
Boosting Few-Shot Visual Learning with Self-Supervision

Spyros Gidaris1, Andrei Bursuc1, Nikos Komodakis2, Patrick Pérez1, Matthieu Cord1,3

1valeo.ai 2LIGM, Ecole des Pont ParisTech 3Sorbonne Université

Abstract

Few-shot learning and self-supervised learning address

different facets of the same problem: how to train a model

with little or no labeled data. Few-shot learning aims for

optimization methods and models that can learn efficiently

to recognize patterns in the low data regime. Self-supervised

learning focuses instead on unlabeled data and looks into

it for the supervisory signal to feed high capacity deep neu-

ral networks. In this work we exploit the complementar-

ity of these two domains and propose an approach for im-

proving few-shot learning through self-supervision. We use

self-supervision as an auxiliary task in a few-shot learning

pipeline, enabling feature extractors to learn richer and more

transferable visual representations while still using few anno-

tated samples. Through self-supervision, our approach can

be naturally extended towards using diverse unlabeled data

from other datasets in the few-shot setting. We report consis-

tent improvements across an array of architectures, datasets

and self-supervision techniques. We provide the implementa-

tion code at https://github.com/valeoai/BF3S.

1. Introduction

Deep learning-based methods have achieved impressive

results on various image understanding tasks, such as im-

age classification [22, 29, 52, 54], object detection [47], or

semantic segmentation [4]. However, to learn successfully

these tasks, convolutional neural networks (convnets) need

to access large volumes of manually labeled training data.

If not, the trained convnets might suffer from poor general-

ization performance to the test data. In contrast, humans are

perfectly capable of learning new visual concepts from only

a few examples, generalizing without difficulty to new data.

Few-shot learning [8, 9, 26, 30, 55] aims to endow artificial

perception systems with a similar ability, especially with the

help of modern deep learning.

Hence, the goal of few-shot visual learning is to devise

recognition models that are capable of efficiently learning to

recognize a set of classes despite that there are available very

few training examples for them (e.g., only 1 or 5 examples

per class). To avoid overfitting due to data scarcity, few-shot

learning algorithms rely on transfer learning techniques and

have two learning stages. During the first stage, the model is

usually trained using a different set of classes, called base

classes, which is associated with a large number of annotated

training examples. The goal of this stage is to let the few-shot

model acquire transferable visual analysis abilities, typically

in the form of learned representations, which are mobilized

in the second stage. In this next step, the model indeed learns

to recognize novel classes, unseen during the first learning

stage, using only a few training examples per class.

Few-shot learning relates to self-supervised representa-

tion learning [6, 7, 14, 31, 40, 61]. The latter is a form of

unsupervised learning that trains a model on an annotation-

free pretext task defined using only the visual information

present in images. The purpose of this self-supervised task

is to make the model learn image representations that would

be useful when transferred to other image understanding

tasks. For instance, in the seminal work of Doersch et al. [6],

a network, by being trained on the self-supervised task of

predicting the relative location of image patches, manages to

learn image representations that are successfully transferred

to the vision tasks of object recognition, object detection,

and semantic segmentation. Therefore, as in few-shot learn-

ing, self-supervised methods also have two learning stages,

the first that learns image representations with a pretext

self-supervised task, and the second that adapts those repre-

sentations to the actual task of interest. Also, both learning

approaches try to limit the dependence of deep learning

methods on the availability of large amounts of labeled data.

Inspired by the connection between few-shot learning

and self-supervised learning, we propose to combine the two

methods to improve the transfer learning abilities of few-shot

models. More specifically, we add a self-supervised loss to

the training loss that a few-shot model minimizes during its

first learning stage (see Figure 1). Hence, we artificially aug-

ment the training task(s) that a few-shot model solves during

this stage. We argue that this task augmentation forces the

model to learn a more diversified set of image features, and

this, in turn, improves its ability to adapt to novel classes

with few training data. Moreover, since self-supervision does

not require data annotations, one can include extra unlabeled

data to the first learning stage. By extending the size and

8059



0o
<latexit sha1_base64="1i9FmuNZEsbovqbUtWReZaW40Ts=">AAAB83icbVC7SgNBFJ2NrxhfUUtBFoNgIWE3FtoZsLFMwDwgu4bZySQZMjuzzNwVw7Klv2BjoYithZ3fYec36Ec4eRSaeODC4Zx7ufeeIOJMg+N8WpmFxaXllexqbm19Y3Mrv71T1zJWhNaI5FI1A6wpZ4LWgAGnzUhRHAacNoLBxchv3FClmRRXMIyoH+KeYF1GMBjJc64TD+gtJDJN2/mCU3TGsOeJOyWF87evu/336nelnf/wOpLEIRVAONa65ToR+AlWwAinac6LNY0wGeAebRkqcEi1n4xvTu1Do3TsrlSmBNhj9fdEgkOth2FgOkMMfT3rjcT/vFYM3TM/YSKKgQoyWdSNuQ3SHgVgd5iiBPjQEEwUM7fapI8VJmBiypkQ3NmX50m9VHRPiqWqUygfowmyaA8doCPkolNURpeogmqIoAjdo0f0ZMXWg/VsvUxaM9Z0Zhf9gfX6A39dll0=</latexit>

90o
<latexit sha1_base64="mk5f1vuqwv0uiRUWnIoMVw5t+9w=">AAAB9HicbVC7SgNBFJ31GeMrainIYBAsJOzGQq0M2FgmYB6QrGF2MpsMmd1ZZ+4Gw5LSb7CxUMRWsPM77PwG/Qgnj0ITD1w4nHMv997jRYJrsO1Pa25+YXFpObWSXl1b39jMbG1XtIwVZWUqhVQ1j2gmeMjKwEGwWqQYCTzBql73YuhXe0xpLsMr6EfMDUg75D6nBIzkntnXSQPYLSRyMGhmsnbOHgHPEmdCsudvX3d776XvYjPz0WhJGgcsBCqI1nXHjsBNiAJOBRukG7FmEaFd0mZ1Q0MSMO0mo6MH+MAoLexLZSoEPFJ/TyQk0LofeKYzINDR095Q/M+rx+CfugkPoxhYSMeL/FhgkHiYAG5xxSiIviGEKm5uxbRDFKFgckqbEJzpl2dJJZ9zjnP5kp0tHKExUmgX7aND5KATVECXqIjKiKIbdI8e0ZPVsx6sZ+tl3DpnTWZ20B9Yrz/9Z5ag</latexit>

180o
<latexit sha1_base64="ibHyfonH0Qvh2eKKS0ds4c3cSiQ=">AAAB9XicbVC7SgNBFJ31GeMrainIYBAsJOzGwnQGbCwTMA9INmF2MkmGzO4sM3fVsGzpP9hYKGIrdn6Hnd+gH+HkUWjigQuHc+7l3nu8UHANtv1pLSwuLa+sptbS6xubW9uZnd2qlpGirEKlkKruEc0ED1gFOAhWDxUjvidYzRtcjPzaNVOay+AKhiFzfdILeJdTAkZqOQW7FTeB3UIsk6Sdydo5eww8T5wpyZ6/fd0dvJe/S+3MR7MjaeSzAKggWjccOwQ3Jgo4FSxJNyPNQkIHpMcahgbEZ9qNx1cn+MgoHdyVylQAeKz+noiJr/XQ90ynT6CvZ72R+J/XiKBbcGMehBGwgE4WdSOBQeJRBLjDFaMghoYQqri5FdM+UYSCCSptQnBmX54n1XzOOc3ly3a2eIImSKF9dIiOkYPOUBFdohKqIIoUukeP6Mm6sR6sZ+tl0rpgTWf20B9Yrz9to5ba</latexit>

