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Abstract

We propose SplitNet, a method for decoupling visual per-

ception and policy learning. By incorporating auxiliary

tasks and selective learning of portions of the model, we

explicitly decompose the learning objectives for visual nav-

igation into perceiving the world and acting on that per-

ception. We show improvements over baseline models on

transferring between simulators, an encouraging step to-

wards Sim2Real. Additionally, SplitNet generalizes better

to unseen environments from the same simulator and trans-

fers faster and more effectively to novel embodied naviga-

tion tasks. Further, given only a small sample from a target

domain, SplitNet can match the performance of traditional

end-to-end pipelines which receive the entire dataset 1

1. Introduction

A longstanding goal of computer vision is to enable

robots to understand their surroundings, navigate efficiently

and safely, and perform a large variety of tasks in complex

environments. A practical application of the recent suc-

cesses in Deep Reinforcement Learning is to train robots

with minimal supervision to perform these tasks. Yet

poorly-trained agents can easily injure themselves, the en-

vironment, or others. These concerns, as well as the diffi-

culty in parallelizing and reproducing experiments at a low

cost, have drawn research interest towards simulation envi-

ronments [3, 15, 35, 36, 28].

However no simulator perfectly replicates reality, and

agents trained in simulation often fail to generalize to the

real-world. Transferring learned policies from simulation to

the real-world (Sim2Real) has become an area of broad in-

terest [24, 26, 33] yet there still exists a sizable performance

gap for most algorithms. Furthermore, Sim2Real transfer

reintroduces safety and reproducibility concerns. To miti-

gate this, we explore the related task of Sim2Sim, transfer-

ring policies between simulators, for embodied visual navi-

gation (Figure 1). Transferring between simulators incurs a

∗Work done during an internship at Facebook AI Research.
1https://github.com/facebookresearch/splitnet
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Figure 1. We decompose learning of visual navigation tasks into

learning of a visual encoder and learning of an embodied task de-

coder. Through this decomposition we enable fast transfer to new

visual environments and transfer to new embodied tasks.

similar “reality gap” as between simulation and reality, due

to differences in data collection and rendering. Learning to

transfer between simulation environments serves as an en-

couraging preliminary step towards true Sim2Real transfer.

To enable Sim2Sim transfer we propose SplitNet, a com-

posable model for embodied visual tasks which allows for

the sharing and reuse of information between different vi-

sual environments. SplitNet enables transfer across differ-

ent embodied tasks (Task2Task), meaning our model can

learn new skills quickly and adapt to the ever-changing re-

quirements of end users. Our key insight is to observe that

embodied visual tasks are naturally decomposable into vi-

sual representation learning to extract task agnostic salient

information from the visual input, and policy learning to

interpret the visual representation and determine a proper

action for the agent. Rather than learning these components

solely independently or completely tied, we introduce an

algorithm for learning these embodied visual tasks which

benefits both from the scalability and strong in-domain, on-

task performance of an end-to-end system and from the gen-

eralization and fast adaptability of modular systems.

SplitNet incorporates auxiliary visual tasks, such as
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depth prediction, as a source of intermediate supervision

which guides the visual representation learning to extract

information from the images extending beyond the initial

embodied task. We demonstrate that initial pre-training

of the visual representation on such auxiliary visual tasks

produces a more robust initialization than the standard ap-

proach of pre-training on auxiliary visual datasets (e.g. Im-

ageNet [5]) which may not be from an embodied perspec-

tive. Then we showcase the composability of our model

by illustrating its ability to selectively adapt only the visual

representation (when moving to a new visual environment)

or only its policy (when moving to a new embodied task).

We center our evaluation on adapting between different

simulators of varying fidelity and between different embod-

ied tasks. Specifically, our experiments show that compared

to end-to-end methods, SplitNet learns more transferable vi-

sual features for the task of visual point-to-point navigation,

reduces overfitting to small samples from a new target sim-

ulator, and adapts faster and better to novel embodied tasks.

