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Abstract

We present a novel method for simultaneously learn-

ing depth, egomotion, object motion, and camera intrin-

sics from monocular videos, using only consistency across

neighboring video frames as a supervision signal. Simi-

larly to prior work, our method learns by applying differ-

entiable warping to frames and comparing the result to ad-

jacent ones, but it provides several improvements: We ad-

dress occlusions geometrically and differentiably, directly

using the depth maps as predicted during training. We in-

troduce randomized layer normalization, a novel regular-

izer, and we account for object motion relative to the scene.

To the best of our knowledge, our work is the first to learn

the camera intrinsic parameters, including lens distortion,

from video in an unsupervised manner, thereby allowing us

to extract accurate depth and motion from arbitrary videos

of unknown origin at scale. We evaluate our results on

the Cityscapes, KITTI, and EuRoC MAV datasets, establish-

ing new state of the art on depth prediction and odometry,

and demonstrate qualitatively that depth prediction can be

learned from a collection of YouTube videos. The code is

publicly available1.

1. Introduction

Estimating 3D structure and camera motion from video

is a key problem in computer vision. Traditional approaches

to this problem rely on identifying the same points in the

scene in multiple consecutive frames, then solving for a 3D

structure and camera motion that is maximally consistent

across those frames [23]. But such correspondences be-

tween frames can only be established for a subset of all

pixels, which leaves the problem of estimating depth un-

derdetermined. As commonly done with inverse problems,

the gaps are filled based on assumptions of continuity, pla-

narity, etc.

1github.com/google-research/google-research/tree/master/

depth from video in the wild

Figure 1. Qualitative results of our approach for learning depth

from videos of unknown sources, which is enabled by simulta-

neously learning the camera extrinsic and intrinsic parameters.

Since our method does not require knowing the camera parame-

ters, it can be applied to any set of videos. All depth maps (vi-

sualized on the right, as disparity) were learned from raw videos

without using any camera intrinsics groundtruth. From top to bot-

tom: frames from YouTube8M [1], from EuRoC MAV dataset [5],

from Cityscapes [7] and from KITTI [11].

Rather than specifying these assumptions manually, deep

learning is able to obtain them from data. Wherever in-

formation is insufficient to resolve ambiguities, deep net-

works can produce depth maps and flow fields by general-

izing from prior examples they have seen. Unsupervised ap-

proaches allow learning from raw videos alone, using simi-

lar consistency losses as traditional methods but optimizing

them during training. At inference, the trained networks are

able to predict depth from a single image and egomotion

from pairs or longer sequences of images.
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As research in this direction gained traction [47, 10, 12,

33, 24, 34], it became clear that object motion is a ma-

jor obstacle because it violates the assumption of a static

scene. Several directions have been proposed to address the

issue [44, 40], including leveraging semantic understand-

ing of the scene through instance segmentation [6]. Occlu-

sions have been another limiting factor, and lastly, in all

prior work in this direction, the intrinsic parameters of the

camera had to be provided.

This work addresses the problems above and, as a result,

reduces supervision and improves the quality of depth and

motion prediction from unlabeled videos. First, we show

that a deep network can be trained to predict the intrin-

sic parameters of the camera, including lens distortion, in

an unsupervised manner from the video itself (see Fig. 1).

Second, we are the first in this context to address occlu-

sions directly, in a geometric way, from the predicted depth

as it is. Lastly, we substantially reduce the amount of se-

mantic understanding needed to address moving elements

in the scene: Instead of segmenting every instance of a mov-

ing object and tracking it across frames [6], we need a sin-

gle mask that covers pixels that could belong to a moving

object. This mask can be as rough as a union of rectan-

gular bounding boxes. Obtaining such a rough mask is a

much simpler problem than instance segmentation and can

be solved more reliably with existing models.