270o
<latexit sha1_base64="TR/k0NawqeAUcBIKhIECBncnnq8=">AAAB9XicbVC7SgNBFJ31GeMrainIYBAsJOzGInYGbCwTMA9INmF2MkmGzM4uM3fVsGzpP9hYKGIrdn6Hnd+gH+HkUWjigQuHc+7l3nu8UHANtv1pLSwuLa+sptbS6xubW9uZnd2qDiJFWYUGIlB1j2gmuGQV4CBYPVSM+J5gNW9wMfJr10xpHsgrGIbM9UlP8i6nBIzUyhfsVtwEdgtxkCTtTNbO2WPgeeJMSfb87evu4L38XWpnPpqdgEY+k0AF0brh2CG4MVHAqWBJuhlpFhI6ID3WMFQSn2k3Hl+d4COjdHA3UKYk4LH6eyImvtZD3zOdPoG+nvVG4n9eI4LumRtzGUbAJJ0s6kYCQ4BHEeAOV4yCGBpCqOLmVkz7RBEKJqi0CcGZfXmeVPM55zSXL9vZ4gmaIIX20SE6Rg4qoCK6RCVUQRQpdI8e0ZN1Yz1Yz9bLpHXBms7soT+wXn8AbaSW2g==</latexit>

Object classifier
<latexit sha1_base64="c/9E+AIx3gHgWkJSQi8XZIm2oJI=">AAAB+nicbVC7TgJBFL3rE/G1aGkzkZhQkV0stCSxsRMTeSRAyOxwF0ZmH5mZ1ZCVT7Gx0Bhbv8TOv3EWtlDwJJOcnPuYc48XC66043xba+sbm1vbhZ3i7t7+waFdOmqpKJEMmywSkex4VKHgITY11wI7sUQaeALb3uQqq7cfUCoehXd6GmM/oKOQ+5xRbaSBXbrx7pFpwgRVyugoB3bZqTpzkFXi5qQMORoD+6s3jFgSYKjnW7quE+t+SqXmTOCs2EsUxpRN6Ai7hoY0QNVP59Zn5MwoQ+JH0rzQ2MjU3xMpDZSaBp7pDKgeq+VaJv5X6ybav+ynPIwTjSFbfOQnguiIZDmQIZfmbjE1hDLJjVfCxlRSpk1aRROCu3zyKmnVqu55tXZbK9creRwFOIFTqIALF1CHa2hAExg8wjO8wpv1ZL1Y79bHonXNymeO4Q+szx8ohpPZ</latexit>

C(·)
<latexit sha1_base64="C2WOA12sISDQGnhU+OHWgo+0b1Y=">AAAB73icbVBNSwMxEM36WetX1aOXYBEqSNmtgh4LvXisYD+gXUo2m21Ds8mazApl6Z/w4kERr/4db/4b03YP2vpg4PHeDDPzgkRwA6777aytb2xubRd2irt7+weHpaPjtlGppqxFlVC6GxDDBJesBRwE6yaakTgQrBOMGzO/88S04Uo+wCRhfkyGkkecErBSt1Hp01DBxaBUdqvuHHiVeDkpoxzNQemrHyqaxkwCFcSYnucm4GdEA6eCTYv91LCE0DEZsp6lksTM+Nn83ik+t0qII6VtScBz9fdERmJjJnFgO2MCI7PszcT/vF4K0a2fcZmkwCRdLIpSgUHh2fM45JpREBNLCNXc3orpiGhCwUZUtCF4yy+vknat6l1Va/fX5fplHkcBnaIzVEEeukF1dIeaqIUoEugZvaI359F5cd6dj0XrmpPPnKA/cD5/ACe9j1I=</latexit>

Rφ
<latexit sha1_base64="H9QOZL0cRe4bhdnBmvXfWL38uuI=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4kJJUQY8FLx6r2A9oQ9lsN+3SzSbuToQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3Uz91hPXRsTqAccJ9yM6UCIUjKKV2ve9rJsMxaRXKrsVdwayTLyclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+K3dTwhLIRHfCOpYpG3PjZ7N4JObVKn4SxtqWQzNTfExmNjBlHge2MKA7NojcV//M6KYbXfiZUkiJXbL4oTCXBmEyfJ32hOUM5toQyLeythA2ppgxtREUbgrf48jJpViveRaV6d1munedxFOAYTuAMPLiCGtxCHRrAQMIzvMKb8+i8OO/Ox7x1xclnjuAPnM8fLrmP/g==</latexit>

Self-supervised loss

Lself
<latexit sha1_base64="eUkfMXBQFqeOeM6HwXyI1KOKmzk=">AAACOHicbVBNSwMxEM3W7/pV9eglWIQiWHbrQY+CFw+CirYK3VKy6Wwbms0uyaxYlv4sL/4Mb+LFgyJe/QVm24KfA4HHvHmZNy9IpDDouo9OYWp6ZnZufqG4uLS8slpaW2+YONUc6jyWsb4OmAEpFNRRoITrRAOLAglXQf8o569uQBsRq0scJNCKWFeJUHCGttUunfoBdIXKugx7oHeGRR/hFrMLkOGuSRPQN8JAh8rYGDr0/eJJO/MjO6ujzC4Nh1YAqvMlb5fKbtUdFf0LvAkok0mdtUsPfifmaQQKuWTGND03wVbGNAouwX6fGkgY77MuNC1ULALTykaHD+l2mpsLY22fQjrqfldkLDJmEAV2MjdtfnN58z+umWJ40MqESlIExceLwlRSjGmeIu0IDRzlwALGtbBeKe8xzTjarPMQvN8n/wWNWtXbq9bOa+XDyiSOebJJtkiFeGSfHJJjckbqhJM78kReyKtz7zw7b877eLTgTDQb5Ec5H5+iFa38</latexit>

Images
<latexit sha1_base64="rNL9vr/qaxvU8/rtcMNi0Ur0XJ8=">AAAB9XicbVA9TwJBEN1DRcQv1NLCU2JioeQOCy1JbLTDRD4SOMneMsiGvb3L7pxKLvwPGwuNsfW/2Pk//AHuAYWCL5nk5b2Z3ZnnR4JrdJwvK7OwuJRdzq3kV9fWNzYLW9t1HcaKQY2FIlRNn2oQXEINOQpoRgpo4Ato+IOL1G/cg9I8lDc4jMAL6J3kPc4oGum2jfCIyZURQY/ynULRKTlj2PPEnZJiJVsX33v7J9VO4bPdDVkcgEQmqNYt14nQS6hCzgSM8u1YQ0TZwDzfMlTSALSXjLce2YdG6dq9UJmSaI/V3xMJDbQeBr7pDCj29ayXiv95rRh7517CZRQjSDb5qBcLG0M7jcDucgUMxdAQyhQ3u9qsTxVlaIJKQ3BnT54n9XLJPS2Vr00ax2SCHNklB+SIuOSMVMglqZIaYUSRJ/JCXq0H69l6s94nrRlrOrND/sD6+AG6KZTS</latexit>

Annotated images
<latexit sha1_base64="wLbTrkdWKqRevNvKWCBS2RqH8gw=">AAACAXicbVDLSgMxFM1UrbW+qm4EF0aL4ELLTF3osuLGZQX7gLaUTHprQzOZIbkjlqFu/BU3LhRx61+48z/8ANPHQq0HAodzzk1yjx9JYdB1P53U3PxCejGzlF1eWV1bz21sVk0Yaw4VHspQ131mQAoFFRQooR5pYIEvoeb3L0Z+7Ra0EaG6xkEErYDdKNEVnKGV2rntJsIdJudKhcgQOlTYAJhhtp3LuwV3DDpLvCnJl9JV+bW7d1xu5z6anZDHASjkkhnT8NwIWwnTKLiEYbYZG4gY79vrG5YqFoBpJeMNhvTAKh3aDbU9CulY/TmRsMCYQeDbZMCwZ/56I/E/rxFj96yVCBXFCIpPHurGkmJIR3XQjtDAUQ4sYVwL+1fKe0wzjra0UQne35VnSbVY8E4KxSvbxhGZIEN2yD45JB45JSVyScqkQji5J4/kmbw4D86T8+q8TaIpZzqzRX7Bef8GzLqZRQ==</latexit>

