
Interactive Sketch & Fill: Multiclass Sketch-to-Image Translation

Arnab Ghosh1 Richard Zhang2 Puneet K. Dokania1

Oliver Wang2 Alexei A. Efros2,3 Philip H. S. Torr1 Eli Shechtman2

1University of Oxford 2Adobe Research 3UC Berkeley

Fried chickenCupcakePineappleStrawberryMoonCookieOrangeWatermelonSoccerBasketball

Class-conditioned Outline-to-Image Translation

Interactive Sketch & Fill

Figure 1: (Top) Given sparse user input (first row), our model estimates the complete shape and provides this as a recommen-

dation to the user (shown in gray), along with the final synthesized object (second row). These estimates are updated as the

user adds (green) or removes strokes (red) over time – previous edits are shown in black. (Bottom) This generation is class-

conditioned, and our method is able to generate distinct multiple objects for the same outline (e.g. ‘circle’) by conditioning

the generator on the object category.

Abstract

We propose an interactive GAN-based sketch-to-image

translation method that helps novice users easily create im-

ages of simple objects. The user starts with a sparse sketch

and a desired object category, and the network then recom-

mends its plausible completion(s) and shows a correspond-

ing synthesized image. This enables a feedback loop, where

the user can edit the sketch based on the network’s recom-

mendations, while the network is able to better synthesize

the image that the user might have in mind. In order to

use a single model for a wide array of object classes, we

introduce a gating-based approach for class conditioning,

which allows us to generate distinct classes without feature

mixing, from a single generator network.

1. Introduction

Conditional GAN-based image translation [25, 43, 61]

models have shown remarkable success at taking an abstract

user input, such as an edge map or a semantic segmenta-

tion map, and translating it to a real image. These methods

run at interactive rates, and combining them with a user in-

terface allows the user to quickly create fun (but usually,

unrealistic) images. A few limitations prevent them from

being used as a true interactive tool that assists the user in

generating an image of an object they have in mind. First,

the user is required to provide an entire abstract map as in-

put (full edge or label map). This may prove difficult for

many, as untrained practitioners generally struggle at free-

hand drawing of accurate proportions of objects and their

parts [6], 3D shapes and perspective [45]. It is much eas-

ier with current image translation methods to obtain realis-

tic looking images by editing existing images [8, 40] than

creating images from scratch. Second, current GAN-based

image translation methods are limited to a single class of

images. For example, switching from a cat to a dog requires

loading (or storing in memory) a new model per class.

We propose a new GAN-based interactive image gen-

eration system for drawing objects that: 1) generates full

images given only sparse and partial user strokes (or

11171



sketches); 2) serves as a recommender system that sug-

gests or helps the user during their creative process, in or-

der to generate a desired image; and 3) uses a single con-

ditional GAN for multiple image classes with an effective

gating mechanism. Such a system allows for creative input

to come from the user, while the challenging task of get-

ting exact object proportions correct is left to the model,

which constantly predicts a plausible completion of the

user’s sketch (Fig. 1).

We use sparse object outlines/sketches/simplified-edges

instead of dense edge maps as the user input, as these are

closer to the lines that novice users tend to draw [7]. Our

model first completes the input, which could be partial out-

lines or edges, and then generates the image conditioned

on the completed shape. There are several advantages to

this two-stage approach. For one, we are able to give the

artist feedback on the general object shape in our interac-

tive interface (similar to ShadowDraw [31]), allowing them

to quickly refine the completed shape until it is satisfactory.

Second, we found this to work better than going directly

from partial outlines to images, as the additional intermedi-

ate supervision on full outlines/sketches breaks the problem

into two easier sub-problems – first recover the geometric

properties of the object (shape, proportions) and then fill in

the appearance (colors, textures).

For the second stage, multi-class conditional generation,

we use a gating mechanism conditioned on the input class

label. Briefly, gating allows the network to focus on the

important parts (activations) of the network specific to the

conditioning class. Such an approach allows for a clean

separation of classes, enabling us to train a single generator

and discriminator across multiple object classes.

To demonstrate the potential of our method as an inter-

active tool for stroke-based image generation, we collect a

new image dataset of ten simple object classes (pineapple,

soccer, basketball, etc.) with white background. In order to

stress test our gating mechanism, six of the object classes

have similar round outlines, so the model is truly condi-

tioned on the class label and cannot figure out the class only

from the stroke. Fig. 2 shows a short video of an interactive

editing session using our system. Along with these simple

objects, we also demonstrate the potential of our method on

complicated ones such as faces and shoes.