In addition to these qualitative advances, we conduct an

extensive quantitative evaluation of our method and find that

it establishes a new state of the art on multiple widely used

benchmark datasets. Pooling datasets together, a capability

which is greatly advanced by our method, proves to enhance

quality. Finally, we demonstrate for the first time that depth

and camera intrinsics prediction can be learned on YouTube

videos, which were captured with multiple different cam-

eras, each with unknown and generally different intrinsics.

2. Related work

Estimating scene depth is an important task for robot

navigation and manipulation. Historically much research

has been devoted to it, including a large bodies of re-

search on stereo, multi-view geometry, and active sensing

[29, 21, 9]. Recently, learning-based approaches for dense

depth prediction have gained attention [9, 22, 19, 45]. In

these, scene depth is predicted from input RGB images and

the depth estimation function is learned using supervision

provided by a sensor, such as a LiDAR. Similar approaches

are used for other dense predictions such as surface nor-

mals [8, 38].

Unsupervised depth learning. Unsupervised learning

of depth, where the only supervision is obtained from the

monocular video itself and no depth sensors are needed, has

also been popularized recently [47, 10, 12, 33, 24, 34, 44].

Garg et al. [10] introduced joint learning of depth and

egomotion. Zhou et al. [47] demonstrated a fully dif-

ferentiable approach where depth and egomotion are pre-

dicted jointly by deep neural networks. Techniques were

developed for the monocular [33, 42, 24, 41, 44, 35, 6]

and binocular [12, 33, 40, 46, 35, 46] settings. In the

latter, it was shown that monocular depth quality at in-

ference is improved when stereo inputs are used during

training. Other methods learn directly the stereo dispar-

ity [17, 18, 43]. Other novel techniques include the use of

motion [41, 35, 44, 6, 40].

Learning from images or videos from unknown cam-

eras. This is an active research field, focusing on single or

multi-view images [2, 30, 20]. It is especially hard for in-

ternet photos due to the diversity of input sources and lack

of the camera parameters, as shown by Li et al. [20]. Our

work makes a step in addressing this challenge by learning

camera intrinsics for videos in the wild.

Occlusion aware learning. Multiple approaches discon-

nected from geometry have been proposed for handling oc-

clusions in the context of optical flow [36, 15, 25]. Differen-

tiable mesh rendering [26, 16] adopts a geometric approach

to occlusions. In the context of learning to predict depth

and egomotion, occlusions were addressed via a learned ex-

plainability mask [47], by penalizing the minimum repro-

jection loss between the previous frame or the next frame

into the middle one, and through optical flow [40]. In the

latter context, we are the first to address occlusions in a di-

rect geometric approach via a differentiable loss.

Learning of intrinsics. Learning to predict the camera

intrinsics has mostly been limited to strongly supervised

approaches. The sources of groundtruth vary: Workman

et al. [37] use focal lengths estimated employing classical

1D structure from motion. Yan et al. [39] obtain the focal

length based on EXIF. Bogdan et al. [4] synthesize images

from panoramas using virtual cameras with known intrin-

sics, including distortion. To our knowledge, our approach

is the only one that learns the camera intrinsics in an un-

supervised manner directly from video, jointly with depth,

egomotion and object motion.

3. Preliminaries

Similarly to prior work [47, 12, 44, 32], the backbone of

our method is the equation that ties together two adjacent

video frames using a depth map (z) and the camera matrix

K. Eq. 1 describes the shift in a pixel position p due to a

rotation matrix R and a translation vector t:

z′p′ = KRK−1zp+Kt (1)

p′ and z′ are the new homogeneous coordinates of the pixel

and the new depth.
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Figure 2. A schematic of our motion-prediction network. The network receives two images as input. A stack of convolutions creates a

bottleneck, form which fully-connected (FC) network heads predict the intrinsics, rotation angles and translation vector components of the

background (due to egomotion). A series of decoder layers predict a residual translation field, which predicts motion of objects with respect

to the scene (color coding is explained in Fig. 4. A mask (not shown in the figure, see Eq. 2) multiplies by zero the residual translation

field at all pixels that don’t belong to possibly-moving objects. The residual translation field is then added to the background translation to

obtain a total translation field. The images are taken from Cityscapes. A separate network (now shown) predicts depth from a single image.

