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Abstract

We present a method to estimate lighting from a sin-

gle image of an indoor scene. Previous work has used an

environment map representation that does not account for

the localized nature of indoor lighting. Instead, we repre-

sent lighting as a set of discrete 3D lights with geometric

and photometric parameters. We train a deep neural net-

work to regress these parameters from a single image, on

a dataset of environment maps annotated with depth. We

propose a differentiable layer to convert these parameters

to an environment map to compute our loss; this bypasses

the challenge of establishing correspondences between esti-

mated and ground truth lights. We demonstrate, via quanti-

tative and qualitative evaluations, that our representation

and training scheme lead to more accurate results com-

pared to previous work, while allowing for more realistic

3D object compositing with spatially-varying lighting.

1. Introduction

Recovering the lighting in a scene from a single image

is a highly ill-posed problem. Since images are formed by

conflating lighting with surface reflectance, scene geome-

try and the camera response function, inverting the image

formation process to recover any of these components is

severely under-constrained. This is especially true when the

image has low dynamic range (LDR) and limited field of

view, such as one captured by standard consumer cameras.

In his pioneering work in image-based lighting, De-

bevec [6] proposed to directly capture the lighting condi-

tions at a location in the image by inserting a light probe at

that location. The resulting HDR environment map repre-

sents the illumination incident from every direction at that

point in the scene, and can be used to realistically relight

virtual objects at that location. Recently, fully automatic

methods leveraging deep learning were proposed to esti-

(a) Gardner et al. [7] (b) Ours

Figure 1. Our method takes an indoor image as input and estimates

a parametric lighting representation, enabling tasks such as vir-

tual object insertion. Unlike previous methods that predict global

lighting [7] (a), our estimates vary based on spatial location (b),

generating different shadow directions (green, teal) and shading

(orange, blue) that realistically adapt to the location in the image.

mate an environment map from a single indoor image [7].

However, the environment map representation assumes that

lighting is distant — which is why it can be represented as a

function of the incident direction. This assumption is often

violated for indoor scenes that have localized light sources

leading to spatially-varying lighting in the scene. Conse-

quently, using a single environment map for the entire scene

leads to inconsistent results for applications such as 3D ob-

ject compositing (see Figure 1(a)).

Alternatively, parametric lighting models represent illu-

mination using a discrete set of light sources with various

geometric and photometric properties. This is a global rep-

resentation that can be used to reconstruct lighting at any

3D location in the scene (assuming known scene geometry).

Techniques for learning parametric lighting have been pro-

posed for the simpler case of outdoor illumination [13, 10].

Indoor lighting, on the other hand, is much more complex,

with a varying number of light sources, all with potentially

different properties, and located in close proximity to the

scene. As a result, techniques for recovering parametric

lighting in indoor scenes rely on extensive user input [11]
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or hand-crafted heuristics that can often fail [12, 3].

In this paper, we propose a learning-based method for

estimating parametric lighting from a single indoor image.

In particular, our method produces a set of lighting param-

eters describing area lights distributed in 3D, from a single

2D LDR image. Specifically, our method predicts the light

source positions (in 3D), areas, intensities and colors. These

parameters can be directly plugged into a rendering engine

to relight an object at any location in the scene, leading to

photorealistic results as in Figure 1(b). Moreover, because

these parameters are directly related to the physical proper-

ties of lighting, they provide an intutitive space for artists to

manipulate and design the lighting they want for the scene.

Our network is trained on a large dataset of indoor HDR

environment maps [7] that we have manually labelled with

pixel-wise depth information and annotated with our para-

metric lights. We encode an input RGB image into a la-

tent feature vector from which we decode the parameters

for a fixed number of light sources. Compared to Gard-

ner et al. [7] who regress a full environment map, this is

a significantly smaller set of parameters, leading to better

performance while training on a much smaller dataset.

One approach to train our network would be to penalize

the differences between the predicted lights and the anno-

tated lights. However, this requires establishing a corre-

spondence between these two sets of lights. This is frag-

ile, especially earlier in training when the estimated light

sources are arbitrary, and is unstable to train. Instead, we

utilize a differentiable (non-learnable) layer that converts

the predicted light parameters to an environment map. This

allows us to compute the loss directly with respect to the

environment maps without requiring any correspondences

between light sources. Once trained in this manner, the net-

work predicts good positional information, which we use to

establish correspondences and further fine-tune the parame-

ters. We demonstrate that this yields illumination estimates

that are superior to previous lighting estimation methods.