Fθ(·)
<latexit sha1_base64="b86COZXgnxQuk8eR92gJ+8BCtu0=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWpgi6LgrisYB/QhDCZTNqhkwczN2IJ+RU3LhRx64+4829M2iy09cCFwzn3cu89biy4AsP41ipr6xubW9Xt2s7u3v6BfljvqyiRlPVoJCI5dIligoesBxwEG8aSkcAVbOBObwp/8Mik4lH4ALOY2QEZh9znlEAuOXr91kktmDAgWdOiXgRnNUdvGC1jDrxKzJI0UImuo39ZXkSTgIVABVFqZBox2CmRwKlgWc1KFIsJnZIxG+U0JAFTdjq/PcOnueJhP5J5hYDn6u+JlARKzQI37wwITNSyV4j/eaME/Cs75WGcAAvpYpGfCAwRLoLAHpeMgpjlhFDJ81sxnRBJKORxFSGYyy+vkn67ZZ632vcXjc51GUcVHaMT1EQmukQddIe6qIcoekLP6BW9aZn2or1rH4vWilbOHKE/0D5/ABtUk9M=</latexit>

Supervised loss Lfew for

few-shot classification
<latexit sha1_base64="IP5NtEhoojMbW+h9JEuEpLhKoGE=">AAACWnicbVHPSxtBFJ5dbaKxamp762UwCFJo2I0HPQZ68eDB0kaFbAizk7fJkNmZdeZtNCz7T3oRwX+l0NlkkVZ9MPDxvu/9+ibOpLAYBE+ev7H5odHc2m7tfNzd229/OriyOjccBlxLbW5iZkEKBQMUKOEmM8DSWMJ1PP9R8dcLMFZo9RuXGYxSNlUiEZyhS43bt1EMU6GKKcMZmG9lK0K4x+JXnoFZCAsTKrW1tLwYF1HqNCYtErgry7WMJtqUUVQXOeK7nWmkXDJrX4a4nqAmLxPG7U7QDVZB34KwBh1Sx+W4/RBNNM9TULhqPAyDDEcFMyi4BNc9t5AxPmdTGDqoWAp2VKysKelRXt3g1nRPuc2q7L8VBUutXaaxU1bn2ddclXyPG+aYnI0KobIcQfH1oCSXFDWtfKYTYYCjXDrAuBFuV8pnzDCO7jdazoTw9clvwVWvG550ez97nf5xbccW+UoOyTEJySnpk3NySQaEk0fyx2t4Te/Z9/1tf2ct9b265jP5L/wvfwHk/7e/</latexit>

Self-supervised

rotation classifier
<latexit sha1_base64="RjKUUdbkelSBx9BMbDOOYZug3Rw=">AAACOnicbVBNS8NAEN3U7/pV9ehlsQhFsCT1oEfBi0dFq0JTymYzaZduNmF3IpbQ3+XFX+HNgxcPinj1B7iNQfwaWHi8N/N25gWpFAZd98GpTE3PzM7NL1QXl5ZXVmtr6xcmyTSHNk9koq8CZkAKBW0UKOEq1cDiQMJlMDya6JfXoI1I1DmOUujGrK9EJDhDS/Vqp34AfaHyPsMB6J1x1Ue4wfwMZLRrshT0tTAQjn2/FHSCxSTlkhljjUDbGVDhl0OvVnebblH0L/BKUCdlnfRq936Y8CwGhYVpx3NT7OZMo+ASrHtmIGV8yPrQsVCxGEw3L04f023LhDRKtH0KacF+n8hZbMwoDmxnbBc0v7UJ+Z/WyTA66OZCpRmC4p8fRZmkmNBJjjQUGjjKkQWMa2F3pXzANONo067aELzfJ/8FF62mt9dsnbbqh40yjnmySbZIg3hknxySY3JC2oSTW/JInsmLc+c8Oa/O22drxSlnNsiPct4/AKror6k=</latexit>

Figure 1: Combining self-supervised image rotation prediction and supervised base class recognition in the first learning stage of

a few-shot system. We train the feature extractor Fθ(·) with both annotated (top branch) and non-annotated (bottom branch) data in

a multi-task setting. We use the annotated data to train the object classifier C(·) with the few-shot classification loss Lfew. For the

self-supervised task, we sample images from the annotated set (and optionally from a different set of non-annotated images). Here, we

generate four rotations for each input image, process them with Fθ(·) and train the rotation classifier Rφ with the self-supervised loss Lself .

The pipeline for relative patch location self-supervision is analog to this one.

variety of training data in this manner, one might expect to

learn stronger image features and to get further performance

gain in few-shot learning. At the extreme, using only unla-

beled data in the first learning stage, thus removing the use

of base classes altogether, is also appealing. We will show

that both these semi-supervised and unsupervised regimes

can be indeed put at work for few-shot object recognition

thanks to self-supervised tasks.

In summary, the contributions of our work are: (1) We pro-

pose to weave self-supervision into the training objective of

few-shot learning algorithms. The goal is to boost the ability

of the latter to adapt to novel classes with few training data.

(2) We study the impact of the added self-supervised loss

by performing exhaustive quantitative experiments on Mini-

Imagenet, CIFAR-FS, tiered-MiniImagenet, and ImageNet-

FS few-shot datasets. In all of them, self-supervision im-

proves the few-shot learning performance leading to state-of-

the-art results. (3) Finally, we extend the proposed few-shot

recognition framework to semi-supervised and unsupervised

setups, getting further performance gain in the former, and

showing with the latter that our framework provides a pro-

tocol for evaluating self-supervised representations on few-

shot object recognition which is quite simple and fast.

2. Related work

Few-shot learning. There is a broad array of few-shot

learning approaches, including, among many: gradient

descent-based approaches [1, 10, 39, 45], which learn how

to rapidly adapt a model to a given few-shot recognition task

via a small number of gradient descent iterations; metric

learning-based approaches that learn a distance metric be-

tween a query, i.e., test image, and the support images, i.e.,

training images, of a few-shot task [26, 33, 53, 55, 57, 59];

methods learning to map a test example to a class label by

accessing memory modules that store training examples for

that task [11, 25, 35, 38, 50]; approaches that learn how to

generate the weights of a classifier [12, 16, 43, 44, 13] or

of a multi-layer neural network [3, 18, 19, 58] for the new

classes given the few available training data for each of them;

methods that “hallucinate” additional examples of a class

from a reduced amount of data [21, 57].

In our work we consider two approaches from the metric

learning category, namely Prototypical Networks [53] and

Cosine Classifiers [12, 43] for their simplicity and flexibility.

Nevertheless, the proposed auxiliary self-supervision is com-

patible with several other few-shot classification solutions.

Self-supervised learning. It is a recent paradigm for unsu-

pervised learning that defines an annotation-free pretext task

to provide a surrogate supervision signal for feature learning.

Predicting the colors of images [31, 61], the relative position

of image patches [6, 40], the random rotation that has been

applied to an image [14], or the missing central part of an im-

age [42], are some of the many methods [15, 32, 36, 56, 62]

for self-supervised feature learning. The intuition is that,

by solving such tasks, the trained model extracts semantic

features that can be useful for other downstream tasks. In

our case, we consider a multi-task setting where we train

the backbone convnet using joint supervision from the super-

vised end-task and an auxiliary self-supervised pretext task.

Unlike most multi-task settings aiming at good results on all

tasks simultaneously [27], our goal is to improve the perfor-

mance of only the main task by leveraging the supervision of

the surrogate task, as also shown in [37]. We expect that, in a

few-shot setting, where squeezing out generalizable features

from the available data is very important, the use of self-

supervision as an auxiliary task will bring improvements.

Also, related to our work, Chen et al. [5] recently added

rotation prediction self-supervision to generative adversarial

networks [17] leading to significant quality improvements

of the synthesized images.

8060



3. Methodology

As already explained, few-shot learning algorithms have

two learning stages and two corresponding sets of classes.

Here, we define as Db = {(x, y)} ⊂ I × Yb the training set

of base classes used during the first learning stage, where

x ∈ I is an image with label y in label set Yb of size Nb.

Also, we define as Dn = {(x, y)} ⊂ I × Yn the training set

of Nn novel classes used during the second learning stage,

where each class has K samples (K = 1 or 5 in benchmarks).