Using z, R, and t as predicted by deep networks, Eq. 1

is used to warp one video frame onto the other. The result

is then compared to the actual other frame, and the differ-

ences constitute the main component of the training loss.

The premise is that through penalizing the differences, the

networks will learn to correctly predict z, R, and t.

4. Method

In this work we propose simultaneous learning of depth,

egomotion, object motion, and camera intrinsics from

monocular videos. A motion-prediction network predicts

camera motion, motion of every pixel with respect to the

background, and the camera intrinsics: focal lengths, offsets

and distortion. A second network predicts depth maps. By

imposing consistency across neighboring frames as a loss,

the networks simultaneously learn to predict depth maps,

motion fields and the camera intrinsics. To apply this loss

only in unoccluded pixels, we estimate occlusions geomet-

rically based on estimated depth maps. We regularize mo-

tion fields based on masks that indicate which pixels might

belong to moving objects, obtained from a pretrained seg-

mentation or object detection network.

4.1. Networks and losses

Networks Depth is predicted form a single image by a

UNet [28] encoder-decoder network with a ResNet 18 base

and a softplus activation (z(ℓ) = log(1+eℓ)) to convert the

logits (ℓ) to depth (z).

A second network (shown in Fig. 2) predicts camera mo-

tion, a dense residual translation representing motion of ob-

jects relative to the scene, as well as the camera intrinsics,

from two consecutive images. Further details about the net-

work are given in the Supplementary Material (SM).

Losses Based on the estimated depth map, camera intrin-

sics, rotation, and the translation field, we warp the first

frame to match the second one and compare those using two

losses: 1) a structural similarity (SSIM) loss and 2) the sum

of L1 distances for the color channels, following Casser et

al. [6]. Additionally, we impose a cycle consistency loss on

the motion field by estimating both forward and backward

motion, which we obtain by applying the networks on the

frames in normal and in reversed order. Since those mo-

tion estimates at corresponding pixels should be opposite,

we define an L2 loss on the relative deviation from opposite

rotation and translation. Additionally, we apply spatial L1

smoothness losses for the depth and motion fields, a tempo-

ral L1 smoothness loss for depth, and an L2 weight regular-

ization term. More details are given in the SM.

4.2. Occlusion­aware consistency

When the camera and / or objects move, areas in the

scene that were visible in one frame may become occluded

in another, and vice versa. Photometric consistency cannot

be enforced in pixels that correspond to these areas. Given

a depth map and a motion field in one frame, one could ac-

tually detect where occlusion is about to occur, and exclude

the occluded areas from the consistency loss. Detecting oc-

cluded pixels requires some sort of reasoning about the con-

nectivity of the surface represented by the depth map, and

z-buffering. Keeping the mechanism differentiable and ef-

ficient enough for a training loop, may pose a challenge.

We therefore take a different approach, as illustrated in

Fig. 3. For each pixel (i, j) in the source frame, the pre-
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dicted depth zij and the camera intrinsic matrix are used

to obtain the respective point in space, (xij , yij , zij). The

point is moved in space according to the predicted motion

field. In particular, the depth changes to z′. The new spa-

tial location is reprojected back onto the camera frame, and

falls at some generally-different location (i′, j′) on the tar-

get frame. i′ and j′ are generally non-integer. Therefore

obtaining the depth on the target frame at (i′, j′), zti′,j′ , re-

quires interpolation.