Contributions. In summary, our main contributions are:

1. A deep neural network to estimate parametric 3D light-

ing from a single indoor image;

2. A dataset of depth annotations over panoramas that can

be used to learn 3D scene lighting;

3. A robust training procedure based on a differentiable

parametric loss with respect to environment maps.

2. Related Work

Illumination estimation is a classic vision/graphics prob-

lem and is a critical component of work on scene recon-

struction and rendering. A large body of work on illumina-

tion estimation focuses on reconstructing lighting from im-

ages of individual objects. Some of these methods assume

that the shape of the object is either known [20, 17] or can

be reconstructed using shape priors [4] or heuristics [18].

Barron and Malik [2] recover geometry, reflectance and il-

lumination from a single image of an arbitrary object by en-

forcing hand-crafted priors on each component. Recently,

deep learning-based methods have been proposed to re-

cover illumination and material properties (along with, in

some cases, geometry) from a single RGB image of an ob-

ject [8, 16, 21, 15]. These methods do not easily scale to

large-scale indoor scenes where the illumination, geometry,

and reflectance properties are significantly more complex.

Methods for estimating lighting in large-scale indoor

scenes often assume known geometry. Barron and Ma-

lik [3] and Maier et al. [19] assume an RGBD input image

and recover spatially-varying Spherical Harmonics illumi-

nation. Zhang et al. [24] reconstruct parametric 3D lighting

but require a full multi-view 3D reconstruction of the scene.

Karsch et al. [11] recover parametric 3D lighting from a sin-

gle image, but do so by requiring substantial user input to

reconstruct coarse geometry and initialize the lighting.

Lalonde et al. [13] uses hand-crafted priors based on

scene cues such as shadows to recover lighting from a single

outdoor image. Hold-Geoffroy et al. [10] propose a deep

neural network that does the same. Both of these meth-

ods utilize low-dimensional analytical outdoor illumination

models; indoor illumination is significantly more complex.

Similar to us, Karsch et al. [12] estimate parametric 3D

lighting from a single indoor image. They estimate scene

geometry and reflectance, detect light source positions, and

then estimate light source intensities using a rendering-

based optimization. Each subtask in their pipeline is a chal-

lenging inverse problem that is solved using heuristics; er-

rors in each component can propagate forward leading to

inaccurate lighting estimates. In contrast, Gardner et al. [7]

propose an end-to-end deep network to regress lighting, rep-

resented as an environment map, from a single image. They

train this network on a large-scale dataset of LDR envi-

ronment maps [23] and fine-tune it on an HDR environ-

ment map dataset. We improve on their work by training

an end-to-end neural network to predict discrete paramet-

ric 3D lights with 3D position, area, color and intensity.

We show that this lighting model comes with many advan-

tages. First, it is a compact representation that is easier to

learn; we show that training only on the HDR environment

map dataset leads to more accurate lighting predictions than

their work. Second, a 3D representation naturally handles

spatially-varying lighting at different scene points. Finally,

we can give artists access to individual light source param-

eters, allowing them to intuitively edit scene lighting.

3. Method

We aim to predict lighting conditions from a single, low

dynamic range image. We frame this as the following learn-

ing problem: given input image I, predict a set of param-
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Figure 2. Comparison between an environment map and our light-

ing representation for relighting. Top row: source HDR panorama,

and spherical gaussian representation of the parameters. Second

row: renders generated by both representations. Third and fourth

row: lighting and renders when moving in the scene, using En-

vyDepth [1] as ground truth. Note how our parametric lights stay

true to the ground truth for a different location in the scene.

eters P which accurately represents the illumination condi-

tions in I. Let P be a set of N lights and an ambient term:

P = {p1,p2, . . . ,pN ,a}, (1)

where a ∈ R
3 is the ambient term in RGB. Each light pi is

represented by four parameters:

pi = {li, di, si, ci}, (2)

where li ∈ R
3 is a unit vector specifying the direction of the

light in XYZ coordinates (we found that encoding direction

as a 3-vector was more stable to train compared to spherical

coordinates that have problems with wrap-around), di is a

scalar encoding the distance in meters, si the angular size

of the light in steradians, and ci ∈ R
3 the light source color

in RGB. Here, li, di and si are defined with respect to the

camera. While N may vary from one image to another, in

practice we set N to a fixed value (e.g. N = 3) since it

is always possible to effectively “remove” a light by setting

‖ci‖ = 0. We demonstrate this in our results in fig. 6.

