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Abstract

Video recognition models have progressed significantly

over the past few years, evolving from shallow classifiers

trained on hand-crafted features to deep spatiotemporal

networks. However, labeled video data required to train

such models has not been able to keep up with the ever

increasing depth and sophistication of these networks. In

this work we propose an alternative approach to learning

video representations that requires no semantically labeled

videos, and instead leverages the years of effort in collect-

ing and labeling large and clean still-image datasets. We

do so by using state-of-the-art models pre-trained on image

datasets as “teachers” to train video models in a distilla-

tion framework. We demonstrate that our method learns

truly spatiotemporal features, despite being trained only

using supervision from still-image networks. Moreover, it

learns good representations across different input modal-

ities, using completely uncurated raw video data sources

and with different 2D teacher models. Our method obtains

strong transfer performance, outperforming standard tech-

niques for bootstrapping video architectures with image-

based models by 16%. We believe that our approach opens

up new approaches for learning spatiotemporal representa-

tions from unlabeled video data.

1. Introduction

Visual recognition tasks have been revolutionized by the

resurgence of convolutional neural networks (CNNs) [30,

31] along with the availability of large and well-labeled

datasets [32, 40, 60]. This has caused a paradigm shift

in computer vision: rather than hand-designing better fea-

tures [4, 29, 33], most approaches now train deep models

that learn features themselves. However, deep learning has

been transformative not just because models perform well,

but because models also transfer. The dominant illustra-

tion of this is the use of ImageNet pre-training [40]. It is

a near-ubiquitous practice that yields strong improvements

across a wide range of tasks, from image classification on
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Figure 1: Learning video representations through transfer.

Traditional approaches to transfer learning follow the process on

left: train deep models on large well labeled datasets and finetune

on specific task or dataset of choice. This approach, while hugely

popular, significantly limits the types of models we can use for

our specific task, as they must be “compatible” with the model

pre-trained on the large dataset for the learned weights to transfer.

This problem is further accentuated in the case of videos, where

datasets tend to be small or weakly labeled, and models tend to in-

volve 3D/(2+1)D convolutions, making them “incompatible” with

image models. We propose an approach, DistInit, to transfer im-

age models to video as shown on the right. DistInit starts from

models pre-trained on well labeled image datasets with object or

scene labels, and use them as “teachers” for supervising video

models. Hence, the video model is able to learn spatio-temporal

features for video understanding, without needing an explicit ac-

tion label for that video.

small datasets [26] to pixel-labeling tasks like detection and

segmentation [19]. Such pre-training is an empirically ef-

fective approach to knowledge transfer, where “knowledge”

is manifested as labeled and curated datasets.

However, feature learning has not been quite as transfor-

mative for video understanding. Early attempts for human

action recognition [24] achieved only marginal improve-

ments over previous state-of-the-art hand-crafted features.

Since then, numerous deep architectures [8, 9, 15, 16, 44,

51] have been proposed. Interestingly, most performance

gains seem to arise from the recent introduction of large-

scale video datasets that are carefully curated and anno-

tated [3, 25], enabling effective pre-training. Our work in-

troduces simple but novel approaches for pre-training with
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unlabeled, uncurated videos. Our approach is motivated by

the following two questions:

1. What are the “right” labels for a video? Previous work

tends to manually defines action ontologies in a top-down

fashion [25, 28, 46] or else discovers classes from bottom-

up clustering [12, 57]. Action classes may be broad –

“washing” may include both washing one’s hands or wash-

ing a car [36]. Classes may also be fine-grained and nu-

anced, such as “snuggling with a pillow” [43]. Evidently,

the right action vocabulary is unclear and largely up for

debate. In contrast, object labels seem to much better un-

derstood, as they can exploit widespread linguistic knowl-

edge bases such as WordNet. Finally, humans appear able

to learn about behaviors and the dynamics of the world even

without such explicit action labels. In this work, we answer

this question by making use of objects to label videos.

2. How do we transfer the knowledge encoded in image

datasets [32, 40, 60] into video models? As discussed ear-

lier, the dominant approach is pre-training. However, be-

cause spatiotemporal networks structurally expect a space-

time video as input, they are difficult to (pre)train on im-

ages. As a result, many spacetime networks are intention-

ally designed with an image “backbone” that allows for pre-

training on images. Popular examples include two-stream

networks [45] and 3D CNNs that “inflate” 2D kernels to

3D [3, 9, 10]. However, this places severe restrictions on

the types of video architectures that can be explored. In-

stead, we introduce a general approach of knowledge trans-

fer by distillation, which allows us to transfer knowledge

from arbitrary image-based teachers to any spatiotemporal

architecture (Fig. 1). We refer to our approach as DistInit.

DistInit leads to a significant 16% improvement over

from-scratch training on the HMDB dataset, getting almost

half-way to the improvement provided by pretraining on a

fully-supervised dataset like Kinetics [25]. From-scratch

training is the defacto standard for state-of-the-art architec-

tures that can not be initialized or inflated from image archi-

tectures [51]. While large-scale video datasets like Kinetics

now provide an alternate path for pre-training, DistInit does

so without requiring any video data curation. As we show

in Section 4.3, it is able to learn competitive representations

from an internal uncurated dataset of random web videos.