One talks about Nn-way K-shot learning. Importantly, the

label sets Yn and Yb are disjoint.

In the remainder of this section, we first describe in §3.1

the two standard few-shot learning methods that we consider

and introduce in §3.2 the proposed method to boost their

performance with self-supervision.

3.1. Explored few­shot learning methods

The main component of all few-shot algorithms is a fea-

ture extractor Fθ(·), which is a convnet with parameters

θ. Given an image x, the feature extractor will output a

d-dimensional feature Fθ(x). In this work we consider two

representative few-shot algorithms, Prototypical Networks

(PN) [53] and Cosine Classifiers (CC) [12, 43], described

below. They are fairly similar, with their main difference

lying in the first learning stage: only CC learns actual base

classifiers along with the feature extractor, while PN simply

relies on class-level averages.

Prototypical Networks (PN) [53]. During the first stage

of this approach, the feature extractor Fθ(·) is learned on

sampled few-shot classification sub-problems that are ana-

logue to the targeted few-shot classification problem. In each

training episode of this learning stage, a subset Y∗ ⊂ Yb

of N∗ base classes are sampled (they are called “support

classes”) and, for each of them, K training examples are

randomly picked from within Db. This yields a training set

D∗. Given current feature extractor Fθ, the average feature

for each class j ∈ Y∗, its “prototype”, is computed as

pj =
1

K

∑

x∈X
j
∗

Fθ(x), withX
j
∗ = {x | (x, y) ∈ D∗, y = j }

(1)

and used to build a simple similarity-based classifier. Then,

given a new image xq from a support class but different

from samples in D∗, the classifier outputs for each class j

the normalized classification score

Cj(Fθ(xq);D∗) = softmaxj

[

sim
(

Fθ(xq),pi

)

i∈Y∗

]

,

(2)

where sim(·, ·) is a similarity function, which may be cosine

similarity or negative squared Euclidean distance. So, in

practice, the image xq will be classified to its closest proto-

type. Note that the classifier is conditioned on D∗ in order to

compute the class prototypes. The first learning stage finally

amounts to iteratively minimizing the following loss w.r.t. θ:

Lfew(θ;Db) = E
D∗ ∼ Db
(xq, yq)

[

− logCyq (Fθ(xq);D∗)
]

, (3)

where (xq, yq) is a training sample from a support class

defined in D∗ but different from images in D∗.

In the second learning stage, the feature extractor Fθ is

frozen and the classifier of novel classes is simply defined as

C(·;Dn), with prototypes defined as in (1) with D∗ = Dn.

Cosine Classifiers (CC) [12, 43]. In CC few-shot learn-

ing, the first stage trains the feature extractor Fθ together

with a cosine-similarity based classifier on the (standard)

supervised task of classifying the base classes. Denoting

Wb = [w1, ...,wNb
] the matrix of the d-dimensional clas-

sification weight vectors, the normalized score for an input

image x reads

Cj(Fθ(x);Wb) = softmaxj

[

γ cos
(

Fθ(x),wi

)

i∈Yb

]

,

(4)

where cos(·, ·) is the cosine operation between two vectors,

and the scalar γ is the inverse temperature parameter of the

softmax operator.1

The first learning stage aims at minimizing w.r.t. θ and

Wb the negative log-likelihood loss:

Lfew(θ,Wb;Db) = E
(x,y)∼Db

[

− logCy(Fθ(x);Wb)
]

. (5)

One of the reasons for using the cosine-similarity based

classifier instead of the standard dot-product based one, is

that the former learns feature extractors that reduce intra-

class variations and thus can generalize better on novel

classes. By analogy with PN, the weight vectors wj’s can

be interpreted as learned prototypes for the base classes, to

which input image features are compared for classification.

As with PN, the second stage boils down to computing

one representative feature wj for each new class by simple

averaging of associated K samples in Dn, and to define the

final classifier C(.; [w1 · · ·wNn
]) the same way as in (4).

3.2. Boosting few­shot learning via self­supervision

A major challenge in few-shot learning is encountered

during the first stage of learning. How to make the feature

extractor learn image features that can be readily exploited

for novel classes with few training data during the second

stage? With this goal in mind, we propose to leverage the

recent progress in self-supervised feature learning to further

improve current few-shot learning approaches.

1Specifically, γ controls the peakiness of the probability distribution

generated by the softmax operator [23].

8061



Through solving a non-trivial pretext task that can be

trivially supervised, such as recovering the colors of images

from their intensities, a network is encouraged to learn rich

and generic image features that are transferable to other

downstream tasks such as image classification. In the first

learning stage, we propose to extend the training of the

feature extractor Fθ(.) by including such a self-supervised

task besides the main task of recognizing base classes.

We consider two ways for incorporating self-supervision

into few-shot learning algorithms: (1) by using an auxiliary

loss function based on a self-supervised task, and (2) by

exploiting unlabeled data in a semi-supervised way during

training. We describe the two techniques in the following.

3.2.1 Auxiliary loss based on self-supervision

We incorporate self-supervision to a few-shot learning al-

gorithm by adding an auxiliary self-supervised loss during

its first learning stage. More formally, let Lself(θ, φ;Xb)
be the self-supervised loss applied to the set Xb = {x |
(x, y) ∈ Db } of training examples in Db deprived of their

class labels. The loss Lself(θ, φ;Xb) is a function of the

parameters θ of the feature extractor and of the parameters φ

of a network only dedicated to the self-supervised task. The

first training stage of few-shot learning now reads

min
θ,[Wb],φ

Lfew(θ, [Wb];Db) + αLself(θ, φ;Xb) , (6)

where Lfew stands either for the PN few-shot loss (3) or

for the CC one (5), with additional argument Wb in the

latter case (hence the bracket notation). The positive hyper-

parameter α controls the importance of the self-supervised

term2. An illustration of the approach is provided in Figure 1.

For the self-supervised loss, we consider two tasks in the

present work: predicting the rotation incurred by an image,

[14], which is simple and readily incorporated into a few-

shot learning algorithm; predicting the relative location of

two patches from the same image [6], a seminal task in self-

supervised learning. In a recent study, both methods have

been shown to achieve state-of-the-art results [28].

Image rotations. In this task, the convnet must rec-

ognize among four possible 2D rotations in R =
{0◦, 90◦, 180◦, 270◦} the one applied to an image (see Fig-

ure 1). Specifically, given an image x, we first create its

four rotated copies {xr | r ∈ R}, where x
r is the image x

rotated by r degrees. Based on the features Fθ(x
r) extracted

from such a rotated image, the new network Rφ attempts to

predict the rotation class r. Accordingly, the self-supervised

loss of this task is defined as:

Lself(θ, φ;X) = E
x∼X

[

∑

∀r∈R

− logRr
φ

(

Fθ(x
r)
)

]

, (7)

2In our experiments, we use α = 1.0.

where X is the original training set of non-rotated images

and Rr
φ(·) is the predicted normalized score for rotation r.

Intuitively, in order to do well for this task the model should

reduce the bias towards up-right oriented images, typical for

ImageNet-like datasets, and learn more diverse features to

disentangle classes in the low-data regime.

Relative patch location. Here, we create random pairs of

patches from an image and then predict, among eight possi-

ble positions, the location of the second patch w.r.t. to the

first, e.g., “on the left and above” or “on the right and be-

low”. Specifically, given an image x, we first divide it into 9
regions over a 3× 3 grid and sample a patch within each re-

gion. Let’s denote x̄
0 the central image patch, and x̄

1 · · · x̄8

its eight neighbors lexicographically ordered. We compute

the representation of each patch3 and then generate patch

feature pairs
(

Fθ(x̄
0), Fθ(x̄

p)
)

by concatenation. We train

a fully-connected network Pφ(·, ·) to predict the position of

x̄
p from each pair.