3.1. A Parametric Indoor Lighting Dataset

To train a deep lighting estimation network, we would

ideally need a large dataset of images with labelled ground

truth 3D light sources. Unfortunately, no such dataset ex-

ists. While the Matterport 3D dataset [5] has a diverse set

of indoor scenes with HDR panoramas, the tops of these

panoramas (up to 30◦ from the zenith) are missing; given

that a significant portion of indoor illumination comes from

the ceilings, this is an issue for lighting estimation meth-

ods. Another option would be to use synthetic indoor scene

datasets such as SUNCG [22]; however, SUNCG has unre-

alistic material maps that do not match real world appear-

ance. Instead, we rely entirely on real data for training. For

this, we use the Laval Indoor HDR Dataset [7]1, which con-

tains 2,100 HDR panoramas taken in a variety of indoor en-

vironments. We manually annotated each panorama in this

dataset using EnvyDepth [1] to obtain per-pixel depth esti-

mates. As with [7], we extract eight limited field-of-view

crops for each panorama to form our dataset.

We retrieve the ground truth light sources P in these

panoramas with a simple algorithm. Here, there is no need

to train light source detectors as in [7, 12] since the dataset

is HDR. We first extract the peak value of the panorama.

Then, simple region detection is employed to initialize

seeds, which are then grown until the intensity goes under

a third of the peak. Other lights are detected by repeat-

ing the process after masking the detected sources, until an

energy threshold is met. The set of light parameters P is

obtained by computing the corresponding pi on each light

source independently: li is the vector from the camera posi-

tion pointing towards the center of mass of the light pixels,

di is the mean depth obtained from EnvyDepth, si is the av-

erage angular size of the major and minor axes of an ellipse

fitted on the light and ci is the mean RGB color of the light

pixels. Fig. 2 shows the result of applying this algorithm on

real HDR panoramas from the Laval Indoor HDR Dataset,

and illustrates that doing so results in relighting results that

are close to those obtained with the input environment map.

We then process the dataset to retrieve P for all images.

At this step, N varies depending on the content of each en-

vironment map, ensuring that P models every significant

light source (a light is deemed as significant if it is provid-

ing at least 10% of the energy provided by the strongest

source). Once extracted, light intensities are fine-tuned us-

ing a rendering-based optimization process. We render a

simple object using the environment map, masked every-

where except for the detected lights. We then render the

same object using each of our extracted parametric lights.

We optimize for the linear combination weights for these

parametric light renders that minimize the error with respect

to the ground truth environment map. These weights are

then used to adjust the parametric light colors and intensi-

ties accordingly.

3.2. Network architecture

We learn the mapping from input image I to a set of es-

timated lighting parameters P̂ using a deep neural network,

1Available at http://indoor.hdrdb.com.
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Figure 3. Proposed network architecture. A blue box indicates an

output layer. Output sizes vary depending on N , except for a.

whose architecture is shown in fig. 3. Specifically, the in-

put image goes through a headless DenseNet-121 network

to produce a 3072-dimensional latent vector z. The vector

z is then forwarded to another fully-connected layer (512

units), common to all parameter decoders. From this layer,

5 output layers are defined: four outputting the 4N light

source parameters, and one for the ambient term a. Since

they are trained separately (sec. 3.3), the di layers also take

in the position predictions as input.

This network architecture has two key differences com-

pared to the state-of-the-art, non-parametric lighting esti-

mation method of Gardner et al. [7]. First, while [7] re-

quired decoders to produce HDR intensity and RGB from

the latent vector z, we instead use simple parametric de-

coders to directly infer P from z. Doing so offers the ad-

vantage of reducing the number of parameters needed in the

decoder, and results in a much faster network. The second

key difference is that we leverage a standard feature extrac-

tor, DenseNet121 pre-trained on ImageNet, as the encoder.

We found this made for more stable learning, avoids a com-

putationally costly pretraining step, and enables us to train

solely on the Laval Indoor HDR Dataset (as opposed to [7]

which also had to train on SUN360 LDR panoramas [23]).

3.3. Training procedure

While using a parametric modeling of lighting had the

advantage of simplifying the neural network architecture, it

imposes significant complications on the training process.

Indeed, how can we compute a loss on a discrete set of light

sources when many of these light sources are not even visi-

ble in the image?