This is in contrast to previous works [7, 13, 35] on unsu-

pervised learning that use ImageNet without labels but still

potentially benefit from the data curation.

2. Related Work

Feature learning: Video understanding, specifically for the

task of human action recognition, is a well studied prob-

lem in computer vision. Analogously to the progress of

image-based recognition methods, which have advanced

from hand-crafted features [4, 33] to modern deep net-

works [20, 45, 48], video understanding methods have also

evolved from hand-designed models [29, 53, 54] to deep

spatiotemporal networks [44, 49]. However, while image

based recognition has seen dramatic gains in accuracy, im-

provements in video analysis have been more modest. In

the still-image domain, deep models have greatly benefited

from the availability of well-labeled datasets, such as Ima-

geNet [40] or Places [60].

Video datasets: Until recently, video datasets have ei-

ther been well-labeled but small [28, 43, 46], or large but

weakly-labeled [1, 24]. A recently introduced dataset, Ki-

netics [25], is currently the largest well-annotated dataset,

with around 300K videos labeled into 400 categories (we

note a larger version with 600K videos in 600 categories

was recently released). It is nearly two orders of magni-

tude larger than previously established benchmarks in video

classification [28, 46]. As expected, pre-training networks

on this dataset has yielded significant gains in accuracy [3]

on many standard benchmarks [28, 43, 46], and have won

CVPR 2017 ActivityNet and Charades challenges. How-

ever, it is worth noting that this dataset was collected at a

significant curation and annotation effort [25].

Video labels: The challenge in generating large-scale well-

labeled video datasets stems from the fact that a human an-

notator has to spend much longer to label a video compared

to a single image. Previous work has attempted to reduce

this labeling effort through heuristics [59], but these meth-

ods still require a human annotator to clean up the final la-

bels. There has also been some work in learning unsuper-

vised video representations [34, 42], however has typically

lead to inferior results compared to supervised features.

Pre-training: The question we pose is: since labeling im-

ages is faster, and since we already have large, well-labeled

image datasets such as ImageNet, can we instead use these

to bootstrap the learning of spatiotemporal video architec-

tures? Unsurprisingly, various previous approaches have

attempted this. The popular two-stream architecture [44]

uses individual frames from the video as input. Hence it

initializes the RGB stream of the network with weights pre-

trained on ImageNet and then fine-tunes them for action

classification on the action dataset. More recent variants

of two-stream architectures have also initialized the flow

stream [55] from weights pretrained on ImageNet by view-

ing optical flow as a grayscale image.

Inflation: However, such initializations are only applica-

ble to video models that use 2D convolutions, analogous

to those applied in CNNs for still-images. What about

more complex, truly spatiotemporal models, such as 3D

convolutional architectures [49]? Until recently, such mod-

els have largely been limited to pre-training on large but

weakly-labeled video datasets, such as Sports1M [24]. Re-

cent work [3, 9] proposed a nice alternative, consisting of

inflating standard 2D CNNs kernels to 3D, by simply repli-

cating the 2D kernels in time. While effective in getting
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strong performance on large benchmarks, on small datasets

this approach tends to bias video models to be close to static

replicas of the image models. Moreover, such initializa-

tion constrains the 3D architecture to be identical to the

2D CNN, except for the additional third dimension in ker-

nels. This effectively restricts the design of video models

to extensions of what works best in the still-image domain,

which may not be the architectures for video analysis.

Distillation: Our approach is inspired by techniques that

distill teacher networks into student models [21]. However,

distillation typically trains smaller student models on the

same data distribution used to train the teacher (with the

goal of increasing efficiency). Our approach instead focuses

on representation learning through pre-training. Our stu-

dents are larger (3D vs 2D CNNs) and geared for different

data domains (videos vs images). The most related work

may be cross-modal distillation [18], which transfers super-

vision from RGB to flow or depth modalities. Importantly,

such work focuses on the same end task, such as object de-

tection. In contrast, we focus on task distillation, where

tasks are quite different (object detection versus action clas-

sification). From this perspective, our philosophy aligns

with taskonomies [58], which advocates the use of different

pre-training tasks for a variety of target tasks. But rather

than advocating pre-training, we pursue distillation since

it allows for arbitrary changes in network topology. Other

works have also used similar distillation frameworks for ac-

tion recognition tasks, such as [5] which transfers super-

vision from frames to videos by solving a correspondence

problem. Our approach is much simpler, and directly trans-

fers supervision by matching label distributions. Finally,

prior works have also shown improvements using the 2D

image-based networks (‘teachers’, in our context) directly,

as additional features for action recognition [6, 14], hence

reinforcing our observation that scene/object information is

a very useful cue for video understanding.

Domain adaptation: Our work is also related to techniques

for domain adaptation (DA) [37, 41], where the goal is

adapting a network to a new data distribution. Our for-

mulation differs in that we also adapt to new tasks (object

classification vs action recognition) and network architec-

tures (2D CNNs vs 3D CNNs). We show extensive exper-

iments with standard benchmarks and show significant im-

provements over inflation and other previous approaches in

learning video representations for action recognition.