2. Related Work

Interactive Generation Interactive interfaces for free-

hand drawing go all the way back to Ivan Sutherland’s

Sketchpad [48]. The pre-deep work most related to us,

ShadowDraw [31], introduced the concept of generating

multiple shadows for novice users to be able to draw

sketches. PhotoSketcher [13] introduces a retrieval based

method for obtaining real images from sketches. More re-

cently, deep recurrent networks have been used to generate

sketches [18, 14]. Sketch-RNN [18] provides a completion

of partial strokes, with the advantage of intermediate stroke

information via the Quickdraw dataset at training time. SPI-

RAL [14] learns to generate digits and faces using a rein-

forcement learning approach. Zhu et al. [60] train a genera-

tive model, and an optimization-based interface to generate

possible images, given color or edge constraints. The tech-

nique is limited to a single class and does not propose a

recommendation for the completion of the shape. Sketchy-

GAN [3] also aimed at generating multi-class images but

lacks interactive capability. In contrast to the above, our

method provides interactive prediction of the shape and ap-

pearance to the user and supports multiple object classes.

Generative Modeling Parametric modeling of an im-

age distribution is a challenging problem. Classic ap-

proaches include autoencoders [21, 54] and Boltzmann ma-

chines [47]. More modern approaches include autoregres-

sive models [12, 51], variational autoencoders (VAEs) [28],

and generative adversarial networks (GANs). GANs and

VAEs both learn mappings from a low-dimensional “latent”

code, sampled stochastically, to a high-dimensional image

through a feedforward pass of a network. GANs have been

successful recently [9, 41, 1], and hybrid models feature

both a learned mapping from image to latent space as well

as adversarial training [10, 11, 30, 4].

Conditioned Image Generation The methods described

above can be conditioned, either by a low-dimensional

vector (such as an object class, or noise vector), a high-

dimensional image, or both. Isola et al. [25] propose

“pix2pix”, establishing the general usefulness of condi-

tional GANs for image-to-image translation tasks. How-

ever, they discover that obtaining multimodality by inject-

ing a random noise vector is difficult, a result corroborated

in [33, 38, 62]. This is an example of mode collapse [16], a

phenomenon especially prevalent in image-to-image GANs,

as the generator tends or ignore the low-dimensional la-

tent code in favor of the high-dimensional image. Pro-

posed solutions include layers which better condition the

optimization, such as Spectral Normalization [58, 35], mod-

ifications to the loss function, such as WGAN [2, 17] or

optimization procedure [20], or modeling proposals, such

as MAD-GAN [15] and MUNIT [24]. One modeling ap-

proach is to add a predictor from the output to the con-

ditioner, to discourage the model from ignoring the con-

ditioner. This has been explored in the classification set-

ting in Auxiliary-Classifier GAN (ACGAN) [36] and re-

gression setting with InfoGAN [4] and ALI/BiGAN (“latent

regressor” model) [11, 10], and is one half of BicycleGAN

model [62]. We explore a complementary approach of ar-

chitectural modification via gating.

Gating Mechanisms Residual networks [19], first intro-

1172



Figure 2: Video of our interface We can see two versions of our interface. The left side shows how a user can quickly

generate multiple objects using a few strokes, while the right side shows the utility of multimodal completions where the user

can quickly explore different possible shape generations while drawing. Please view with Acrobat Reader.

Real or

Fake?

!" !#

Real or

Fake?
$#$"

Input Strokes Generated Outline Generated Image

Example Real Outline Example Real Image

Figure 3: Our two-stage approach First, we complete a

partial sketch using the shape generator GS . Then we trans-

late the completed sketch into an image using the appear-

ance generator GA. Both generators are trained with their

respective discriminators DS , and DA.

duced for image classification [29], have made extremely

deep networks viable to train. Veit et al. [53] find that

the skip connection in the architecture enables test-time

removal of blocks. Follow-up work [52] builds in block

removal during training time, with the goal of subsets of

blocks specializing to different categories. Inspired by these

results, we propose the use of gating for image generation

and provide a systematic analysis of gating mechanisms.