For this, one could dynamically assign each predicted

light to the closest ground truth light source according, for

example, to their angular distance. However, this creates a

dependency between the estimated light position l̂ and all

the other parameters since the assignment is made based on

l̂. This causes problems earlier in the training process, when

predicted light directions could change arbitrarily. This cre-

ates “poor” light assignments that, in turn, lead to unsta-

ble gradient flow and network convergence. It also creates

ambiguities, such as when two estimated light sources are

close to a single ground truth light, etc. We find that training

in such a way results in RMSE and si-RMSE several times

over the results reported in sec. 4, that use the following

two-step training procedure.

3.3.1 Training step 1: radius, color and position

In the first training step, we bypass the need for assigning

predicted lights to ground truth light sources by rendering

an environment map from the parameters and comparing it

to a ground truth environment map:

L1(P, P̂) = wrℓ2(f(P̂),R) + waℓ2(â,a) , (3)

where R is the ground truth environment map associated

with P , f(·) is a function mapping P̂ to a environment

map, and ℓ2 is the L2 loss. To obtain the ground truth en-

vironment map R, we use the same warping operator as in

[7], and threshold the warped environment map to 5% of its

peak intensity value, in order to keep only the brightest light

sources. The remaining energy is averaged and assigned to

the ground truth “ambient term”, a. Since we care more

about detecting the important light sources in the scene, we

scale the losses for the light sources and the ambient term

differently; we set wr = 20 and wa = 1.

The differentiable projection function f(·) could be im-

plemented via existing differentiable renderers [14], how-

ever we experimentally found them to be unstable when the

parameters are far from their target, in addition to requiring

significant computations for each scene. Instead, we imple-

ment f(·) by projecting each light source on the sphere onto

a spherical gaussian using the mapping

f(P̂,u) =

N∑

i=1

ĉi exp
l̂i · u− 1

1

4π
ŝi

, (4)

where u is a unit vector giving the direction on the sphere.

The angular size si is scaled such that the light intensity

falls under 10% of its peak after this distance. f(·) can be

computed efficiently since l̂i · u can be precomputed for

all possible values of l̂i. Moreover, f(·) is differentiable

everywhere on the sphere, allowing us to backpropagate the

error in the environment reconstruction to the predicted 3D

light parameters and to the rest of the network.

Our parametric lighting-to-environment map projection

function plays an important role in our method. As

noted above, parametric lights give us a compact, low-

dimensional representation of scene illumination as well

as access to individual lights in the scene. However,

an assignment-based optimization approach that relies on

correspondences between predicted and ground truth light
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sources is akin to a greedy, “local” optimization scheme

which might have bad convergence behaviour. Converting

our parametric lights to a environment map allows us to

minimize error “globally” and leads to significantly better

convergence. It also implicitly handles issues such as a mis-

match between the number of predicted lights and ground

truth lights, thereby making it possible for us to train our

network with any number of preset light sources.

Fig. 2 shows an example of an environment map and

its equivalent parametric representation using our projec-

tion function. The figure also shows how this parametric

representation can be projected at different locations in the

scene and account for the variations in lighting.

3.3.2 Training step 2: depth and refinement

Once the network has converged using the first training step,

we find that the network predicts good light source posi-

tions, li, and we switch to independent parametric losses

since the assignment problem raised above no longer ap-

plies. In this stage we only fine-tune the individual para-

metric heads and keep the network frozen up to the 512-d

feature vector. The position head l is also frozen to avoid

any unwanted feedback. We add a depth estimation head

and condition it on both the DenseNet features, z, and the

light source position. We use the following loss function:

L2(P, P̂) = ℓ2(a, â)+
N∑

i=1

ℓ2(di, d̂i)+ℓ2(si, ŝi)+ℓ2(ci, ĉi)

(5)

where the L2 losses ℓ2 above are computed with respect

to the closest light source (angular distance) in the ground

truth set P . If a light source has an angular distance greater

than 45◦, then no loss is computed as it is deemed too far

away from any ground truth light source to be reliable.

3.4. Implementation details

As mentioned, we use a pretrained DenseNet-121 as en-

coder for our network. Our entire network contains 8.5M

parameters, or about 4× fewer than [7]. During the first

training step (sec. 3.3.1), the network is trained for 150

epochs, with an early stopping mechanism based on a small

validation set. In the second step (sec. 3.3.2), the network is

trained for an additional 50 epochs. In both cases, the Adam

optimizer is used with a learning rate of 0.001 (halved each

25 epochs) and β1 = 0.9. The first training pass typically

takes 12 hours before convergence on a Titan V GPU, while

the second finetuning pass completes in a few hours. A

batch size of 48 samples was used.