In summary, our contributions are 1. a principled way

to decouple perception and policy (in our case navigation),

2. showing that this technique improves performance on

the primary task and facilitates transfer to new environ-

ments and tasks, 3. describing specifically how to update

the weights for new tasks or new environments using sig-

nificantly less data to adapt.

2. Related Work

This work introduces a learning approach for transfer-

ring visual representations between environments and for

transferring policy information between different embodied

tasks. The most related lines of work focus on adaptation

and transfer of visual representations, deep reinforcement

learning (especially from visual inputs), and transferring

from simulation to the real-world (Sim2Real) both for vi-

sual and embodied tasks.

Visual Transfer and Adaptation. Many works have ex-

plicitly studied techniques for increasing the reusability of

learned information across different visual tasks. Domain

adaptation research has mainly focused on reusing a repre-

sentation even as the input distribution changes, with most

work focusing on representation alignment through explicit

statistics [19, 31] or through implicit discrepancy minimiza-

tion with a domain adversarial loss [6, 34]. A related line

of work focuses on sharing between two image collections

through direct image-to-image transfer [25, 40], whereby a

mapping function is learned to take an image from one do-

main and translate it to mimic an image from the second

domain [2, 10, 18, 32].

In parallel, many works focus on reusing learned repre-

sentations for solving related visual tasks. The most preva-

lent such technique is simply using the first representation

parameters as initialization for learning the second, termed

finetuning [7]. A recent study proposed a technique for

computing the similarity between a suite of visual tasks

to create a Taskonomy [37] which may be used to deter-

mine, given a new task, which prior tasks should be used for

the initialization before continued learning. This method

focuses on “passive” visual understanding tasks such as

recognition, reconstruction and depth estimation and does

not delve into learning representations for “active” tasks

such as embodied navigation where an agent must both un-

derstand the world and directly use its understanding for

some underlying task.

Overall, much of the prior work has focused on repre-

sentation learning for visual recognition. In contrast, this

work studies transfer of visuomotor policies for embodied

tasks and decomposes the problem into transfer of visual

representations for embodied imagery (Sim2Sim) and trans-

fer of policies across various downstream embodied tasks

(Task2Task).

Visual RL Tasks: In parallel with the development of

deep representation learning for passive visual tasks, there

has also been a plethora of recent research on policy learn-

ing from visual inputs inspired by the success of end-to-

end visuomotor policy learning [16, 17, 21]. Much of the

success here comes from training on large-scale [17] data,

frequently made possible by extensive use of simulation en-

vironments [9, 21, 23, 42]. These techniques often lever-

age the additional supervision and auxiliary tasks given by

the simulators to bootstrap their learning [20, 29]. Percep-

tual Actor [29] specifically examines how 20 different pre-

training tasks affect the learning speed and accuracy of a

visual navigation policy as compared to random initializa-

tion. Others use unsupervised [14] or self-supervised [23]

learning as an additional signal in domains with sparse re-

wards. We build on these approaches by explicitly separat-

ing the auxiliary learning from the policy layers to ensure a

decoupling of the weights which enables better transfer to

new environments.

For increased task generalization, others have proposed

using the successor representation [38, 41] which decom-

poses the reward and Q-functions into a state-action feature

φs,a, a successor feature ψs,a and a task reward vector w.

This decomposes the network into one which learns the dy-

namics of the environment separate from the specified task,

which allows for faster transfer to new tasks by only retrain-

ing the task embedding w. Our proposed method allows

quick transfer to new tasks as well as new environments.

Sim2Real: Significant progress has been made on adapt-

ing between simulated and real imagery for visual recogni-

tion, especially in the context of semantic segmentation in

driving scenes [10, 11, 12, 39]. These techniques build on

the visual domain adaptation methods described above. In

parallel, there has been work on transferring visual policies

learned in simulation to the real-world, but often limited
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to simple visual domains [26, 33] which bear little resem-

blance to the complexity of true real-world scenes. Rusu

et al. [26] train a network in simulation before initializing

a new network which receives outputs from the simulation-

trained network as well as real-world inputs. Yet their eval-

uation is limited to simple block picking experiments with

no complex visual scenes. Peng et al. [24] use randomiza-

tion over the robot dynamics to learn robust policies, but

do not use visual inputs in simulation or reality and only

perform simple puck-pushing tasks. Tobin et al. [33] and

Sateghi et al. [27] randomize colors, textures, lighting, and

camera pose as a form of augmentation of the simulated im-

agery to better generalize to real-world imagery, but focus

on primitive geometric objects for picking tasks. Addition-

ally, these methods do not decouple visual feature learn-

ing from policy learning which limits the transferrability of

their method to new tasks.