The adaptive instance normalization (AdaIn) layer has

similarly been used in arbitrary style transfer [23] and

image-to-image translation [24], and Feature-wise Linear

Modulation (FiLM) [39]. Both methods scale and shift fea-

ture distributions, based on a high-dimensional conditioner,

such as an image or natural language question. Gating also

plays an important role in sequential models for natural lan-

guage processing: LSTMs [22] and GRU [5]. Similarly,

concurrent work [27], [37] use a AdaIN-style network to

modulate the generator parameters.

3. Method

We decouple the problem of interactive image genera-

tion into two stages: object shape completion from sparse

user sketches, and appearance synthesis from the com-

pleted shape. More specifically, as illustrated in Fig. 3

we use the Shape Generator GS for the automatic shape

(outline/sparse-sketch/simplified-edge) generation and the

Appearance Generator GA for generating the final image as

well as the adversary discriminators DS and DA. Example

usage is shown in our user interface in Fig. 2.

3.1. Shape completion

The shape completion network GS should provide the

user with a visualization of its completed shape(s), based on

the user input, and should keep on updating the suggested

shape(s) interactively. We take a data-driven approach for

this whereby, to train the network, we simulate partial

strokes (or inputs) by removing random square patches from

the full outline/ full sparse sketch/ full simplified edges. The

patches are of three sizes (64×64, 128×128, 192×192) and

placed at a random location in the image of size 256×256

(see Fig. 5 for an example). To extend the technique be-

yond outlines and generate more human-like sketches, we

adopt the multistage procedure depicted in Fig. 6. We refer

to these generated sketches as “simplified edges”. We au-

tomatically generate data in this manner, creating a dataset

where for a given full outline/sketch or a simplified edge-

map, 75 different inputs are created. The model, shown

in Fig. 3, is based on the architecture used for non-image

conditional generations in [34]. We modify the architecture

such that the conditioning input is provided to the generator

and discriminator at multiple scales as shown in Fig. 4. This

makes the conditioning input an active part of the generation

process and helps in producing multimodal completions.

3.2. Appearance synthesis

An ideal interactive sketch-to-image system should be

able to generate multiple different image classes with a

single generator. Beside memory and time considerations

(avoiding loading/using a separate model per class, reduc-

ing overall memory), a single network can share features re-

lated to outline recognition and texture generation that are

common across classes, which helps training with limited

examples per class.

As we later show, class-conditioning by concatenation

can fail to properly condition the network about the class

information in current image translation networks [25, 62].

1173



Input partial

outline

Output completed

outlines

Downsampled inputs

Shadows

(Averaged Outlines)

Latent z

Figure 4: First stage (Shape Generator) To achieve multi-modal completions, the shape generator is designed using inspi-

ration from non-image conditional model [34] with the conditioning input provided at multiple scales, so that the generator

network doesn’t ignore the partial stroke conditioning.

Outline Simulated Partial Inputs

Figure 5: Simulated Inputs Three sizes of occluders were

used to simulate partial outlines.

Figure 6: Simplified Edges The 2nd edgemap is obtained

using the technique of [25], while the 3rd is the intermediate

edgemap using [32] and further simplified using [46] which

looks closer to what a human would sketch.

To address this, we propose an effective soft gating mecha-

nism, shown in Fig. 7. Conceptually, our network consists

of a small external gating network that is conditioned on the

object class (encoded as a 1-hot vector). The gating network

outputs parameters that are used to modify the features of

the main generator network. Given an input feature tensor

Xl, “vanilla” ResNet [19] maps it to

Xl+1 = Xl +Hl(Xl). (1)

Changes in resolution are obtained by upsampling before or

downsampling after the residual block. Note that we omit

l subscript from this point forward to reduce clutter. Our

gating network augments this with a predicted scalar α for

each layer of the network using a learned network F(y),
where y is the conditioning vector:

X + α H(X),where α ∈ [0, 1] (2)

If the conditioning vector y has no use for a particu-

lar block, it can predict α close to zero and effectively

switch off the layer. During training, blocks within the

main network can transform the image in various ways, and

F can modulate such that the most useful blocks are se-

lected. Unlike previous feature map conditioning methods

such as AdaIn [50], we apply gating to both the generator

and discriminator. This enables the discriminator to select

blocks which effectively judge whether generations are real

or fake, conditioned on the class input. Some blocks can be

shared across regions in the conditioning vector, whereas

other blocks can specialize for a given class.