One advantage of our proposed method over previous

work is its efficiency in terms of compute requirements. Our

parametric representation requires simpler decoders than

the ones required to generate a full environment map as

in [7]. As such, our method is much faster than previous

work at test time, executing in roughly 51ms per image on

a CPU, compared to 127ms for [7] or 5 minutes for [12].

Our method can also be parallelized on GPU, processing 48

images in around 16ms on an nVidia Titan V.

4. Evaluation

Light estimation methods can be tricky to evaluate. In

particular, quantitative evaluation of realism is not straight-

forward to define, since realism is in itself ambiguous and

mainly relies on human perception. In this section, we

present an extensive evaluation protocol which includes

both quantitative and qualitative comparisons to the state-

of-the-art indoor lighting estimation methods of Gardner et

al. [7] and Karsch et al. [12]. We first compute the RMSE

between renders made with lighting predictions against a

ground truth surrogate (using Envydepth [1]). We then

present the results of a user study to quantitatively compare

the realism of our results against previous state-of-the-art.

On the qualitative side, we provide many examples of

object insertion (including all 19 user study scenes) on a test

set of 252 panoramas from the Laval Indoor HDR Dataset

(selected so as to not overlap the training set). We also show

virtual object insertion results on stock images (not from

our dataset), to demonstrate our approach robustness. Fi-

nally, we provide 50 images containing two bunnies, one

real and one relit using our prediction. This allows for a

direct comparison with an object with a known appearance.

Additionally, our parametric output allows for intuitive

user editing, as we demonstrate in supplementary material.

4.1. Quantitative evaluation

We quantitatively compare three different configurations

of our method to Gardner et al. [7] on our test set. To

do so, we render a diffuse virtual object—the spiky sphere

shown on the right of fig. 4 that captures both shading and

shadowing—at three different locations in the scene: in the

center, 1 meter to the left, and 1 meter to the right. We do

this for each method and the ground truth environment map,

warped using the EnvyDepth geometry.

We evaluate the accuracy of each method by computing

the RMSE and scale-invariant (si-RMSE) [9] metrics on the

corresponding renderings; these are shown in fig. 5. RMSE

is most sensitive to errors in overall light intensity. We ob-

serve that our technique significantly outperforms [7] in this

regard. Furthermore, we see a large improvement in perfor-

mance as we increase the amount of lights estimated from

2 to 3, and finally 5. This result suggests that adding more

lights gives more degrees of freedom to the network to bet-

ter fit the overall energy distribution. Another improvement

of our approach is that our parametrization allows for each

light source to have a different color, while [7] only predicts
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Figure 4. Examples of errors made by our network, at different RMSE percentiles. The spiky spheres shown on the right are lit by the

lighting corresponding to the input image center. Note that even at large error percentiles (bottom), the corresponding renders are plausible.
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Figure 5. Quantitative comparison between our method configured

with 2, 3 and 5 lights and the Gardner et al. method [7] against

the ground truth, as provided by EnvyDepth [1] for (left) RMSE

and (right) scale-invariant (si-)RMSE. Results are shown for three

insertion position: center and 1m to the left and right. Our method

with N = 3 lights is significantly better in both RMSE and SI-

RMSE metrics, compared to [7], as asserted by Kruskal-Wallis,

Mann-Whitney and Wilcoxon tests with p < 10
−4.

the intensity. Finally, our errors are consistent across differ-

ent insertion points indicating our ability to adapt to scene

location, unlike [7] which exhibits higher variance.

The si-RMSE measure factors out scale differences be-

tween the different methods and ground truth, and focuses

on cues such as shading and shadows, mainly due to light

position. Our results show that performance increases from

a 2 lights to a 3 lights configuration. However, performance

slightly decreases from 3 to 5 lights, suggesting that opti-

mizing the positions of 5 lights is harder than 3 lights. Our

method with the 3-lights configuration obtains a 40% in-

crease in median estimation performance on si-RMSE over

[7]. Finally, we note that a network trained using a direct

loss from the start (e.g. skipping the first training step,

sec. 3.3.1) obtains si-RMSE errors an order of magnitude

higher than with our two steps approach, effectively validat-

ing the light assignation issues reported in sec. 3.3. Fig. 6

shows a qualitative visualization of the environment maps

recovered with a varying number of lights.