3. Our Approach

We now describe our approach in detail. To reiterate,

our goal is to learn video representations without using

any video annotations. We do so by leveraging pre-trained

2D networks, using them to supervise or “teach” the video

models. Hence, we refer to the 2D pre-trained networks

as “teachers” and our target video network as “student”.

Frame(s)

selection 

Spatio-temporal video network (“student”)

Image Networks (“teachers”)

“driveway”

“basketball hoop”

Cross Entropy

Figure 2: DistInit network architecture. We use random frames

from the input clip to generate soft-labels for the video model,

using an arbitrary number of image-based teachers networks. The

student tries to match the targets provided by the teachers.

We make no assumption over the respective architectures

of these models, i.e., we do no constrain the structure of the

3D network to be merely a 3D version of the 2D networks

it learns from or to have a structure compatible with them.

Figure 2 depicts the network architecture used to train

the student network. We start with teacher networks trained

on standard image-level tasks, such as image classification

on ImageNet. While in this work we primarily focus on

classification, our architecture is generic and can also ben-

efit from teachers trained on spatial tasks such as detection,

keypoint estimation and so on, with the only difference be-

ing the definition of the distillation loss function. Also,

our architecture is naturally amenable to work with an arbi-

trary number of teachers, which can be used in a multi-task

learning framework to distill information from multiple do-

mains into the student. Throughout the training process,

these teacher networks are kept fixed, in “test” mode, and

are used to extract a feature representation from the video

to be used as a “target” to supervise the student network.

Since teacher networks are designed to find objects in

images, it is not obvious how to use them to extract fea-

tures for actions in video. We propose a simple solution:

pre-train the spatiotemporal action network for finding ob-

jects in frames of a video. However, our teacher networks

are designed to work over images, so how do we apply

them on a video? We experiment with standard approaches

from the literature, including uniform or random sampling

of frames [44], as well as averaging predictions from multi-

ple different frames [55]. In this work we use the last-layer

features in the form of normalized softmax predictions or

(unnormalized) logits. In case of multiple frames, we aver-

age the teacher logits before computing a normalized pre-

diction target. The student network then takes the complete

video clip as input. We train it to be able to predict the

features or probability distribution produced by the teacher.

For this purpose, we define the last layer in the student net-

work to be a linear layer that takes the final spatiotemporally

averaged feature tensor and maps it to a number of units that
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matches the dimensionality of the output generated by the

teacher. In case of multiple teachers, we define a linear layer

per teacher, and optimize all losses jointly.

To formalize, let us denote a video as x = {x1, . . . xT },

where xt is the tth frame. In our problem formulation, we

have access to a teacher that reports a prediction label at

each frame. For simplicity, we assume that the teacher re-

turns a (softmax) distribution over K classification labels.

We generate a distribution over labels for a video by (1) av-

eraging the per-frame logits for the kth class zk(xt) and (2)

passing the average through a softmax function with tem-

prature τ (typically τ = 1):

yk(x) =
e

1

τT

∑
t
zk(xt)

∑
l
e

1

τT

∑
t
zl(xt)

[Temporal Averaging] (1)

The resulting distribution is then used as soft targets for

training weights w associated with a student network f of

arbitrary architecture by means of the following objective:

Loss(w) = −
∑

k

yk(x) log fk(x;w) [Soft Targets]

(2)

where fk(x;w) is the student softmax distribution for label

k. Finally, we explore multi-source knowledge distillation

by adding together losses from different image-based teach-

ers:

min
w

∑

i

Lossi(w) [Multi-Source Distillation] (3)

In our experiments, we explore teachers trained for object

classification (ImageNet) and scene classification (Places).

We train the network using loss functions inspired from

the network distillation literature [2, 21]. When using the

teacher network to produce a probability distribution, we

train the student to produce a matching distribution by in-

curring a cross entropy loss between the two distributions.

As suggested in [21], we also tried using different values of

temperature (τ ) to scale the logits before computing soft-

max and cross entropy, but found temperature value of 1

to perform best in our experiments. We also experimented

with the a mean squared loss on the logits (before softmax

normalization), as suggested in [2], and compare perfor-

mance in Section 4.

Architecture Details: We use recent, state-of-the-art, net-

work architectures for all experiments and comparisons.

For the still-image teacher networks, we use the ResNet-

50 [20] architecture, trained on different image datasets

such ImageNet 1K [40] and Places 365 [60]. For the spa-

tiotemporal (video) student architectures, we first experi-

ment with a variant of the Res3D [50] architecture. Res3D

is an improved version of the popular C3D [49] using resid-

ual connections. We denote a N -layer Res3D model as

Res3D-N , which is compatible with the standard ResNet-

N [20] architecture. Since there is a one-to-one correspon-

dence between such 2D and 3D models, the 3D models

can also be initialized by inflating the learned weights from

2D models (e.g., for each channel, replicate the 2D filter

weights along the temporal dimension to produce a 3D con-

volutional filter). Similar ideas of inflating 2D models to 3D

have been proposed previously for Inception-style architec-

tures [3], along with initialization techniques from corre-

sponding 2D models [3, 9, 10]. The existence of a 1-to-1

mapping between the 2D and 3D models used in our exper-

iments allows us to compare our approach to the method of

inflation for initialization. However, we stress that unlike

inflation, our method is applicable even in scenarios where

such 1-to-1 mapping does not hold.