A more powerful method is to apply this weighting

channel-wise using a vector α:

X +α⊙H(X),where α ∈ [0, 1]c, (3)

where ⊙ represents channel-wise multiplication. This al-

lows specific channels to be switched “on” or “off”, pro-

viding additional degrees of freedom. We found that this

channelwise approach for gating provides the strongest re-

sults. AdaIn describes the case where an Instance Normal-

ization [50] (IN) operation is applied before scaling and

shifting the feature distribution. We constrain each element

of α and β in [−1, 1]. We additionally explored incorporat-

ing a bias term after the soft-gating, either block-wise using

a scalar β ∈ [−1, 1] per layer, or channel-wise using a vec-

tor β ∈ [−1, 1]c per layer but we found that they did not

help much, and so we leave them out of our final model.

Refer Fig. 8 for pictorial representation of various gatings.

Finally, we describe our network architecture, which uti-

lizes the gated residual blocks described above. We base

our architecture on the proposed residual Encoder-Decoder

model from MUNIT [24]. This architecture is comprised of

3 conv layers, 8 residual blocks, and 3 up-conv layers.

The residual blocks have 256 channels. First, we deepen the

network, based on the principle that deeper networks have

more valid disjoint, partially shared paths [53], and add 24

residual blocks. To enable the larger number of residual

1174



y

Naive Concatenation
(All layers)

y Gating

parameters

Gated Conditioning [Ours]

y

"

Naive Concatenation
(Input only)

#$

Concat + Auxiliary Classifier /
Latent Regressor

y

" #$

%&

Loss

" #$ " #$

y Gating

params

Gated Conditioning
Discriminator [Ours]

#$
Real

/fake

Figure 7: Conditioning variants for the Appearance Generator Our model uses gating on all the residual blocks of the

generator and the discriminator, other forms of conditioning such as (naive concatenation in input only, all layers, AC-GAN

like latent regressor [36]) are evaluated as well.

4(5)

5

Vanilla (No conditioning)

⍺

4(5)

5

Blockwise Gating (+Shift)

4(5)

6

5

Channelwise Gating (+Shift)

⍺

4(5)

5

Channelwise Gating

4(5)

5

Adaptive Instance Normalization

β

IN

⍺ ∈ [0,1]7⍺ β

Figure 8: Injecting conditioning with modified residual layers (Left) A “vanilla” residual block without conditioning

applies a residual modification to the input tensor. (Mid-left) The H(X) block is softly-gated by scalar parameter α and shift

β. (Mid) Adaptive Instance Normalization [23] applies a channel-wise scaling and shifting after an instance normalization

layer. (Mid-right) Channel-wise gating adds restrictions to the range of α. (Right) We find that channel-wise gating (without

added bias) produces the best results empirically.

Trained task FID

Faces

Partial Simplified Edges → Image 383.02

Partial Simplified Edges → Simplified Edges → Image 374.67

Shoes

Partial Simplified Edges → Image 170.45

Partial Simplified Edges → Simplified Edges → Image 154.32

Table 1: Single-class generation, 2-stage vs 1-stage. We

evaluate the result quality from different task pipelines.

blocks, we drastically reduce the width to 32 channels for

every layer. We refer to this network as SkinnyResNet.

Additionally, we found that modifying the downsampling

and upsampling blocks to be residual connections as well

improved results, and also enables us to apply gating to all

blocks. When gating is used, the gate prediction network,

F(y), is also designed using residual blocks. Additional

architecture details are in the supplementary material.

4. Experiments

We first compare our 2 step approach for interactive im-

age generation on existing datasets such as the UTZappos

Shoes dataset [57] and CelebA-HQ [26]. State-of-the-art

techniques such as pix2pixHD [55] are used to generate the

final image from the autocompleted sketches. We finally

evaluate our approach on a multi-class dataset that we col-

lected to test our proposed gating mechanism.

4.1. Single Class Generation

Datasets We use the edges2shoes[25], CelebA-HQ[26]

datasets to test our method on single class generation. We

Trained task Avg Acc

Partial edges → Image 73.12 %

Partial outline → Image 88.74 %

Partial outline → Full outline → Image [Ours] 97.38%

Table 2: Multi-class generation, 2-stage vs 1-stage. We

evaluate the result quality from different task pipelines. Ac-

curacy is computed by a fixed, pretrained classification net-

work, on the resulting images.

simplify the edges to attempt to more closely resemble how

humans would draw strokes by first using the preprocess-

ing code of [32] further reducing the strokes with a sketch

simplification network [46].