We also compare the methods’ realism using a user

study. Users were shown pairs of images with compos-

ited objects—rendered either with ground truth lighting or a

randomly selected method’s prediction—and asked to pick

the more realistic image. We used 19 scenes with multiple

virtual objects scattered in them. Results (49 participants)

are shown in fig. 8 and confirm the improvement over [7]

and [12]. Examples of these scenes are shown in fig. 7.

4.2. Qualitative evaluation

Fig. 9 shows two representative qualitative comparisons

to the non-parametric approach of Gardner et al. [7]. For

each example, the estimated environment map and a render

of diffuse and glossy objects are shown. To highlight the

difference between parametric (ours) and non-parametric
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(a) Input (b) GT Environment map (c) 2 lights (d) 3 lights (e) 5 lights

Figure 6. Lighting predictions for networks trained with different numbers of lights N . From left to right: input image, ground truth

lighting, and predictions for networks trained with N = {2, 3, 5} respectively. When trained to output more lights, the network is able to

effectively turn off some lights by decreasing their intensity in order to fit a scene requiring a lesser number of light sources.

Ground truth Ours Karsch et al. [12] Gardner et al. [7]

Figure 7. Three examples taken from the user study (fig. 8). From left to right: the ground truth illumination (using ground truth HDR

panorama and Envydepth [1]), our proposed method, Karsch et al. [12] and Gardner et al. [7]. Note how our method captures the light

color and overall exposure well compared to other methods. All images used in the user study are provided in supplementary material.

Karsch. et al. Gardner et al. Ours
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21.9%
29.5%

35.0%

Figure 8. User study results (49 participants, 19 scenes). The per-

centages denote the fraction of time each method was preferred to

the ground truth illumination (perfect confusion = 50%).

([7]) lighting representations, the objects are lit by the light-

ing estimated at the center of the scene. Even though our

representation is much more compact than that of [7], the

rendering results are either qualitatively similar (first col-

umn) or better match ground truth (last column) than [7].

We also compare rendered and real versions of the same

object in fig. 10. For each image, a real bunny model was

placed in the scene. The images were acquired using a reg-

ular smartphone camera in order to further validate the ro-

bustness of the network with out-of-dataset samples. From

the network estimation, we relight a virtual model of the

same bunny and insert it close to the real one. Although the

real and rendered bunnies slightly differ in appearance, the

overall comparison demonstrates our method’s ability to re-

cover correct light positions and intensity (more results on

similar scenes in supplementary material).

Finally, in fig. 11, we demonstrate our method’s ability to

generalize to stock photos, including some that have under-

gone artistic processing, and still produce realistic results.
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Env. map Render Env. map Render

(a)

(b)

(c)
Figure 9. Single image lighting estimation results comparing be-

tween parametric and non-parametric lighting. We compare en-

vironment maps and renders between a) the ground truth illumi-

nation, b) the non-parametric approach of Gardner et al. [7], and

c) our parametric lighting representation. More results in supple-

mentary material.

Figure 10. Relighting results comparing virtual and real bunnies.

Images were captured using a smartphone (Pixel 2, HDR off)

in various environments, including outdoors. Our approach can

closely match the true lighting, even in situations it was not trained

for like outdoor daylight, and reliably produces realistic results.

5. Conclusion

We have presented a method to estimate parametric 3D

lighting—comprised of discrete light sources with posi-

tions, area, color and intensity—from a single indoor im-

age. Our lighting model allows us to render incident illu-

mination at any location in a scene; this is critical for in-

door scenes which often have localized lighting that can-

not be accurately modeled by global lighting estimates. We

Figure 11. Object relighting on a variety of generic stock photos

downloaded from the Internet. More results on such out-of-dataset

images are provided in supplementary material.

train this method end-to-end using a differentiable paramet-

ric loss based on an environment map representation. We

have demonstrated that our method is robust and signifi-

cantly outperforms previous work in terms of lighting accu-

racy and allows for realistic virtual object insertion where

objects are lit differently based on their insertion point.

Our work offers a number of directions for future ex-

ploration. First, while our lighting representation is 3D,

using it requires a 3D scene reconstruction to specify loca-

tions where to estimate lighting and to compute light visibil-

ity. Second, our lighting model assumes diffuse area light-

like sources and cannot model directional lights or focused

light beams. Extending this model to handle more general

sources would generalize it to more indoor scenes. Finally,

our method focuses solely on estimating scene illumination.

However, lighting is only one of many scene properties that

affect its appearance. We hypothesize that jointly reason-

ing about scene appearance—including geometry, materi-

als, and illumination—could improve overall accuracy.
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