(2+1)D CNNs: More recently, full 3D models have been su-

perseded by (2+1)D architectures [51], where each 3D ker-

nel is decomposed into a 2D spatial component followed by

a 1D temporal filter. Similar models have also been pro-

posed previously [47], and are also known as P3D [38]

or S3D [56] architectures. These models have proven

to be more efficient, with much fewer parameters, and

more effective on various standard benchmarks [51, 56].

However, these models no longer conform to standard 2D

architectures because they contain additional conv and

batch norm layers that extend over time. These parame-

ters do not exist in corresponding 2D models and so cannot

be initialized with images. Nevertheless, our distillation re-

mains applicable even in this scenario. In this work, we

refer to such networks using R(2+1)D-N notation, for N -

deep architecture.

Implementation Details: For all experiments, we use the

hyperparameter values described in [51]. For distillation

pre-training, we use the hyper-parameter setup for “Kinetics

from-scratch training.” We use distributed Sync-SGD [17]

over 16 × 4 GPUs, starting with LR=0.01, and dropping it

by 10× every 10 epochs. Weight decay is set to 10−4. We

train for a total of 45 epochs, where each epoch is defined as

1M iterations. The video model is learned on 8-frames clips

of 112 pixels. The network has depth of 18, which enables

faster experimentation compared to the best model reported

in [51] which uses 32 frames and has a depth of 34 layers.

The batch size used for Kinetics training is 32/GPU, which

we reduce to 24/GPU to accommodate the additional mem-

ory requirements for the teacher networks. For the fine-

tuning experiment on smaller datasets like HMDB, we use

Sync-SGD with 8 × 2 GPUs, starting with LR=0.002, an

dropping it by 10× every 2 epochs. The weight decay is set

to 5× 10−3. We train 8 epochs, with each epoch defined as

40K steps. When training from scratch, we use initial LR

of 0.01 with a step every 10 epochs, trained for total of 45

epochs.
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4. Experiments

We now experimentally evaluate our system. We start

by introducing the datasets and benchmarks used for train-

ing and evaluation in Section 4.1. We then compare DistInit

with inflating 2D models for initialization in Section 4.2.

Next we ablate the various design choices in DistInit in Sec-

tion 4.3, and finally compare to previous state of the art on

UCF-101 [46] and HMDB-51 [28] in Section 4.4.

4.1. Datasets and Evaluation

Our method involves two stages, as typical in video un-

derstanding literature [3]: pre-training on a large, unlabeled

corpus of videos using still-image models as “teachers”, fol-

lowed by fine-tuning on the training split of a labeled target

dataset (‘test bed’). After training, we evaluate the perfor-

mance on the test set of the target dataset.

Unlabeled source videos: We experiment with a variety of

different unlabeled video corpuses in Section 4.3, including

Kinetics [25], Sports1M [24] and an internal set of videos.

While some of these datasets do come with semantic (ac-

tion) labels, we ignore such annotations and only use the

raw videos. Kinetics and Sports1M contain about 300K and

1.1M videos, respectively. In this work, we drop any la-

bels these datasets come with, and only use the videos as a

large, unlabeled corpus to train video representations. The

internal video set includes 1M videos without any seman-

tic labels and randomly sampled from a larger collection.

We use these diverse datasets to show that our method is

not limited to any form of data curation, and can work with

truly in-the-wild videos.

Target test videos: HMDB-51 [28] contains 6766 realistic

and varied video clips from 51 action classes. Evaluation is

performed using average classification accuracy over three

train/test splits from [23], each with 3570 train and 1530 test

videos. UCF-101 [46] consists of 13320 sports video clips

from 101 action classes, also evaluated using average clas-

sification accuracy over 3 splits. We use the HMDB split

1 for ablative experiments, and report the final performance

on all splits for HMDB and UCF in Section 4.4.

4.2. DistInit vs Inflation

Inflation: We first compare our proposed approach to in-

flation [3, 9], i.e., initializing video models from 2D mod-

els by inflating 2D kernels to 3D via replication over time.

Note that inflation is constrained to operate on 3D models

that have a one-to-one correspondence with the 2D model.