Architecture We use the architecture described in Sec-

tion 3.1 for shape completion. In this case, each dataset

only contains a single class, so we can use an off-the-shelf

network, such as pix2pixHD [56] for rendering.

Results As seen in Fig. 9, our 2 step technique allows

us to complete the simplified edge maps from the partial

strokes and also generate realistic images from the auto-

completed simplified edges. Table 1 also demonstrates,

across two datasets (faces and shoes), that using a 2 step

procedure produces stronger results than mapping directly

from the partial sketch to the completed image.

1175



Figure 9: Example Sketch & Fill Progression. The first row represents the progressive addition of new strokes on the

canvas, the second row shows the autocompleted sketch, and the third row is the final generated image. As the sparse

strokes are changed by the user, the completed shape and generated image evolve as well. Note that changing a stroke locally

produces coherent changes in other parts of the image.

Method

SkinnyResNet EncDec

Class. AMT Fool. Class. AMT Fool.

Acc [%] Rate [%] Acc [%] Rate [%]

Ground truth 100.0 50.0 100.0 50.0

1 gen/class 97.0 17.7±1.46 – –

Concat (In) 62.6 15.0±1.4 39.2 7.5±1.06

Concat (All) 64.5 15.3±1.41 51.4 5.4±0.88

Cat(In)+Aux-Class 65.6 14.5±1.5 – –

Cat(All)+Aux-Class 67.0 19.7±1.42 – –

BlockGate(+bias) 89.6 19.6±1.34 – –

BlockGate 99.6 17.3±1.61 – –

AdaIn 94.5 14.9±1.47 – –

ChanGate(+bias) 94.1 14.8±1.43 – –

ChanGate 97.0 23.4±1.99 92.7 14.1±1.48

Table 3: Accuracy vs Realism on Multiclass Outline→Image

task. We measure generation accuracy with a pretrained network.

We measure realism using the real vs. fake judges from AMT.

Higher is better for both. Our SkinnyResNet architecture outper-

forms the Encoder-Decoder network, inspired by MUNIT [24].

We perform a thorough ablation on our architecture and find that

channel-wise gating achieves high accuracy and higher realism.

4.2. Multi­Class Generation

Datasets To explore the efficacy of our full pipeline, we

introduce a new outline dataset consisting of 200 images

(150 train, 50 test) for each of 10 classes – basketball,

chicken, cookie, cupcake, moon, orange, soccer, strawberry,

watermelon and pineapple. All the images have a white

background and were collected using search keywords on

popular search engines. In each image, we obtain rough

outlines for the image. We find the largest blob in the im-

age after thresholding it into a black and white image. We

fill the interior holes of the largest blob and obtain a smooth

outline using the SavitzkyGolay filter [44].

Architecture For the shape completion, we use the archi-

tecture in Section 3.1. For class-conditioned image genera-

tion, test the gated architectures in Section 3.2.

Results In order to test the fidelity of the automatically

completed shapes, we evaluate the accuracy of a trained

classifier on being able to correctly label a particular gen-

eration. We first test in Table 2 that our 2 stage technique

is better than 1 step generation. We evaluate the results on

the multi-class outline to image generations on two axes:

adherence to conditioning and realism. We first test the

conditioning adherence – whether the network generates

an image of the correct class. Off-the-shelf networks have

been previously used to evaluate colorizations [59], street

scenes [25, 56], and ImageNet generations [42]. We take

a similar approach and fine-tune a pretrained InceptionV3

network [49] for our 10 classes. The generations are then

tested with this network for classification accuracy. Results

are presented in Table 3.

To judge the generation quality, we also perform a “Vi-

sual Turing test” using Amazon Mechanical Turk (AMT).

Turkers are shown a real image, followed by a generated

image, or vice versa, and asked to identify the fake. An al-

gorithm which generates a realistic image will “fool” Turk-

ers into choosing the incorrect image. We use the imple-

mentation from [59]. Results are presented in Table 3, and

qualitative examples are shown in Fig. 10.