Occlusions happen at (i′, j′) where z′ becomes multival-

ued. At such points, color and depth consistency should be

applied only to the visible branch of z′, that is, the branch

where z′ is smaller. If the source and target frames are

nearly consistent, the visible branch will be close to target

depth at (i′, j′), zti′,j′ . The way we propose to pick the vis-

ible branch is to include in the losses only points (i′, j′)
where z′i′,j′ ≤ zti′,j′ . In other words, only if a transformed

pixel on the source frame lands in front of the depth map in

the target frame, do we include that pixel in the loss. This

scheme is not symmetrical with respect to interchanging

the source and target frames, which is why we always ap-

ply it in a symmetrized way: We transform the source onto

the tagret, calculate the losses, and then switch the roles of

source and target. Fig. 3 illustrates the method.

The losses described in Sec. 4.1 are invoked in an

“occlusion-aware” manner, as described in this section, ex-

cept for SSIM. For the latter, we handle occlusions by re-

placing all averaging operations by a weighted averaging,

where the weight of a pixel is a decreasing function of the

depth error in that pixel. The exact expression is given in

the SM.

4.3. Regularization

Semantic regularization of the translation field Eq. 1 can

propagate frame inconsistency losses to z, R and t at every

pixel. However without further regularization, they remain

greatly underdetermined. While continuity of z, R and t is

a powerful regularizer, we found that further regularization

helps significantly. In particular, we impose constancy of R
throughout the image, and allow t to deviate from a constant

value only at pixels that are designated as possibly mobile.

Unlike in prior work [6], instance segmentation and track-

ing are not required, as all we need is a single “possibly

mobile” mask m(x, y). We write

t(x, y) = t0 +m(x, y)δt(x, y), (2)

where t0 and δt(x, y) are the background motion (due to

camera motion) and residual motion (due to object motion).

We show in ablation experiments that m(x, y) can be as

rough as a union of bounding boxes (see Fig. 4). In addition,

an L1 smoothing operator is applied to t(x, y).

Randomized layer normalization In our experiments, we

Camera “L” Camera “R”

D
ep

th
 (z

)

Scene and 
cameras

x x

zLz'R z'LzR

Figure 3. An illustration of our proposed method for handling oc-

clusions. At the top we show a two-dimensional “scene”, con-

sisting of two straight surfaces, one partially occluding the other.

Two cameras, left (“L”) and right (“R”), are observing the scene.

Our method is monocular, so these represent two locations of the

same camera that moved, and “left” and “right” are used for con-

venience. At the bottom, the depth map observed by each camera

is illustrated as a solid line on the respective side (zL and zR). A

dashed line shows the depth map obtained from warping one view

onto the other (z′R and z′L). The warped depth map can become

a multivalued function, which indicates occlusions (see the green-

shaded rectangle). To handle that, we apply the photometric and

geometric losses only at pixels where z′R ≤ zL and z′L ≤ zR.

When the depth maps and motion estimation are correct, the loss

in this scheme would indeed evaluate to zero.

observed the following anomalous behavior in relation to

Batch Normalization (BN):

• Evaluation metrics were consistently better when run-

ning inference at the “training mode” of BN. That is,

instead of long-term averaged means and variances,

the ones obtained from the image itself during infer-

ence were used2, rendering batch normalization more

similar to layer normalization [3].

• As we increased the batch size at training, the eval ac-

curacy was consistently worse and worse, no matter

how we scaled the learning rate.

These two anomalies led to the conclusion that BN is

acting like Layer Normalization (LN) [3], and for each item

in the batch, the others act as a source of noise. Replacing

BN by LN with multiplicative Gaussian noise led to im-

proved evaluation metrics and allowed increasing the batch

size (accompanied with a linear increase of the learning rate

[14]) without loss and even with a slight improvement in the

evaluation metrics.

