of positive ones after the sample balance.

Evaluation results. Comparisons of StartNet with previ-

ous methods on ActivityNet are shown in Table 5. Start-

Net significantly outperforms previous methods. Specif-

ically, StartNet with TS feature achieves similar perfor-

mance under 1 second offset tolerance compared to Shou

et al. [31] under 10 seconds offset. At offset of 10 sec-

onds, our method improves Shou et al. [31] by around 10%.

It also outperforms SceneDetect and ShotDetect largely by

13.3% and 11.9%, respectively. Even with VGG features

pretrained on only images, our method significantly outper-

forms the state-of-the-arts. Besides, we demonstrate the

contribution of each module by comparing with ClsNet-

only and StartNet-CE. Results show that by adding Loc-

Net, StartNet-PG improves ClsNet-only by over 3% (using

VGG) and around 4% (using TS) p-mAP. With long-term

planning, StartNet-PG significantly outperforms StartNet-

CE under both features, especially when the offset toler-

ance is small. Qualitative results in Fig. 3 shows a hard case

where ClsNet-only misses an action start due to the subtle

appearance difference near the start point. With LocNet,

StartNet-PG successfully captures the start point although

the score is low.

5. Conclusion

We proposed StartNet to handle Online Detection of Ac-

tion Starts. StartNet consists of two networks, i.e., ClsNet

and LocNet. ClsNet processes the input streaming video

and generates action scores for each video frame. Loc-

Net localizes start points by optimizing long-term planning

rewards using policy gradient methods. At the end, re-

sults from the two sub-networks are fused to produce the

final action start predictions. Experimental results on THU-

MOS’14 and ActivityNet demonstrate that our framework

significantly outperforms the state-of-the-arts. Extensive

ablation studies were conducted to show the effectiveness

of each module of our method.

5549

References

[1] https://github.com/Breakthrough/

PySceneDetect. 6, 8

[2] https://github.com/johmathe/Shotdetect. 6,

8

[3] http://pytorch.org/. 5

[4] Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard

Ghanem, and Juan Carlos Niebles. SST: Single-stream tem-

poral action proposals. In CVPR, 2017. 1, 2

[5] Juan C Caicedo and Svetlana Lazebnik. Active object lo-

calization with deep reinforcement learning. In ICCV, 2015.

2

[6] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017. 8

[7] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-

bold, David A Ross, Jia Deng, and Rahul Sukthankar. Re-

thinking the faster r-cnn architecture for temporal action lo-

calization. In CVPR, 2018. 1, 2

[8] Xiyang Dai, Bharat Singh, Guyue Zhang, Larry S Davis, and

Yan Qiu Chen. Temporal context network for activity local-

ization in videos. In ICCV, 2017. 1, 2

[9] Roeland De Geest, Efstratios Gavves, Amir Ghodrati,

Zhenyang Li, Cees Snoek, and Tinne Tuytelaars. Online ac-

tion detection. In ECCV, 2016. 1, 2, 3

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009. 8

[11] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and

Juan Carlos Niebles. Activitynet: A large-scale video bench-

mark for human activity understanding. In CVPR, 2015. 2,

5, 8

[12] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. RED: Rein-

forced encoder-decoder networks for action anticipation. In

BMVC, 2017. 1, 2, 3, 5

[13] Jiyang Gao, Zhenheng Yang, Chen Sun, Kan Chen, and Ram

Nevatia. TURN TAP: Temporal unit regression network for

temporal action proposals. ICCV, 2017. 1, 2

[14] Mingfei Gao, Ruichi Yu, Ang Li, Vlad I Morariu, and

Larry S Davis. Dynamic zoom-in network for fast object

detection in large images. In CVPR, 2018. 2

[15] Ross Girshick. Fast R-CNN. In ICCV, 2015. 2

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014. 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2, 6

[18] Minh Hoai and Fernando De la Torre. Max-margin early

event detectors. In IJCV, 2014. 2

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Computation, 1997. 3, 6

[20] Jingjia Huang, Nannan Li, Tao Zhang, Ge Li, Tiejun Huang,

and Wen Gao. SAP: Self-adaptive proposal model for tem-

poral action detection based on reinforcement learning. In

Thirty-Second AAAI Conference on Artificial Intelligence,

2018. 2

[21] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gor-

ban, Ivan Laptev, Rahul Sukthankar, and Mubarak Shah. The

THUMOS challenge on action recognition for videos “in the

wild”. CVIU, 2017. 2, 5

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv:1502.03167, 2015. 6

[23] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In CVPR,

2014. 5

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv:1412.6980, 2014. 5

[25] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and

Ming Yang. BSN: Boundary sensitive network for temporal

action proposal generation. In ECCV, 2018. 6

[26] Shugao Ma, Leonid Sigal, and Stan Sclaroff. Learning activ-

ity progression in lstms for activity detection and early de-

tection. In CVPR, 2016. 2

[27] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recur-

rent models of visual attention. In NIPS, 2014. 4

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. Human-level control through deep reinforcement learn-

ing. 2015. 2

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NIPS, 2015. 2

[30] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki

Miyazawa, and Shih-Fu Chang. CDC: Convolutional-de-

convolutional networks for precise temporal action localiza-

tion in untrimmed videos. In CVPR, 2017. 2

[31] Zheng Shou, Junting Pan, Jonathan Chan, Kazuyuki

Miyazawa, Hassan Mansour, Anthony Vetro, Xavier Giro-

i Nieto, and Shih-Fu Chang. Online action detection in

untrimmed, streaming videos-modeling and evaluation. In

ECCV, 2018. 1, 2, 5, 6, 7, 8

[32] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal

action localization in untrimmed videos via multi-stage cnns.

In CVPR, 2016. 1, 2

[33] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recognition.

arXiv:1409.1556, 2014. 8

[34] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: Cnns for optical flow using pyramid, warping,

and cost volume. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8934–

8943, 2018. 8

[35] Richard S Sutton and Andrew G Barto. Reinforcement learn-

ing: An introduction. MIT press, 2018. 2, 4

[36] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, 2015. 3, 6

[37] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In ECCV, 2016. 6, 8

5550

[38] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven

Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.

Blockdrop: Dynamic inference paths in residual networks.

In CVPR, 2018. 2

[39] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,

and Larry S Davis. Adaframe: Adaptive frame selection for

fast video recognition. arXiv:1811.12432, 2018. 2, 4, 5

[40] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: Region

convolutional 3d network for temporal activity detection. In

ICCV, 2017. 2

[41] Mingze Xu, Mingfei Gao, Yi-Ting Chen, Larry S Davis, and

David J Crandall. Temporal recurrent networks for online

action detection. ICCV, 2019. 1, 2, 3, 5

[42] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xi-

aoou Tang, and Dahua Lin. Temporal action detection with

structured segment networks. In ICCV, 2017. 1, 2, 6

5551