Gating Architectures We compare our proposed model

to the residual Encoder-Decoder model [24]. In addition,

we compare our proposed gating strategy and SkinnyRes-

Net architecture to the following methods for conditional

image generation:

1176



Concat

(Input)

Concat

(All)

Concat (In)

+Aux-Class

Block-

Gate

Channel-

Gate

BlockGate

(with bias)

ChnGate

(with bias)

AdaIn

Concat

(Input)

Concat

(All)

Channel-

Gate

Per-

class

Concat (All)

+Aux-Class

Encoder-

Decoder

Skinny 

ResNet

Fried chickenCupcakePineappleStrawberryMoonCookieOrangeWatermelonSoccerBasketball

Ground Truth

Input

Figure 10: Conditioning injection comparison. We show results across methods on the outline→image task using the Skin-

nyResNet architecture. Naive Concatenation Concat often confuses classes, such as oranges and basketballs, while gating

mechanisms such as the ChannelGate method succeed. The gating method also improves results for the EncoderDecoder

architecture.

1177



Figure 11: Directly mapping from partial outline to im-

age Our proposed system uses a 2-stage approach, using a

completed edge map as an intermediate. Here, we show

results when directly mapping from the partial outline to

the image. When the outline is well-defined, the network

can generate realistic images. However, when the outline is

sparse, the network struggles with the geometry.

Figure 12: Multiclass Sketch & Fill results A few input

strokes (first row) are enough to automatically complete the

class specific outlines (second) and appearance (last).

• Per-class: a single generator for each category; this is

the only test setting with multiple networks, all others

train a single network

• Concat (In): naive concatenation, input layer only

• Concat (All): naive concatenation, all layers

• Concat (In)+Aux-Class: we add an auxiliary classifier,

both for input-only and all layers settings

• BlockGate(+Bias), BlockGate: block-wise soft-gating,

with and without a bias parameter

• AdaIn: Adaptive instance normalization

• ChannelGate(+Bias), ChannelGate: channel-wise

soft-gating, with and without a bias parameter

Does naive concatenation effectively inject condition-

ing? In Fig. 10, we show a selected example from each

of the 10 classes. The per-class baseline trivially adheres to

the conditioning, as each class gets to have its own network.

However, when a single network is trained to generate all

classes, naive concatenation is unable to successfully in-

ject class information, for either network and for either type

of concatenation. For the EncoderDecoder network, bas-

ketballs, oranges, cupcakes, pineapples, and fried chicken

are all confused with each other. For the SkinnyResNet

network, oranges are generated instead of basketballs, and

pineapples and fried chicken drumsticks are confused. As

seen in Table 3, classification accuracy is slightly higher

when concatenating all layers (64.5%) versus only the in-

put layer (62.6%), but is low for both.

Does gating effectively inject conditioning? Using the

proposed soft-gating, on the other hand, leads to success-

ful generations. We test variants of soft-gating on the Skin-

nyResNet, and accuracy is dramatically improved, between

89.6% to 99.6%, comparable to using a single generator per

class (97.0%). Among the gating mechanisms, we find that

channel-wise multiplication generates the most realistic im-

ages, achieving an AMT fooling rate of 23.4%. Interest-

ingly, the fooling rate is higher than the per-class generator

of 17.7%. Qualitatively, we notice that per-class generators

sometimes exhibits artifacts in the background, as seen in

the generation of “moon”. We hypothesize with the correct

conditioning mechanism, the single generator across mul-

tiple classes has the benefit of seeing more training data

and finding common elements across classes, such as clean,

white backgrounds.

Is gating effective across architectures? As seen in Ta-

ble 3, using channelwise gating instead of naive concate-

nation improves performance both accuracy and realism

across architectures. For example, for the EncoderDe-

coder architecture, gating enables successful generation of

the pineapple. Both quantitatively and qualitatively, results

are better for our proposed SkinnyResNet architecture.

Do the generations generalize to unusual outlines? The

training images consist of the outlines corresponding to the

geometry of each class. However, an interesting test sce-

nario is whether the technique generalizes to unseen shape

and class combinations. In Fig. 1, we show that an input

circle not only produces circular objects, such as a basket-

ball, watermelon, and cookie, but also noncircular objects

such as strawberry, pineapple, and cupcake. Note that both

the pineapple crown and bottom are generated, even without

any structural indication of these parts in the outline.

5. Discussion

We present a two-stage approach for interactive object

generation, centered around the idea of a shape completion

intermediary. This step both makes training more stable and

also allows us to give coarse geometric feedback to the user,

which they can choose to integrate as they desire.