2Even at batch size 1, there would still be means and variances over the

spatial dimensions.
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Figure 4. Use of a “possibly mobile” mask to regularize the trans-

lation field. An object detection network identifies all instances

of objects that are capable of motion, such as pedestrians, cyclists

and cars. The union of the bounding boxes comprises the “possi-

bly mobile” mask, within which the translation field is allowed to

vary. The top picture, from Cityscapes, illustrates the mask, and

the bottom one is the translation field predicted by the network

(x, y, z coded as RGB). The golden background corresponds to

motion in the negative z direction, as the entire scene is moving

towards the camera. The greenish silhouette is the cyclist moving

slightly to the left and slightly towards the camera. Note that the

network carves the silhouette out of a rough mask.

4.4. Learning the intrinsics

Through Eq. 1, photometric consistency losses across

neighboring frames provide a supervision signal for K,

but only when there is a nonzero camera rotation between

them R 6= 1. Indeed, when R = 1 Eq. 1 is reduced to

z′p′ = zp + Kt, which means that the loss depends on K
only through the product Kt. Kt, however, can be perfectly

correct even if K and t are incorrect. In fact, for any (non-

singular) K̃, there exists a t̃ = K̃−1Kt, such that K̃t̃ = Kt.
Especially when K and t are predicted by two heads stem-

ming from the same network, the latter can “escape” the

supervision signal as long as it predicts a K and a t whose

product is correct.

Fortunately, rotations can provide a supervision signal

for K. Eq. 3 (derived in the SM) ties the tolerance with

which the focal lengths can be determined (δfx and δfy ,

denominated in pixels) to the amount of camera rotation that

occurs between the two:

δfx <
2f2

x

wsry
; δfy <

2f2

y

hsrx
. (3)

ry and rx are the rotation angles along the respective axes

in radians, w and h are the image width and height respec-

tively, and s = max(h,w).

5. Experiments

In this section, we evaluate our method on depth pre-

diction, odometry estimation, and the recovery of camera

intrinsics across a range of diverse datasets.

5.1. Datasets

KITTI The KITTI dataset is collected in urban environ-

ments and is the main benchmark for depth and egomotion

estimation. It is accompanied with a LIDAR sensor, which

is used for evaluation only. We use standard splits into train-

ing, validation, and test sets, commonly referred to as the

Eigen split. 39835 training examples are used from KITTI.

Cityscapes The Cityscapes dataset is a more recent urban

driving dataset, which we use for both training and evalu-

ation. It is a more challenging dataset with many dynamic

scenes. With a few exceptions [27, 6] it has not been used

for depth estimation evaluation. It has 38675 training ex-

amples. We use depth from the disparity data for evaluation

on a standard evaluation set of 1250 samples [27, 6].

EuRoC Micro Aerial Vehicle Dataset The EuRoC Mi-

cro Aerial Vehicle (MAV) Dataset [5] is a very challeng-

ing dataset collected by an aerial vehicle indoors. While

the data contains a comprehensive suite of sensor measure-

ments, including stereo pairs, IMU, accurate Leica laser

tracker ground truth, Vicon scene 3d scans, and camera cal-

ibration, we only used the monocular videos for training.

Since the camera has significant lens distortion, this is an

opportunity to test our method for learning lens distortions.

YouTube8M videos To demonstrate that depth can be

learned on videos in the wild from unknown cameras, we

collected videos from the YouTube8M dataset [1]. From

the 3079 videos in YouTube8M that have the label “quad-

copter”, human raters selected videos that contain signifi-

cant amount of footage from a quadcopter. Naturally, the

videos were taken with different unknown cameras, with

varying fields of view and varying degrees of lens distor-

tion. The YouTube8M IDs are listed in the SM.

5.2. Depth

Since monocular methods can only estimate depth up to

a global scale factor, we follow the field’s common prac-

tice [47] of normalizing out the scale factor based on the

medians of predicted and groundtruth depths (code).

KITTI Table 1 summarizes the evaluation results on the

KITTI Eigen partition of a model trained on KITTI. The

metrics are the ones defined in Zhou et al. [47]. Only the

best methods and the first three metrics are displayed in Ta-

ble 1, the rest are given in the SM. As seen in the table, we

improve on the state-of-the-art results. More importantly,

we observed that learned intrinsics, rather than given ones,

consistently help performance.