The self-supervised loss of this task is defined as:

Lself(θ, φ;X) = E
x∼X

[

8
∑

p=1

− logP p
φ

(

Fθ(x̄
0), Fθ(x̄

p)
)

]

,

(8)

where X is a set of images and P
p
φ is the predicted normal-

ized score for the relative location p. Intuitively, a good

model on this task should somewhat recognize objects and

parts, even in presence of occlusions and background clut-

ter. Note that, in order to prevent the model from learning

low-level image statistics such as chromatic aberration [6],

the patches are preprocessed with aggressive color augmen-

tation (i.e., converting to grayscale with probability 0.66 and

normalizing the pixels of each patch individually to have

zero mean and unit standard deviation).

3.2.2 Semi-supervised few-shot learning

The self-supervised term Lself in the training loss (6) does

not depend on class labels. We can easily extend it to learn

as well from additional unlabeled data. Indeed, if a set Xu

of unlabeled images is available besides Db, we can make

the self-supervised task benefit from them by redefining the

first learning stage as:

min
θ,[Wb],φ

Lfew(θ, [Wb];Db) + αLself(θ, φ;Xb ∪Xu) . (9)

By training the feature extractor Fθ to also minimize the self-

supervised loss on these extra unlabeled images, we open up

its visual scope with the hope that this will further improve

its ability to accommodate novel classes with scarce data.

This can be seen as a semi-supervised training approach

3If the architecture of Fθ(·) is fully convolutional, we can apply it to

both big images and smaller patches.

8062



for few-shot algorithms. An interesting aspect of this semi-

supervised training approach is that it does not require the

extra unlabeled data to be from the same (base) classes as

those in labeled dataset Db. Thus, it is much more flexible

w.r.t. the source of the unlabeled data than standard semi-

supervised approaches.

4. Experimental Results

In this section we evaluate self-supervision as auxiliary

loss function in §4.2 and in §4.3 as a way of exploiting unla-

beled data in semi-supervised training. Finally, in §4.4 we

use the few-shot object recognition task for evaluating self-

supervised methods. We make available more experimental

results along with implementation details in the Appendices

A and B provided as supplementary material.

Datasets. We perform experiments on four few-shot

datasets, MiniImageNet [55], tiered-MiniImageNet [46],

CIFAR-FS [2], and ImageNet-FS [20]. MiniImageNet con-

sists of 100 classes randomly picked from the ImageNet

dataset [48] (i.e., 64 base classes, 16 validation classes, and

20 novel test classes); each class has 600 images with size

84×84 pixels. tiered-MiniImageNet consists of 608 classes

randomly picked from ImageNet (i.e., 351 base classes,

97 validation classes, and 160 novel test classes); in total

there are 779, 165 images again with size 84× 84. Finally,

ImageNet-FS is a few-shot benchmark based on the origi-

nal ImageNet with 389 base classes, 300 novel validation

classes, and 311 novel test classes. CIFAR-FS is a few-shot

dataset created by dividing the 100 classes of CIFAR-100

into 64 base classes, 16 validation classes, and 20 novel test

classes. The images in this dataset have size 32× 32 pixels.

Evaluation metrics. Few-shot classification algorithms

are evaluated based on the classification accuracy in their

second learning stage (when the learned classifier is applied

to test images from the novel classes). More specifically,

a large number of Nn-way K-shot tasks are sampled from

the available set of novel classes. Each task is created by

randomly selecting Nn novel classes from the available test

(validation) classes and then within the selected classes ran-

domly selecting K train and M test images per class (making

sure that train and test images do not overlap). The classifi-

cation accuracy is measured on the Nn ×M test images and

is averaged over all the sampled few-shot tasks. Except oth-

erwise stated, for all experiments we used M = 15, Nn = 5,

and K = 1 or K = 5 (1-shot and 5-shot settings respec-

tively). ImageNet-FS is a more challenging benchmark: it

evaluates a method on the validation set of ImageNet based

on the classification accuracy of both novel and base classes

using all the Nn = 311 novel classes at once.

4.1. Implementation details

Network architectures. We use four different feature ex-

tractor architectures Fθ: Conv-4-64 [55], Conv-4-512, WRN-

28-10 [60], and ResNet10 [22]. The network Rφ(·) specific

to the rotation prediction task gets as input the output feature

maps of Fθ and is implemented as a convnet. Given two

patches, the network Pφ(·, ·) specific to the relative patch

location task gets the concatenation of their feature vectors

extracted with Fθ as input, and forwards it to two fully con-

nected layers. For further details see Appendix B.1.

Training optimization routine for first learning stage.

We optimize the training loss with mini-batch stochastic

gradient descent (SGD). For the labeled data we apply

both recognition Lfew and self-supervised Lself losses. For

the semi-supervised training, at each step we sample mini-

batches that consist of labeled data, for which we use both

losses, and unlabeled data, in which case we apply only Lself .

For further details see Appendices B.2 and B.3.

Implementation of relative patch location task. Due to

the aggressive color augmentation of the patches in the patch

localization task, and the fact that the patches are around 9

times smaller than the original images, the data distribution

that the feature extractor “sees” from them is very different

from that of the images. To overcome this problem we apply

an extra auxiliary classification loss to the features extracted

from the patches. Specifically, during the first learning stage

of CC we merge the features Fθ(x̄
p) of the 9 patches of

an image (e.g., with concatenation or averaging) and then

apply the cosine classifier (4) to the resulting feature (this

classifier does not share its weight vectors with the classifier

applied to the original images features). Note that this patch

based auxiliary classification loss has the same weight as

the original classification loss Lfew. Also, during the second

learning stage we do not use the patch based classifier.

4.2. Self­supervision as auxiliary loss function

Rotation prediction as auxiliary loss. We first study the

impact of adding rotation prediction as self-supervision to

the few-shot learning algorithms of Cosine Classifiers (CC)

and Prototypical Networks (PN). We perform this study us-

ing the MiniImageNet and CIFAR-FS datasets and report

results in Tables 1 and 2 respectively. For the CC case, we

use as strong baselines, CC models without self-supervision

but trained to recognize all the 4 rotated versions of an im-

age. The reason for using this baseline is that during the

first learning stage, the model “sees” the same type of data,

i.e., rotated images, as the model with rotation prediction

self-supervision. Note that despite the rotation augmenta-

tions of the first learning stage, during the second stage the

model uses as training examples for the novel classes only

8063



Model Backbone 1-shot 5-shot

CC
Conv-4-64

54.31 ± 0.42% 70.89 ± 0.34%

CC+rot 54.83 ± 0.43% 71.86 ± 0.33%

CC
Conv-4-512

55.68 ± 0.43% 73.19 ± 0.33%

CC+rot 56.27 ± 0.43% 74.30 ± 0.33%

CC
WRN-28-10

61.09 ± 0.44% 78.43 ± 0.33%

CC+rot 62.93 ± 0.45% 79.87 ± 0.33%

PN
Conv-4-64

52.20 ± 0.46% 69.98 ± 0.36%

PN+rot 53.63 ± 0.43% 71.70 ± 0.36%

PN
Conv-4-512

54.60 ± 0.46% 71.59 ± 0.36%

PN+rot 56.02 ± 0.46% 74.00 ± 0.35%

PN
WRN-28-10

55.85 ± 0.48% 68.72 ± 0.36%

PN+rot 58.28 ± 0.49% 72.13 ± 0.38%

Table 1: Rotation prediction as auxiliary loss on MiniIma-

geNet. Average 5-way classification accuracies for the novel

classes with 95% confidence intervals (using 2000 episodes).

Models Backbone 1-shot 5-shot

CC
Conv-4-64

61.80 ± 0.30% 78.02 ± 0.24%

CC+rot 63.45 ± 0.31% 79.79 ± 0.24%

CC
Conv-4-512

65.26 ± 0.31% 81.14 ± 0.23%

CC+rot 65.87 ± 0.30% 81.92 ± 0.23%

CC
WRN-28-10

74.51 ± 0.31% 86.45 ± 0.22%

CC+rot 75.38 ± 0.31% 87.25 ± 0.21%

PN
Conv-4-64

62.82 ± 0.32% 79.59 ± 0.24%

PN+rot 64.69 ± 0.32% 80.82 ± 0.24%

PN
Conv-4-512

66.48 ± 0.32% 80.28 ± 0.23%

PN+rot 67.94 ± 0.31% 82.20 ± 0.23%

PN
WRN-28-10

69.48 ± 0.34% 82.43 ± 0.23%

PN+rot 69.55 ± 0.34% 82.34 ± 0.24%

Table 2: Rotation prediction as auxiliary loss on CIFAR-FS.