Acknowledgements

AG, PKD, and PHST are supported by the ERC grant ERC-

2012-AdG, EPSRC grant Seebibyte EP/M013774/1, EP-

SRC/MURI grant EP/N019474/1 and would also like to ac-

knowledge the Royal Academy of Engineering and FiveAI.

Part of the work was done while AG was an intern at Adobe.

1178



References

[1] Martı́n Arjovsky and Léon Bottou. Towards principled meth-

ods for training generative adversarial networks. In ICLR,

2017. 2

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.

ICML, 2017. 2

[3] Wengling Chen and James Hays. Sketchygan: towards di-

verse and realistic sketch to image synthesis. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9416–9425, 2018. 2

[4] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,

and P. Abbeel. Infogan: Interpretable representation learn-

ing by information maximizing generative adversarial nets.

NIPS, 2016. 2

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. EMNLP,

2014. 3

[6] Dale J Cohen and Susan Bennett. Why can’t most people

draw what they see? Journal of Experimental Psychology:

Human Perception and Performance, 23(3):609, 1997. 1

[7] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher,

Heather Stoddart Barros, Adam Finkelstein, Thomas

Funkhouser, and Szymon Rusinkiewicz. Where do peo-

ple draw lines? ACM Transactions on Graphics (TOG),

27(3):88, 2008. 2

[8] Tali Dekel, Chuang Gan, Dilip Krishnan, Ce Liu, and

William T Freeman. Sparse, smart contours to represent

and edit images. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3511–

3520, 2018. 1

[9] Emily L Denton, Soumith Chintala, Arthur Szlam, and Rob

Fergus. Deep generative image models using a laplacian

pyramid of adversarial networks. In NIPS, 2015. 2

[10] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-

versarial feature learning. ICLR, 2017. 2

[11] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier

Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron

Courville. Adversarially learned inference. ICLR, 2017. 2

[12] Alexei A Efros and Thomas K Leung. Texture synthesis by

non-parametric sampling. In ICCV, 1999. 2

[13] Mathias Eitz, Ronald Richter, Kristian Hildebrand, Tamy

Boubekeur, and Marc Alexa. Photosketcher: interactive

sketch-based image synthesis. IEEE Computer Graphics and

Applications, 31(6):56–66, 2011. 2

[14] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Es-

lami, and Oriol Vinyals. Synthesizing programs for images

using reinforced adversarial learning. ICML, 2018. 2

[15] Arnab Ghosh, Viveka Kulharia, Vinay Namboodiri, Philip

H. S. Torr, and Puneet K Dokania. Multi-agent diverse gen-

erative adversarial networks. CVPR, 2018. 2

[16] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial

networks. arXiv preprint arXiv:1701.00160, 2016. 2

[17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In NIPS, pages 5767–5777, 2017. 2

[18] David Ha and Douglas Eck. A neural representation of

sketch drawings. Conference on Neural Information Pro-

cessing Systems, 2017. 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2, 4

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in Neural Information Processing Sys-

tems, pages 6626–6637, 2017. 2

[21] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing

the dimensionality of data with neural networks. Science,

313(5786):504–507, 2006. 2

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural computation, 9(8):1735–1780, 1997. 3

[23] Xun Huang and Serge J Belongie. Arbitrary style transfer

in real-time with adaptive instance normalization. In ICCV,

pages 1510–1519, 2017. 3, 5

[24] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan

Kautz. Multimodal unsupervised image-to-image transla-

tion. ECCV, 2018. 2, 3, 4, 6

[25] P. Isola, J-Y. Zhu, T. Zhou, and A. Efros. Image-to-image

translation with conditional adversarial networks. CVPR,

2017. 1, 2, 3, 4, 5, 6

[26] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of gans for improved quality, stability,

and variation. ICLR, 2018. 5

[27] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks.

CVPR, 2019. 3

[28] D. Kingma and M. Welling. Auto-encoding variational

bayes. ICLR, 2014. 2

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, pages 1097–1105, 2012. 3

[30] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo

Larochelle, and Ole Winther. Autoencoding beyond pixels

using a learned similarity metric. In ICML, 2016. 2

[31] Yong Jae Lee, C Lawrence Zitnick, and Michael F Cohen.