Cityscapes Table 2 summarizes the evaluation metrics of

models trained and tested on Cityscapes. We follow the es-

tablished protocol by previous work, using the disparity for
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Method M Abs Rel Sq Rel RMSE

Zhou [47] 0.208 1.768 6.856

Yang [42] 0.182 1.481 6.501

Mahjourian [24] 0.163 1.240 6.220

LEGO [41] X 0.162 1.352 6.276

GeoNet [44] X 0.155 1.296 5.857

DDVO [35] 0.151 1.257 5.583

Godard [13] 0.133 1.158 5.370

Struct2Depth [6] X 0.141 1.026 5.291

Yang [40] 0.137 1.326 6.232

Yang [40] X 0.131 1.254 6.117

Ours:

Given intrinsics X 0.129 0.982 5.23

Learned intrinsics X 0.128 0.959 5.23

Table 1. Evaluation of depth estimation of our method, with given

and learned camera intrinsics, for models trained and evaluated on

KITTI, compared to other monocular methods. The depth cutoff

is always 80m. The “M” column is checked for all models where

object motion is taken into account.

evaluation [6, 27]. Since this is a very challenging bench-

mark with many dynamic objects, very few approaches have

evaluated on it. As seen in Table 2, our approach outper-

forms previous ones and benefits from learned intrinsics.

Method M Abs Rel Sq Rel RMSE

Pilzer [27] 0.440 5.713 5.443

Struct2Depth [6] X 0.145 1.736 7.279

Ours:

Given intrinsics X 0.129 1.35 6.96

Learned intrsinsics X 0.127 1.33 6.96

Table 2. Evaluation of depth estimation of models trained on

Cityscapes on the cityscapes test set, with a depth cutoff of 80m,

and comparison to prior art.

Cityscapes + KITTI Being able to learn depth without

the need for intrinsics opens up the opportunity for pooling

videos from any data source. Figure 5 shows the results of

pooling Cityscapes and KITTI datasets and evaluating on

either one. In this experiment the intrinsincs are assumed

unknown and are learned. Training jointly on both datasets

improves the depth metrics even beyond the best results

obtained on either dataset separately. This is a key result

which demonstrates the impact of our method to leverage

data sources of potentially unlimited size.

Cityscapes + KITTI: ablation experiments Table 3 sum-

marizes the results of ablation experiments we ran in order

to study the impact of each of the techniques described in

this paper on the end results. In order to reduce the number

of combinations of results, in all experiments the training

set was Cityscapes and KITTI mixed together. Each model

was evaluated on both Cityscapes and KITTI separately.

Using a union of bounding boxes as a “possibly-mobile”

mask (as depicted in Fig. 4) is found to be as good as us-
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Figure 5. Depth prediction on Kitti and Cityscapes when training

on each dataset and on both. Joining the two datasets improves the

results on both. Learning intrinsics allows to similarly pool many

datasets, even if they are from unknown cameras.

Abs Rel depth

Experiment CS KITTI

Our algorithm 0.121 0.124

Boxes instead of segmentation masks 0.120 0.125

w/o occlusion-aware loss 0.127 0.126

w/o object motion 0.172 0.130

w/o randomized layer normalization 0.124 0.127

Table 3. Ablation experiments on depth estimation. In all experi-

ments the training set was Cityscapes (CS) and KITTI combined,

and we tested the model on Cityscapes (CS) and KITTI (Eigen

partition) separately. Each row represents an experiment where

one change was made compared to the main method, as described

in the “Experiment” row. Smaller numbers are better.

ing segmentation masks, which makes our technique more

broadly applicable. Object motion estimation is shown to

play a crucial role, especially on Cityscapes, which is char-

acterized by more complex scenes with more pedestrians

and cars. Randomized LN is shown to be superior to stan-

dard BN, and lastly – occlusion-awareness improves the

quality of depth estimation, especially on Cityscapes, which

has richer scenes with more occlusions. Figure 6 visualizes

the type of artifacts that occlusion-aware losses reduce.