Hence, we use a Res3D-18 model, which is compatible for

direct inflation from ResNet-18 models. We experiment

with publicly available ImageNet and PlaceNet models. We

compare it with our distillation approach in Table 1, trained

using an ImageNet pretrained model as the teacher. Distil-

lation improves performance by 15% over a model trained

Model Initialization Per clip Top 1 Top 5

Res3D-18 Scratch 24.6 25.4 55.2

Res3D-18 ImageNet inflated 32.5 35.8 66.2

Res3D-18 PlaceNet inflated 32.5 35.6 66.2

Res3D-18 DistInit (ours) 36.6 39.9 73.5

R(2+1)D-18 Scratch 22.0 24.1 53.1

R(2+1)D-18 DistInit (ours) 37.8 40.3 74.4

R(2+1)D-18 Kinetics pre-training - 51.0 -

Table 1: Distillation vs Inflation. As described in Section 4.2,

our distillation approach outperforms training video models from

scratch or initializing them by inflating 2D models. We evaluate

using percentage accuracy on the HMDB-51 dataset, Split 1. The

models used are 18-layer Res3D and R(2+1)D, over 8-frame input,

trained with cross-entropy loss (described in Section 4.3). The

DistInit training is done using 2D network trained on ImageNet.

from scratch, and 4% over a model trained with inflated

weights (the current best-practice for training such models).

(2+1)D: More importantly, our approach can also be used

to initialize state-of-the-art temporal architectures such as

R(2+1)D [51], which do not have a natural 2D counter-

part. In such a setting, the current best practice is to ini-

tialize such networks from scratch. Here, distillation im-

proves performance by 16%. Finally, we also report the

model trained using actual Kinetics labels, and as expected,

that yields higher performance. Hence there is clear value

to the explicit manual supervision provided in such large-

scale datasets, but distillation appears to get us “half-way”

there.

Visualizations: At this point, it is natural to ask why the

distilled model outperforms current best-practices such as

inflation? We visualize the learned representation by plot-

ting the first layer conv filters in Figure 3. It can be seen

that our distilled model learns truly spatiotemporal filters

that vary in time, whereas inflation simply copies the same

filter over time. Such dynamic temporal variation is readily

present in the videos used for distillation, even when they

are not labelled with spatiotemporal action categories. Fil-

ters pre-trained with inflation initialization never see actual

video data, and so cannot encode such variation. In Fig-

ure 4 we also compare the filters learned by our R(2+1)D

model via distillation vs via fully-supervised training. Our

filters look quite similar to those learned through supervised

learning, showing the effectiveness of our approach. In

some sense, the improved performance of distillation can

be readily explained by more data – networks learning from

scratch see no data for pre-training, inflation networks see

ImageNet, while distilled networks see both Imagenet and

unlabeled videos. Our practical observation is that one can

use image-based teachers to pre-train on massively large,

unlabeled video datasets.

We can also analyze the effectiveness of distillation pre-

training, by visualizing the correlation of the representation
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(a) Ours (b) ImageNet inflated

Figure 3: Learned Res3D filters. We compare the learned first layer representation using our distillation approach, to inflation. For each,

we show the 64 conv 1 filters, for each time instance of the filter. As described in Section 4.2, our filters change in value over time,

indicating that they learn to look for some amount of temporal dynamics in the input video. This clearly contrasts with ImageNet-inflated

filters, which are exact copies over time, and so do not respond to any temporal change in pixel values.

Fully supervised (Kinetics) Distilled (ours)

Figure 4: Learned R(2+1)D filters. Similar to Figure 3, we show

the first layer conv filters for the R(2+1)D models. Note that 2.5D

conv layer contains a 2D convolution in space followed by 1D con-

volution in time, and in this visualization we are only showing the

former, i.e. the 45 2D conv filters that operate on the RGB im-

age. We observe that our distillation approach learns spatiotempo-

ral representations that are relatively similar to the fully supervised

model (compared to filters learned from Imagenet in Fig. 3).

we learn with the classes in the task of action recognition.

As explained in Figure 5, we can see that the last layer fea-

tures for the same action class tend to cluster together when

projected to 2D using tSNE [52].

4.3. Diagnostic Analysis

Design choices for the teacher network: We now ablate

the design choices for the teacher networks. Teacher net-

works are required to generate a target label to supervise

the video model being trained, by using images from the

video clip. We experiment with picking the center frame, a

random frame, or multiple random frames from the clip to

compute the targets. In case of multiple frames, we average

the logits before passing them through softmax to generate

the target distribution. We compare these methods in Ta-

ble 2, and observe higher performance when picking frames

randomly. This improvement can be due to less overfitting

through label augmentation. We use it in our final model.

Distillation loss: Next, we evaluate the different choices

for the loss function in distillation. As already explained in

Section 3, previous work has suggested different loss func-

tions for distillation tasks. We compare two popular ap-

proaches: KL divergence over distribution and l2 loss over

20 10 0 10 20 30

20

10
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20
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DistInit

30 20 10 0 10 20 30
30
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Full supervised

kiss sit kick_ball push sword stand sword_exercise pullup climb somersault

Figure 5: Learned high-level representation. While the filter

maps in Figure 3 and 4 can be used to interpret the low-level rep-

resentation learned by our model, we now try to probe the high

level representation by visualizing the last layer features. This fig-

ure shows tSNE [52] visualization of averaged last layer features

from the model trained with DistInit, and trained with full Kinetics

supervision. Each dot represents a video from HMDB training set,

and is color coded by the class of that video. For ease of visual-

ization, we picked 10 random classes to plot. Note that DistInit

is already able to segregate many videos into clusters correlated

with their action classes, without ever being trained on any action

labels! The fully supervised model naturally does better as it has

been trained on a large action dataset, Kinetics. This further sug-

gests DistInit leads to useful representation for classifying actions.