Average 5-way classification accuracies for the novel classes with

95% confidence intervals (using 5000 episodes).

the up-right versions of the images. Still however, using

rotation augmentations improves the classification perfor-

mance of the baseline models when adapted to the novel

classes. Therefore, for fair comparison, we also apply rota-

tion augmentations to the CC models with rotation prediction

self-supervision. For the PN case, we do not use rotation aug-

mentation since in our experiments this lead to performance

degradation.

The results in Tables 1 and 2 demonstrate that (1) indeed,

adding rotation prediction self-supervision improves the few-

shot classification performance, and (2) the performance

improvement is more significant for high capacity archi-

tectures, e.g., WRN-28-10. In Table 3 we provide results

for the challenging ImageNet-FS [20] benchmark, using a

ResNet10 backbone and CC. Our method achieves distinct

and consistent improvements on the recognition of novel

Model Classes 1-shot 2-shot 5-shot 10-shot 20-shot

CC
Novel

45.00± 0.24 56.33± 0.17 68.13± 0.09 73.24± 0.07 76.03± 0.05

CC+rot 46.43 ± 0.24 57.80 ± 0.16 69.67 ± 0.09 74.64 ± 0.06 77.31 ± 0.05

CC
All

56.87± 0.15 63.66± 0.10 71.18± 0.06 74.51± 0.04 76.10± 0.03

CC+rot 57.88 ± 0.15 64.76 ± 0.10 72.29 ± 0.07 75.63 ± 0.04 77.40 ± 0.03

Table 3: Rotation prediction as auxiliary loss on ImageNet-

FS [20]. Top-5 accuracy results with ResNet10 backbone. The

accuracy on base classes is 92.91% for CC and 93.52% for CC+rot.

We did not use rotation augmentations for these results.

Model Backbone 1-shot 5-shot

CC
Conv-4-64

53.72 ± 0.42% 70.96 ± 0.33%

CC+loc 54.30 ± 0.42% 71.58 ± 0.33%

CC
Conv-4-512

55.58 ± 0.42% 73.52 ± 0.33%

CC+loc 56.87 ± 0.42% 74.84 ± 0.33%

CC
WRN-28-10

58.43 ± 0.46% 75.45 ± 0.34%

CC+loc 60.71 ± 0.46% 77.64 ± 0.34%

PN
WRN-28-10

55.88 ± 0.49% 70.12 ± 0.40%

PN+loc 58.16 ± 0.49% 72.89 ± 0.39%

Table 4: Relative patch location as auxiliary loss on MiniIm-

ageNet. Average 5-way classification accuracies for the novel

classes with 95% confidence intervals (using 2000 episodes).

classes alone as well as on the simultaneous recognition of

both novel and base classes (All).

Relative patch location prediction as auxiliary loss. As

explained in §3.2.1, we consider a second self-supervised

task, namely relative patch location prediction. For simplic-

ity, we restrict its assessment to the CC algorithm for the

Conv-4-64 and Conv-4-512 backbones, which in our experi-

ments proved to perform better than PN and to be simpler to

train. Also, we consider only the MiniImageNet dataset and

not CIFAR-FS since the latter contains thumbnail images of

size 32 × 32 from which it does not make sense to extract

patches: their size would have to be less than 8× 8 pixels,

which is too small for the evaluated architectures. We report

results on MiniImageNet in Table 4. As a strong baseline

we used CC models without self-supervision but with the

auxiliary patch-based classification loss described in §4.1.

Based on the results of Table 4 we observe that: (1) rel-

ative patch location also manages to improve the few-shot

classification performance and, as in the rotation prediction

case, the improvement is more significant for high capacity

network architectures. (2) Also, comparing to the rotation

prediction case, the relative patch location, in general, offers

smaller performance improvement.

Comparison with prior work. In Tables 5, 6, and 7,

we compare our approach with prior few-shot methods on

the MiniImageNet, CIFAR-FS, and tiered-MiniImageNet

datasets respectively. For our approach we used CC and

rotation prediction self-supervision, which before gave the

8064



Models Backbone 1-shot 5-shot

MAML [10] Conv-4-64 48.70 ± 1.84% 63.10 ± 0.92%

Prototypical Nets [53] Conv-4-64 49.42 ± 0.78% 68.20 ± 0.66%

LwoF [12] Conv-4-64 56.20 ± 0.86% 72.81 ± 0.62%

RelationNet [59] Conv-4-64 50.40 ± 0.80% 65.30 ± 0.70%

GNN [11] Conv-4-64 50.30% 66.40%

R2-D2 [2] Conv-4-64 48.70 ± 0.60% 65.50 ± 0.60%

R2-D2 [2] Conv-4-512 51.20 ± 0.60% 68.20 ± 0.60%

TADAM [41] ResNet-12 58.50 ± 0.30% 76.70 ± 0.30%

Munkhdalai et al. [38] ResNet-12 57.10 ± 0.70% 70.04 ± 0.63%

SNAIL [51] ResNet-12 55.71 ± 0.99% 68.88 ± 0.92%

Qiao et al. [44]∗ WRN-28-10 59.60 ± 0.41% 73.74 ± 0.19%

LEO [49]∗ WRN-28-10 61.76 ± 0.08% 77.59 ± 0.12%

CC+rot Conv-4-64 54.83 ± 0.43% 71.86 ± 0.33%

CC+rot Conv-4-512 56.27 ± 0.43% 74.30 ± 0.34%

CC+rot WRN-28-10 62.93 ± 0.45% 79.87 ± 0.33%

CC+rot+unlabeled WRN-28-10 64.03 ± 0.46% 80.68 ± 0.33%

Table 5: Comparison with prior work on MiniImageNet. ∗:

using also the validation classes for training. For the description of

the CC+rot+unlabeled model see §4.3.

Models Backbone 1-shot 5-shot

PN [53]‡ Conv-4-64 62.82 ± 0.32% 79.59 ± 0.24%

PN [53]‡ Conv-4-512 66.48 ± 0.32% 80.28 ± 0.23%

MAML [10]† Conv-4-64 58.90 ± 1.90% 71.50 ± 1.00%

MAML [10]† Conv-4-512 53.80 ± 1.80% 67.60 ± 1.00%

RelationNet [59]† Conv-4-64 55.00 ± 1.00% 69.30 ± 0.80%

GNN [11]† Conv-4-64 61.90% 75.30%

GNN [11]† Conv-4-512 56.00% 72.50%

R2-D2 [2] Conv-4-64 60.00 ± 0.70% 76.10 ± 0.60%

R2-D2 [2] Conv-4-512 64.00 ± 0.80% 78.90 ± 0.60%

CC+rot Conv-4-64 63.45 ± 0.31% 79.79 ± 0.24%

CC+rot Conv-4-512 65.87 ± 0.30% 81.92 ± 0.23%

CC+rot WRN-28-10 76.09 ± 0.30% 87.83 ± 0.21%

Table 6: Comparison with prior work in CIFAR-FS. †: results

from [2]. ‡: our implementation.