Shadowdraw: real-time user guidance for freehand draw-

ing. In ACM Transactions on Graphics (TOG), volume 30,

page 27. ACM, 2011. 2

[32] Yijun Li, Chen Fang, Aaron Hertzmann, Eli Shechtman, and

Ming-Hsuan Yang. Im2pencil: Controllable pencil illustra-

tion from photographs. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1525–1534, 2019. 4, 5

[33] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep

multi-scale video prediction beyond mean square error. In

ICLR, 2016. 2

[34] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.

Which training methods for gans do actually converge?

ICML, 2018. 3, 4

[35] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. ICLR, 2018. 2

1179



[36] Augustus Odena, Christopher Olah, and Jonathon Shlens.

Conditional image synthesis with auxiliary classifier gans.

ICML, 2017. 2, 5

[37] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. CVPR, 2019. 3

[38] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A.

Efros. Context encoders: Feature learning by inpainting.

CVPR, 2017. 2

[39] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-

moulin, and Aaron Courville. Film: Visual reasoning with a

general conditioning layer. AAAI, 2018. 3

[40] Tiziano Portenier, Qiyang Hu, Attila Szabo, Siavash Ar-

jomand Bigdeli, Paolo Favaro, and Matthias Zwicker.

Faceshop: Deep sketch-based face image editing. ACM

Transactions on Graphics (TOG), 37(4):99, 2018. 1

[41] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-

sentation learning with deep convolutional generative adver-

sarial networks. ICLR, 2016. 2

[42] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Rad-

ford, and X. Chen. Improved techniques for training gans.

NIPS, 2016. 6

[43] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and

James Hays. Scribbler: Controlling deep image synthesis

with sketch and color. In CVPR, volume 2, 2017. 1

[44] Abraham Savitzky and Marcel JE Golay. Smoothing and

differentiation of data by simplified least squares procedures.

Analytical chemistry, 36(8):1627–1639, 1964. 6

[45] Ryan Schmidt, Azam Khan, Gord Kurtenbach, and Karan

Singh. On expert performance in 3d curve-drawing tasks. In

Proceedings of the 6th eurographics symposium on sketch-

based interfaces and modeling, pages 133–140. ACM, 2009.

1

[46] Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, and Hi-

roshi Ishikawa. Learning to simplify: fully convolutional

networks for rough sketch cleanup. ACM Transactions on

Graphics (TOG), 35(4):121, 2016. 4, 5

[47] Paul Smolensky. Information processing in dynamical sys-

tems: Foundations of harmony theory. Technical report,

DTIC Document, 1986. 2

[48] Ivan E. Sutherland. Sketch pad a man-machine graphical

communication system. In Proceedings of the SHARE De-

sign Automation Workshop, DAC ’64, pages 6.329–6.346,

New York, NY, USA, 1964. ACM. 2

[49] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, pages 2818–2826,

2016. 6

[50] D Ulyanov, A Vedaldi, and VS Lempitsky. Instance nor-

malization: the missing ingredient for fast stylization. corr

abs/1607.0 (2016). 4

[51] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt,

Oriol Vinyals, Alex Graves, et al. Conditional image gen-

eration with pixelcnn decoders. In NIPS, 2016. 2

[52] Andreas Veit and Serge Belongie. Convolutional networks

with adaptive inference graphs. ECCV, 2018. 3

[53] Andreas Veit, Michael J Wilber, and Serge Belongie. Resid-

ual networks behave like ensembles of relatively shallow net-

works. In NIPS, pages 550–558, 2016. 3, 4

[54] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing robust

features with denoising autoencoders. In ICML, 2008. 2

[55] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image

synthesis and semantic manipulation with conditional gans.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018. 5

[56] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image

synthesis and semantic manipulation with conditional gans.

CVPR, 2018. 5, 6

[57] Aron Yu and Kristen Grauman. Fine-grained visual compar-

isons with local learning. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

192–199, 2014. 5

[58] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-

tus Odena. Self-attention generative adversarial networks.

ICML, 2019. 2

[59] Richard Zhang, Phillip Isola, and Alexei A Efros. Color-

ful image colorization. In ECCV, pages 649–666. Springer,

2016. 6

[60] J. Zhu, P. Krähenbühl, E. Shechtman, and A. Efros. Gener-

ative visual manipulation on the natural image manifold. In

ECCV, 2016. 2

[61] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. CVPR, 2017. 1

[62] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-

rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-

ward multimodal image-to-image translation. pages 465–

476, 2017. 2, 3

1180