Model Pick strategy Per clip Top 1 Top 5

R(2+1)D-18 Center 37.8 40.3 74.4

R(2+1)D-18 Random 39.9 43.2 73.9

R(2+1)D-18 2 Random 39.6 44.0 73.5

Table 2: Video to Image. We compare different strategies of con-

verting the video into image(s) for extracting the target label. We

find strongest performance when picking random frames to gener-

ate the target distribution. Model used here is 18-layer R(2+1)D,

over 8-frame input, trained with cross-entropy loss (Section 4.3);

evaluated using percentage accuracy on HMDB-51 split 1.

logits. In the case of the former, we compute the softmax

distribution from the teacher networks, as well as from the

student branch that attempts to match that teacher, and use a

cross entropy between the two softmax distributions as the
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Loss function Per clip Top 1 Top 5

cross-entropy (over softmax) 37.8 40.3 74.4

mean squared error (over logits) 35.6 39.9 70.5

Table 3: Loss function for distillation. We compare different

loss functions for distillation, and find that the performance was

relatively stable with different choices. The model used here is a

18-layer R(2+1)D, over 8-frame input, evaluated using percentage

accuracy on HMDB-51 split 1.
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Figure 6: Accuracy variation with

entropy. Our results suggest that

if we use DistInit only on videos

for which the teacher is sufficiently

sure of its predictions (entropy <

2.7), we obtain slightly better per-

formance while ignoring 50% of the

input videos, making training faster.

objective to optimize. We find this objective can be well

optimized using the standard hyper-parameter setup used

for Kinetics training in [51]. In the case of the latter, we

skip the softmax normalization step and directly compute

the mean squared error between the last linear layers as the

objective. Since the initial loss values are much higher, we

needed to drop the learning rate by a factor of 10 to optimize

this model, with all the other parameters kept the same. As

Table 3 shows, we observe nearly similar downstream per-

formance with both.

Selecting confident predictions: As some recent work [39]

has shown, distillation techniques can benefit from using

only the most confident predictions for training the stu-

dent. We use the entropy of the predictions from the teach-

ers as a notion of their confidence. We implement this

confidence thresholding by setting a zero weight for the

loss on each example, for which the teacher is not confi-

dent, or has high-entropy predictions; effectively dropping

parts of the training data that are confusing for the teacher.

We show the performance on dropping different amounts

of data in Figure 6. The red curve shows a kernel den-

sity estimate (a PDF) of entropy values for an ImageNet

teacher on the Kinetics data. At any given entropy value

(e), it shows the relative likelihood of a data point to have

that entropy value, and
∫
e

−∞
f(x)dx (area under the curve

from −∞ to e) is the percentage of data with entropy ≤ e.

We experiment with setting different thresholds for drop-

ping the low-confidence data points during DistInit, and

show the downstream HMDB-51 split-1 performance in the

line plots. We found slightly better performance, even after

dropping nearly half the data, making training faster.

Varying the unlabeled dataset: We now try to evaluate

whether our method is dependent on any specific video data

Model Unlabeled set Size Per clip Top 1 Top 5

R(2+1)D-18 Kinetics [25] 0.3M 37.8 40.3 74.4

R(2+1)D-18 Sports1M [24] 1.1M 37.5 39.9 73.3

R(2+1)D-18 Kinetics+Sports1M 1.4M 38.0 41.8 75.3

R(2+1)D-18 Internal videos 1.0M 38.2 41.2 72.0

Table 4: Unlabeled data for distillation. This table shows that

our model is not limited to any specific source of unlabeled data,

and can also benefit from multiple sources of data. Size denotes

the number of unlabeled videos used from that set. Performance

reported on HMDB-51 split 1.

Model Initialization Per clip Top 1 Top 5

Res3D-18 Scratch 30.7 38.7 70.0

Res3D-18 ImageNet mean inflated 33.5 43.9 73.9

R(2+1)D-18 DistInit (ours) 42.6 49.2 81.2

Table 5: DistInit on Optical Flow. This table shows that our

model is also applicable to other modalities, like optical flow. Note

that the inflated initialization for the first layer (conv 1) was per-

formed by averaging the kernel on channel dimension, and then

replicating it two times. Reported on HMDB-51 split 1.

source, and if it can benefit from additional data sources.

We evaluate this in Table 4 and observe nearly similar per-

formance when using different sets of videos (without la-

bels) like Kinetics [25] and Sports1M [24]. We also exper-

iment with an internal set of videos downloaded from the

web, and still get strong DistInit performance. This shows

our method is not limited to any form of data curation, and

can learn from truly in-the-wild videos.