Models Backbone 1-shot 5-shot

MAML [10]† Conv-4-64 51.67 ± 1.81% 70.30 ± 0.08%

Prototypical Nets [53] Conv-4-64 53.31 ± 0.89% 72.69 ± 0.74 %

RelationNet [59]† Conv-4-64 54.48 ± 0.93% 71.32 ± 0.78%

Liu et al. [34] Conv-4-64 57.41 ± 0.94% 71.55 ± 0.74

LEO [49] WRN-28-10 66.33 ± 0.05% 81.44 ± 0.09 %

CC WRN-28-10 70.04 ± 0.51% 84.14 ± 0.37%

CC+rot WRN-28-10 70.53 ± 0.51% 84.98 ± 0.36%

Table 7: Rotation prediction as auxiliary loss on tiered-

MiniImageNet. Average 5-way accuracies for the novel classes

with 95% confidence (using 2000 episodes). †: results from [34].

best results. In all cases we achieve state-of-the-art results

surpassing prior methods with a significant margin. For in-

stance, in the 1-shot and 5-shot settings of MiniImageNet

we outperform the previous leading method LEO [49] by

MiniImageNet CIFAR-FS

Model 1-shot 5-shot 1-shot 5-shot

CC+rot 62.93 ± 0.46% 79.87 ± 0.33% 75.38 ± 0.31% 87.25 ± 0.21%

rot→CC 61.95 ± 0.45% 79.25 ± 0.35% 74.90 ± 0.31% 86.72 ± 0.22%

Table 8: Self-supervised (rotation) pretraining with WRN-28-10.

around 1.2 and 2.3 percentage points respectively.

Comparison with self-supervised pre-training. An al-

ternative way to exploit self-supervision in few-shot learning

is by self-supervized pre-training of the feature extractor of

a few-shot model. In Table 8 we provide such results for

CC and the rotation prediction task (entry ‘rot→CC’) using

the high-capacity WRN-28-10 backbone. We observe that it

offers smaller improvements than the advocated approach.

More detailed results are provided in Appendix A.

4.3. Semi­supervised few­shot learning

Next, we evaluate the proposed semi-supervised training

approach. In these experiments we use CC models with

rotation prediction self-supervision. We perform two types

of semi-supervised experiments: (1) training with unlabeled

data from the same base classes, and (2) training with unla-

beled data that are not from the base classes.

Training with unlabeled data from the same base classes.

From the base classes of MiniImageNet, we use only a

small percentage of the training images (e.g., 5% of im-

ages per class) as annotated training data, while the rest

of the images (e.g., 95%) are used as the unlabeled data

in the semi-supervised training. We provide results in the

first two sections of Table 9. The proposed semi-supervised

training approach is compared with a CC model without

self-supervision and with a CC model with self-supervision

but no recourse to the unlabeled data. The results demon-

strate that indeed, our method manages to improve few-

shot classification performance by exploiting unlabeled im-

ages. Compared to Ren et al. [46], which also propose a

semi-supervised method, our method with Conv-4-64 and

20% annotations achieves better results than their method

with Conv-4-64 and 40% annotations (i.e., our 51.21% and

68.89% MiniImageNet accuracies vs. their 50.41% and

64.39% for the 1-shot and 5-shot settings respectively).

Training with unlabeled data not from the base classes.

This is a more realistic setting, since it is hard to constrain

the unlabeled images to be from the same classes as the

base classes. For this experiment, we used as unlabeled

data the training images of the tiered-MiniImageNet base

classes minus the classes that are common with the base, val-

idation, or test classes of MiniImageNet. In total, 408, 726
unlabeled images are used from tiered-MiniImageNet. We

8065



Rot M T µ = 5% µ = 10% µ = 20%

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Conv-4-64

41.87% 57.76% 45.63% 62.29% 49.34% 66.48%

X 43.26% 58.88% 47.57% 64.03% 50.48% 67.92%

X X 45.41% 62.14% 47.75% 64.93% 51.21% 68.89%

WRN-28-10

39.05% 54.89% 44.59% 61.42% 49.52% 67.81%

X 43.60% 60.52% 49.05% 67.35% 53.66% 72.69%

X X 47.25% 65.07% 52.90% 71.48% 56.79% 74.67%

X X 46.95% 64.93% 52.66% 71.13% 55.37% 73.66%

Table 9: Semi-supervised training with rotation prediction as

self-supervision on MiniImageNet. µ is the percentage of the

base class training images of MiniImageNet that are used as anno-

tated data during training. Rot indicates adding self-supervision, M

indicates using as unlabeled data the (rest of) MiniImageNet train-

ing dataset, and T using as unlabeled data the tiered-MiniImageNet

training dataset.

Models Backbone 1-shot 5-shot 20-shot 50-shot

CACTUs [24] Conv-4-64 39.90% 53.97% 63.84% 69.64%

CC

Conv-4-64

53.63% 70.74% 80.03% 82.61%

Rot 41.70% 58.64% 68.61% 71.86%

Loc 37.75% 53.02% 61.38% 64.15%

CC

WRN-28-10

58.59% 76.59% 82.70% 84.27%

Rot 43.43% 60.86% 69.82% 72.20%

Loc 41.78% 59.10% 67.86% 70.32%

Table 10: Evaluating self-supervised representation learning

methods on few-shot recognition on MiniImageNet. Rot refers

to the rotation prediction task, Loc to the relative patch location

task, and CC to the supervised method of Cosine Classifiers.

report results in the last row of Table 9. Indeed, even in this

difficult setting, our semi-supervised approach is still able

to exploit unlabeled data and to improve the classification

performance. Furthermore, we did an extra experiment in

which we trained a WRN-28-10 based model using 100%

of MiniImageNet training images and unlabeled data from

tiered-MiniImageNet. This model achieved 64.03% and

80.68% accuracies for the 1-shot and 5-shot settings re-

spectively on MiniImageNet (see entry ‘CC+rot+unlabeled’

of Table 5), which improves over the already very strong

CC+rot model (see Table 5).

4.4. Few­shot object recognition to assess self­
supervised representations

Given that our framework allows the easy combination

of any type of self-supervised learning approach with the

adopted few-shot learning algorithms, we also propose to

use it as an alternative way for comparing/evaluating the

effectiveness of different self-supervised approaches. To this

end, the only required change to our framework is to use

uniquely the self-learning loss (i.e., no labeled data is now

used) in the first learning stage (for implementation details

see Appendix B.2). The performance of the few-shot model

resulting from the second learning stage can then be used for

evaluating the self-supervised method under consideration.

Comparing competing self-supervised techniques is not

straightforward since it must be done by setting up another,

somewhat contrived task that exploits the learned represen-

tations [6, 28]. Instead, given the very similar goals of few-

shot and self-supervised learning, we argue that the proposed

comparison method could be more meaningful for assess-

ing different self-supervised features. Furthermore, (1) it

obtains more robust statistics aggregated over evaluations

of thousands of episodes with multiple different configura-

tions of classes and training/testing samples, (2) it is very

fast (just a few minutes to evaluate), and (3) it is signifi-

cantly simpler than other protocols (no need to adapt the

architecture to a new task or fine-tune parameters, hence no

hyper-parameter tuning). Those advantages might make the

protocol practically useful to self-supervision research.

To illustrate our point, we provide in Table 10 quan-

titative results of this type of evaluation on the MiniIma-

geNet dataset, for the self-supervision methods of rotation

prediction and relative patch location prediction. For self-

supervised training we used the training images of the base

classes of MiniImageNet and for the few-shot classification

step we used the test classes of MiniImageNet. We ob-

serve that the explored self-supervised approaches achieve

relatively competitive classification performance when com-

pared to the supervised method of CC and obtain results

that are on par or better than other, more complex, unsuper-

vised systems. We leave as future work a more detailed and

thorough comparison of self-learned representations in this

evaluation setting.

5. Conclusions

Inspired by the close connection between few-shot and

self-supervised learning, we propose to add an auxiliary

loss based on self-supervision during the training of few-

shot recognition models. The goal is to boost the ability of

the latter to recognize novel classes using only few training

data. Our detailed experiments on MiniImagenet, CIFAR-FS,

tiered-MiniImagenet, and ImageNet-FS few-shot datasets

reveal that indeed adding self-supervision leads to significant

improvements on the few-shot classification performance,

which makes the employed few-shot models achieve state-

of-the-art results. Furthermore, the annotation-free nature

of the self-supervised loss allows us to exploit diverse un-

labeled data in a semi-supervised manner, which further

improves the classification performance. Finally, we show

that the proposed framework can also be used for evaluating

self-supervised or unsupervised methods based on few-shot

object recognition.