EuRoC MAV Dataset We further use the EuRoC MAV

Dataset to evaluate depth. We selected also a very challeng-

ing out-of-sample evaluation protocol in which we trained

on the “Machine room” sequences and tested on the “Vicon

Room 2 01”, which has 3D groundtruth. Table 4 reports the

results. The SM details how depth ground truth was gener-

ated from the provided Vicon 3D scans.

Abs R Sq R RMS lgRMS a1 a2 a3

0.332 0.389 0.971 0.396 0.420 0.743 0.913

Table 4. Evaluation of depth estimation for EuRoC dataset, no

prior results are available for this dataset. ai = δ < 1.25i.

5.3. YouTube Videos

To demonstrate that depth can be learned on collections

of videos in the wild for which the camera parameters are
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Figure 6. Illustration of the effect of occlusion aware losses. The

center and bottom images are inferred disparity maps obtained

from the image at the top. In the center image, the model was

trained without occlusion-aware losses. At areas that become dis-

occluded, under cars, occlusion aware loss is shown to reduce ar-

tifacts. The top image belongs to the Cityscapes test set and is one

of images whose depth prediction metrics were hurt the most upon

removing occlusion aware losses.

not known, and differ across videos, we trained our model

on the YouTube8M videos described in Sec. 5.1. Figure 7

visualizes the results. We note that this dataset is very chal-

lenging as it features objects at large ranges of depth.

Figure 7. Frames from from YouTube and learned disparity maps.

The camera intrinsics are learned.

5.4. Camera intrinsics evaluation

In evaluating our method for learning camera intrinsics,

two separate questions can be asked. First, how good is the

supervision signal that cross-frame consistency provides for

the camera intrinsics. Second is how good a deep network

is in learning them and generalizing to test data.

Quality of the supervision signal. To evaluate the super-

vision signal for the intrinsics, we represented each intrin-

sic parameter as a separate learned variable. This is suit-

able for the EuRoC dataset, since it was captured with the

same camera throughout. Each of the 11 subsets of EuRoC

were trained in a separate experiment, until the intrinsics

converged, yielding 11 independent results. The resulting

sample mean and standard deviation for each intrinsic pa-

rameter are summarized in Table 5. All parameters agree

with groundtruth within a few pixels. Since the groundtruth

values were not accompanied by tolerances, it is hard to tell

whether or not the differences are within tolerance. The

learned disparity maps are shown in Fig. 8.

Quantity Learned GT

Horizontal focal length (fx) 253.7± 1.1 250.2

Vertical focal length (fy) 265.4± 1.3 261.3

Horizontal center (x0) 189.0 ± 0.9 187.2

Vertical center (y0) 132.2 ± 1.1 132.8

Quadratic radial distortion −0.267± 0.003 −0.283

Quartic radial distortion 0.064± 0.002 0.074

Table 5. Camera intrinsics learned on the EuRoC datasets. Learn-

ing of depth, egomotion and intrinsics was done separately on each

of the 11 datasets, using monocular images (“cam0”) only. Con-

stancy of the intrinsics throughout each dataset separately was im-

posed, and statistics (mean and standard deviation) for each intrin-

sic parameter were collected across the results. The groundtruth

(GT) was adjusted to an image size of (256×384).

Figure 8. Frames from EuRoC [5] and the corresponding learned

disparity maps. The camera intrinsics are learned.

Learning and generalization Prior work [37, 39, 4] has

shown that deep networks can learn and generalize camera

intrinsics in a strongly supervised setting. In our setting,

the camera intrinsics and motion are predicted by the same

network and are thus correlated. In other words, the losses

imposed on the motion / intrinsics network only impose cor-

rectness of the intrinsics within the limits of Eq. 3.