Using other teachers: Just as our model is capable of learn-

ing from more data, our model is also capable of using di-

verse supervision. We experiment with replacing the Ima-

geNet teacher with a model trained on PlaceNet [60], and

obtain 36.8% HMDB fine-tuning performance as opposed

to 40.3% before with ImageNet. Apart from the fact that

our model can learn from diverse sources of supervision,

this result shows that objects → actions semantic transfer is

more effective than scenes → actions. This makes sense as

human actions are typically informed more by the objects

in their environment, than the environment itself. We also

tried training with both ImageNet and PlaceNet teachers

jointly, and obtained a top-1 accuracy of 40.7%, suggesting

that there is little benefit of adding scene cues (from Places)

given object information (from ImageNet). However, teach-

ers from unrelated domains are likely to provide more com-

plementary information and lead to higher improvements.

Different input modalities: One of the biggest advantages

of our method is that it is applicable to learn representa-

tions for any arbitrary input data modality. We experiment

with optical flow, which still contributes to significant per-

formance improvements on video tasks, even with modern

video architectures, across different datasets [3]. Previous

work [3, 55] has used ImageNet initialization for networks
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Model Architecture #frames Pre-training Split 1 3-split avg

Misra et al. [34] AlexNet [27] 1 Scratch - 13.3

Misra et al. [34] AlexNet [27] 1 Tuple verify [34] - 18.1

Misra et al. [34] AlexNet [27] 1 ImageNet - 28.5

Two-stream (RGB) [11, 44] VGG-M [45] 1 ImageNet - 40.5

C3D [3] Custom 16 Scratch 24.3 -

LSTM [3] BN-Inception [22] - ImageNet 36.0 -

Two stream (RGB) [3] BN-Inception [22] 1 ImageNet 43.2 -

I3D (RGB) [3] BN-Inception [22] 64 ImageNet 49.8 -

Ours (RGB) R(2+1)D-18 [51] 32 DistInit 54.9 54.8

(a) HMDB-51

Model Architecture #frames Pre-training Split 1 3-split avg

Misra et al. [34] AlexNet [27] 1 Scratch - 38.6

Misra et al. [34] AlexNet [27] 1 Tuple verification [34] - 50.2

Two-stream (RGB) [11, 44] VGG-M [45] 1 ImageNet - 73.0

C3D [3] Custom 16 Scratch 51.6 -

LSTM [3] BN-Inception [22] - ImageNet 81.0 -

Two stream (RGB) [3] BN-Inception [22] 1 ImageNet 83.6 -

I3D (RGB) [3] BN-Inception [22] 64 ImageNet 84.5 -

STC [5] 3D-ResNet 16 Knowledge Tx 82.1 -

STC [5] STC-ResNext [5] 16 Knowledge Tx 84.7 -

Ours (RGB) R(2+1)D-18 [51] 32 DistInit 85.7 85.8

(b) UCF-101

Table 6: Comparison with previous work on HMDB and UCF.

We split the tables based on the base architecture for fair compar-

ison. In the first section, we report architectures with comparable

depth as ours, and in the second we report other approaches using

deeper architectures. Our model out-performs all these previous

methods. Note that we do not compare to Kinetics pre-trained

models. Using Kinetics for pre-training with I3D [3] gets 74.3%

and 95.1% 3-split avg on HMDB and UCF, but is not comparable

to our unsupervised approach which does not use those labels.

accepting flow as input. This is far from ideal since flow has

much different statistics than RGB images. DistInit, on the

other hand, is agnostic to the input data modality of the stu-

dent network. We train the student network to learn from the

input flow modality, while the teacher uses a random RGB

frame from the same clip to generate the distillation target.

As we show in Table 5, DistInit still produces strong initial-

ization and improves over training from scratch or the Ima-

geNet inflated initialization. However, due to high compu-

tational cost of computing flow, we ignore this input modal-

ity for the final comparisons.

4.4. Comparison with previous work

Finally, in Table 6 we compare our model to other stan-

dard models and initialization methods on HMDB and UCF.

For these comparisons, we use the 32-frames model, tested

using dense predictions (instead of uniformly sampled 10-

clips) for each testing video. Here we only compare to

RGB-based models for computational speed, though our ap-

proach is applicable to flow or other modalities as shown

in Section 4.3. We obtain strong performance compared

to standard methods, and other unsupervised feature learn-

ing techniques [5, 34]. Finally, in Figure 7 we show which

classes benefit the most from the initialization provided by

DistInit compared to that computed by inflation.

wa
lk

la
ug

h
sh

oo
t_

ba
ll

ta
lk

ju
m

p
di

ve hu
g

ea
t

tu
rn

st
an

d
ca

rtw
he

el
th

ro
w

go
lf

sh
oo

t_
gu

n
sw

or
d_

ex
er

cis
e

rid
e_

bi
ke

fa
ll_

flo
or

fe
nc

in
g

ki
ck

ch
ew

br
us

h_
ha

ir
cla

p
ru

n
dr

aw
_s

wo
rd

po
ur

cli
m

b
sh

ak
e_

ha
nd

s
pi

ck
sw

in
g_

ba
se

ba
ll sit

ha
nd

st
an

d
dr

ib
bl

e
pu

sh
pu

sh
up ki
ss hi

t
fli

c_
fla

c
sw

or
d

cli
m

b_
st

ai
rs

ki
ck

_b
al

l
pu

llu
p

sm
ok

e
pu

nc
h

sh
oo

t_
bo

w
rid

e_
ho

rs
e

so
m

er
sa

ul
t

sm
ile

sit
up

dr
in

k
ca

tc
h

Class name

20

10

0

10

20

30

Ch
an

ge
 in

 a
cc

ur
ac

y 
(%

)