8066



References

[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez,

Matthew W Hoffman, David Pfau, Tom Schaul, and Nando

de Freitas. Learning to learn by gradient descent by gradient

descent. In NIPS, 2016. 2

[2] Luca Bertinetto, João Henriques, Philip Torr, and Andrea

Vedaldi. Meta-learning with differentiable closed-form

solvers. In ICLR, 2019. 5, 7

[3] Luca Bertinetto, João Henriques, Jack Valmadre, Philip Torr,

and Andrea Vedaldi. Learning feed-forward one-shot learners.

In NIPS, 2016. 2

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan Yuille. Deeplab: Semantic im-

age segmentation with deep convolutional nets, atrous con-

volution, and fully connected CRFs. IEEE Trans. PAMI,

40(4):834–848, 2018. 1

[5] Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, and

Neil Houlsby. Self-supervised generative adversarial net-

works. arXiv preprint arXiv:1811.11212, 2018. 2

[6] Carl Doersch, Abhinav Gupta, and Alexei Efros. Unsuper-

vised visual representation learning by context prediction. In

ICCV, 2015. 1, 2, 4, 8

[7] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-

miller, and Thomas Brox. Discriminative unsupervised fea-

ture learning with convolutional neural networks. In NIPS,

pages 766–774, 2014. 1

[8] Li Fei-Fei, Rob Fegus, and Pietro Perona. A Bayesian ap-

proach to unsupervised one-shot learning of object categories.

In ICCV, 2003. 1

[9] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning

of object categories. IEEE Trans. PAMI, 28(4):594–611, 2006.

1

[10] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

arXiv preprint arXiv:1703.03400, 2017. 2, 7

[11] Victor Garcia and Joan Bruna. Few-shot learning with graph

neural networks. arXiv preprint arXiv:1711.04043, 2017. 2,

7

[12] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot

visual learning without forgetting. In CVPR, 2018. 2, 3, 7

[13] Spyros Gidaris and Nikos Komodakis. Generating classifica-

tion weights with GNN denoising autoencoders for few-shot

learning. In CVPR, 2019. 2

[14] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-

pervised representation learning by predicting image rotations.

In ICLR, 2018. 1, 2, 4

[15] Clément Godard, Oisin Mac Aodha, and Gabriel Brostow.

Unsupervised monocular depth estimation with left-right con-

sistency. In CVPR, 2017. 2

[16] Faustino Gomez and Jürgen Schmidhuber. Evolving modular

fast-weight networks for control. In ICANN, 2005. 2

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

2

[18] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.

arXiv preprint arXiv:1609.09106, 2016. 2

[19] Chunrui Han, Shiguang Shan, Meina Kan, Shuzhe Wu, and

Xilin Chen. Face recognition with contrastive convolution. In

ECCV, 2018. 2

[20] Bharath Hariharan and Ross Girshick. Low-shot visual recog-

nition by shrinking and hallucinating features. arXiv preprint

arXiv:1606.02819, 2016. 5, 6

[21] Bharath Hariharan and Ross Girshick. Low-shot visual recog-

nition by shrinking and hallucinating features. In ICCV, 2017.

2

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

1, 5

[23] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 3

[24] Kyle Hsu, Sergey Levine, and Chelsea Finn. Unsupervised

learning via meta-learning. In ICLR, 2019. 8

[25] Łukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Ben-

gio. Learning to remember rare events. arXiv preprint

arXiv:1703.03129, 2017. 2

[26] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese neural networks for one-shot image recognition. In

ICML Deep Learning Workshop, 2015. 1, 2

[27] Iasonas Kokkinos. Ubernet: Training a universal convolu-

tional neural network for low-, mid-, and high-level vision

using diverse datasets and limited memory. In CVPR, 2017. 2

[28] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-

visiting self-supervised visual representation learning. arXiv

preprint arXiv:1901.09005, 2019. 4, 8

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Ima-

genet classification with deep convolutional neural networks.

In NIPS, 2012. 1

[30] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and

Joshua Tenenbaum. One shot learning of simple visual con-

cepts. In An. Meeting of the Cognitive Science Society, 2011.

1

[31] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich.

Learning representations for automatic colorization. In ECCV,

2016. 1, 2

[32] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-

Hsuan Yang. Unsupervised representation learning by sorting

sequences. In ICCV, 2017. 2

[33] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei

Bursuc. Dense classification and implanting for few-shot

learning. In CVPR, 2019. 2

[34] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, and

Yi Yang. Transductive propagation network for few-shot

learning. arXiv preprint arXiv:1805.10002, 2018. 7

[35] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter

Abbeel. A simple neural attentive meta-learner. In ICLR,

2018. 2

[36] Ishan Misra, Lawrence Zitnick, and Martial Hebert. Shuf-

fle and learn: unsupervised learning using temporal order

verification. In ECCV, 2016. 2

[37] Taylor Mordan, Nicolas Thome, Gilles Henaff, and Matthieu

Cord. Revisiting multi-task learning with rock: a deep resid-

ual auxiliary block for visual detection. In NIPS, 2018. 2

8067



[38] Tsendsuren Munkhdalai and Hong Yu. Meta networks. arXiv

preprint arXiv:1703.00837, 2017. 2, 7

[39] Alex Nichol, Joshua Achiam, and John Schulman. On first-

order meta-learning algorithms. CoRR, abs/1803.02999, 2018.

2

[40] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of

visual representations by solving jigsaw puzzles. In ECCV,

2016. 1, 2

[41] Boris N Oreshkin, Alexandre Lacoste, and Pau Rodriguez.

Tadam: Task dependent adaptive metric for improved few-

shot learning. arXiv preprint arXiv:1805.10123, 2018. 7

[42] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei Efros. Context encoders: Feature learning

by inpainting. In CVPR, 2016. 2

[43] Hang Qi, Matthew Brown, and David G Lowe. Low-shot

learning with imprinted weights. In CVPR, 2018. 2, 3

[44] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan Yuille. Few-

shot image recognition by predicting parameters from activa-

tions. arXiv preprint arXiv:1706.03466, 2, 2017. 2, 7

[45] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. ICLR, 2017. 2

[46] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,

Kevin Swersky, Joshua Tenenbaum, Hugo Larochelle, and

Richard Zemel. Meta-learning for semi-supervised few-shot

classification. arXiv preprint arXiv:1803.00676, 2018. 5, 7

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with region

proposal networks. In NIPS, 2015. 1

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 5

[49] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol

Vinyals, Razvan Pascanu, Simon Osindero, and Raia Hadsell.

Meta-learning with latent embedding optimization. arXiv

preprint arXiv:1807.05960, 2018. 7

[50] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan

Wierstra, and Timothy Lillicrap. Meta-learning with memory-

augmented neural networks. In ICML, 2016. 2

[51] Adam Santoro, David Raposo, David G Barrett, Mateusz Ma-

linowski, Razvan Pascanu, Peter Battaglia, and Tim Lillicrap.

A simple neural network module for relational reasoning. In

NIPS, 2017. 7

[52] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1

[53] Jake Snell, Kevin Swersky, and Richard S Zemel. Pro-

totypical networks for few-shot learning. arXiv preprint

arXiv:1703.05175, 2017. 2, 3, 7

[54] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In CVPR, 2015. 1

[55] Oriol Vinyals, Charles Blundell, Tim Lillicrap, and Daan

Wierstra. Matching networks for one shot learning. In NIPS,

2016. 1, 2, 5

[56] Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio

Guadarrama, and Kevin Murphy. Tracking emerges by col-

orizing videos. In ECCV, 2018. 2

[57] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath

Hariharan. Low-shot learning from imaginary data. arXiv

preprint arXiv:1801.05401, 2018. 2

[58] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-

ing to model the tail. In NIPS, 2017. 2

[59] Flood Sung Yongxin Yang, Li Zhang, Tao Xiang, Philip Torr,

and Timothy Hospedales. Learning to compare: Relation

network for few-shot learning. In CVPR, 2018. 2, 7

[60] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In BMVC, 2016. 5

[61] Richard Zhang, Phillip Isola, and Alexei Efros. Colorful

image colorization. In ECCV, 2016. 1, 2

[62] Tinghui Zhou, Matthew Brown, Noah Snavely, and David

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, 2017. 2

8068