We evaluated our model’s predictions of the intrinsics

on the KITTI odometry series. The model was trained on

the union of the Cityscapes and KITTI training sets, which

significantly differ in their typical focal lengths. Figure 9

shows the scatter plot of the predicted fx as function of the

predicted ry . The predictions fall within the limits imposed

by Eq. 3. While Table 5 indicates a high-quality supervi-

sion signal for the intrinsics, Fig. 9 shows that when the in-

trinsics and motion are predicted by the same network, the

latter learns them “in aggregate”, only to the extent needed

for the depth-prediciton network to learn depth.
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Figure 9. Predicted fx as function of the predicted ry for all images

in the KITTI odometry sequences 09 and 10. The dashed line is

groundtruth; red curves show tolerance limits imposed by Eq. 3.

5.5. Odometry

We evaluated our egomotion prediction on the KITTI se-

quences 09 and 10. The common 5-point Absolute Tra-

jectory Error (ATE) metric [47, 6, 44, 13] measures local

agreement between the estimated trajectories and the re-

spective groundtruth. However assessing the usefulness for

a method for localization requires evaluating its accuracy in

predicting location. A common metric for localization is av-

erage relative translational drift trel [31, 46] – the distance

between the predicted location and the groundtruth location

divided by distance traveled and averaged over the trajec-

tory. Table 6 summarizes both metrics, demonstrating the

improvements our method achieves on both.

When evaluating for odometry, the most naive way is to

calculate the inference of egomotion for every pair of adja-

cent frame. That leads to the red “learned intrinsics” curve

in Fig. 10. However it is also possible to make an inference-

time correction if we know the intrinsics of the camera at in-

ference time. In that case, one can leverage the fact that for

small errors in the rotation angles and focal lengths, rxfy
and ryfx are approximately constant (Eq. SM8). Therefore

if the network predicted r′y and f ′

x for a given pair of im-

ages, and we know the true focal length fx, we can correct

our estimate of ry to r′yf
′

x/fx. This is the procedure in-

voked in generating the “Learned and corrected intrinsics”

curve in Fig. 10, and the respective entry in Table 6. The

trajectories and metrics obtained with learned itrinsics with

inference time correction and with given intrinsics are sim-

ilar. Both notably improve prior art, which is especially

prominent for localization, as the trel metric indicates.

6. Conclusions

This work addresses important challenges for unsuper-

vised learning of depth and visual odometry through geo-

Seq. 09 Seq. 10

Metric ATE trel ATE trel

Zhou [47] 0.021 17.84% 0.020 37.91%

GeoNet [44] 0.012 / 0.012 /

Zhan [46] / 11.92% / 12.45%

Mahjourian [24] 0.013 / 0.012 /

Struct2depth [6] 0.011 10.2% 0.011 28.9%

Ours, with intrinsics:

Learned 0.012 7.5% 0.010 13.2%

Learned & corrected 0.010 2.7% 0.007 6.8%

Given 0.009 3.1% 0.008 5.4%

Table 6. Absolute Trajectory Error (ATE) [47] and average relative

translational drift (trel) [31] on the 09 and 10 KITTI odometry

sequences. Our method with both learned and given intrinsics is

compared to prior work.
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Figure 10. Predicted location on the KITTI odometry sequence 09,

generated by models trained on KITTI, with given intrinsics and

with learned intrinsics (with and without inference time correc-

tion), compared to groundtruth and to struct2depth results.

metric handling of occlusions, a simple way of accounting

for object motion, and a novel form of regularization. Most

importantly, it takes a major step towards leveraging the vast

amounts of existing unlabeled videos for learning depth es-

timation: Through unsupervised learning of the camera in-

trinsic parameters, including lens distortion, it enables, for

the first time, learning depth from raw videos captured by

unknown cameras.
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