Figure 7: HMDB classes with largest gain using DistInit instead

of inflation. The plot shows HMDB per-class accuracy differ-

ence between the two finetuned models tested. It suggests that our

method is most useful for classes that require understanding mo-

tion, such as “catching” and “smiling.” On the other hand, classes

like “shoot ball” or “eat” are easy to recognize from single frames.

5. Conclusion

We describe a simple approach to transfer knowledge

from image-based datasets labeled for object or scene

recognition tasks, to learn spatiotemporal video models for

human action recognition tasks. Much previous work has

addressed this problem by constraining spatiotemporal ar-

chitectures to match 2D counterparts, limiting the choice

of networks that can be explored. We describe a simple

approach, DistInit, based on distillation that can be used

to initialize any spatiotemporal architecture. It does so

by making use of image-based teachers that can leverage

considerable knowledge about objects, scenes, and poten-

tially other semantics (e.g., attributes, pose) encoded in

richly-annotated image datasets. Unlike previous unsuper-

vised learning works that depend on the curated ImageNet

dataset, albeit without labels, we show our model even

works on truly in-the-wild uncurated videos. We demon-

strate significant improvements over standard best practices

for initializing spatiotemporal models. That said, our re-

sults do not match the accuracy of models pretrained on

recently-introduced, large-scale supervised video datasets.

But we note that these were collected and annotated with

significant manual effort. Because our approach requires

only unsupervised videos, it has the potential to make use

of massively-larger data for learning accurate video models.
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[2] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-

Mizil. Model compression. In KDD, 2006. 4
[3] João Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017. 1, 2, 4, 5, 7, 8
[4] Navneet Dalal and Bill Triggs. Histograms of oriented gra-

dients for human detection. In CVPR, 2005. 1, 2
[5] Ali Diba, Mohsen Fayyaz, Vivek Sharma, M Mahdi Arzani,

Rahman Yousefzadeh, Juergen Gall, and Luc Van Gool.

Spatio-temporal channel correlation networks for action

classification. In ECCV, 2018. 3, 8
[6] Ali Diba, Vivek Sharma, and Luc Van Gool. Deep temporal

linear encoding networks. In CVPR, 2017. 3
[7] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsu-

pervised visual representation learning by context prediction.

In ICCV, 2015. 2
[8] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Subhashini Venugopalan Marcus Rohrbach, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In CVPR, 2015.

1
[9] Christoph Feichtenhofer, Alex Pinz, and Richard Wildes.

Spatiotemporal residual networks for video action recogni-

tion. In NIPS, 2016. 1, 2, 4, 5
[10] Christoph Feichtenhofer, Alex Pinz, and Richard P. Wildes.

Spatiotemporal multiplier networks for video action recog-

nition. In CVPR, 2017. 2, 4
[11] Christoph Feichtenhofer, Karen Simonyan, Axel Pinz,

and Andrew Zisserman. Convolutional two-stream

network fusion for video action recognition (on-

line). http://www.robots.ox.ac.uk/˜vgg/

software/two_stream_action/. 8
[12] David F. Fouhey, Weicheng Kuo, Alexei A. Efros, and Jiten-

dra Malik. From lifestyle VLOGs to everyday interactions.

In CVPR, 2018. 2
[13] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. In ICLR, 2018. 2
[14] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew

Zisserman. A Better Baseline for AVA. arXiv preprint

arXiv:1807.10066, 2018. 3
[15] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew Zis-

serman. Video Action Transformer Network. In CVPR,

2019. 1
[16] Rohit Girdhar, Deva Ramanan, Abhinav Gupta, Josef Sivic,

and Bryan Russell. ActionVLAD: Learning spatio-temporal

aggregation for action classification. In CVPR, 2017. 1
[17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017. 4
[18] Saurabh Gupta, Judy Hoffman, and Jitendra Malik. Cross

modal distillation for supervision transfer. In CVPR, 2016. 3
[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In ICCV, 2017. 1
[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2, 4
[21] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 3, 4
[22] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 8
[23] Yu-Gang Jiang, Jingen Liu, Amir Roshan Zamir, Ivan

Laptev, Massimo Piccardi, Mubarak Shah, and Rahul Suk-

thankar. THUMOS challenge: Action recognition with a

large number of classes. http://www.thumos.info/,

2013. 5
[24] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas

Leung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video

classification with convolutional neural networks. In CVPR,

2014. 1, 2, 5, 7
[25] Will Kay, João Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017. 1, 2, 5, 7
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