A recent method [22], uses semantic segmentation as an

intermediate objective to aid in transferring learned driving

policies from simulation to the real-world. While we do not

transfer our policies to real robots, we focus on visually di-

verse scenes which better match the complexity of the real-

world then the simplistic setups of many of the prior policy

transfer approaches. Similar to Müller et al. [22] we use

auxiliary intermediate objectives to aid in transfer, but in

our case focus on a set of auxiliary visual and motion tasks

which generalize to many downstream embodied tasks and

propose techniques to selectively transfer either across vi-

sual environments or across embodied tasks.

3. SplitNet: Decoupled Perception and Policy

Solving complex visual planning problems frequently re-

quires different types of abstract understanding and reason-

ing based on the visual inputs. In order to learn compact

representations and generalizable policies, it is often neces-

sary to go beyond the end-to-end training paradigm. This

is especially true when the initial learning setting (source

domain) and current learning setting (target domain) have

sufficiently different visual properties (e.g. differing visual

fidelity as seen in Figure 1 left) or different objectives (e.g.

transfer from one task to another as in Figure 1 right). In

this section we outline the learning tasks we use, and our

strategy for training a network which transfers to new vi-

sual domains and new embodied tasks.

3.1. Embodied Tasks

In this work, we focus on the following three visual nav-

igation tasks which require memory, planning, and geomet-

ric understanding: Point-to-Point Navigation (Point-Nav),

Scene Exploration (Exploration), and Run Away from Lo-

cation (Flee). In our experiments, all tasks share a discrete

action space: Move Forward by 0.25 meters and Rotate

Left/Right by 10 degrees.
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Figure 2. SplitNet initial learning on source data and task.

Given source visual inputs, the visual encoder is trained using aux-

iliary visual and motion based tasks. Next, the policy decoder is

trained on the source embodied tasks with a fixed visual encoder.

Gradients from the embodied task (depicted as blue arrows) are

stopped before the shared visual encoder to ensure decoupling of

the policy and perception.

Point-to-Point Navigation (Point-Nav) An agent is di-

rected to go to a point via a constantly updating tuple of

(angle to goal, distance to goal). The agent succeeds if it

ends the episode within a fixed radius of the goal. In our

experiments we use a success radius of 0.2 meters and the

agent is spawned anywhere from 1 to 30 meters from the

goal. The agent is provided with a one-hot encoding of its

previous action. Since the agent is given the distance to the

goal, learning the Stop action is trivial, so we disregard it.

Scene Exploration (Exploration) We discretize the

world-space into 1 meter cubes and count the number of dis-

tinct cubes visited by the agent during a fixed duration. This

task differs from Point-to-Point Navigation in that no abso-

lute or relative spatial locations are provided to the agent.

This prohibits agents from learning to detect collisions by

comparing location values from two timesteps, requiring

them to visually detect collisions. The agent still receives

a one-hot encoding of its previous action.

Run Away from Location (Flee) The goal of this task

is to maximize the geodesic distance from the start location

and the agent’s final location in episodes of fixed length. As

in Exploration, no spatial locations are given to the agent.

3.2. Decomposing the Learning Problem

For visual navigation tasks, an agent must understand

what it sees and it must use the perceived world to decide

what to do. Thus, we decompose visual navigation into

the subtasks of (1) encoding the visual information and (2)

using the encoded information to navigate. At each time

t the agent receives an egocentric image It from the en-

vironment and must return a navigation action at in order

to accomplish the task. Instead of learning actions directly

from pixels, we break the decision-making into two stages.

First, a function F processes the image It producing a fea-

ture embedding φt = F(It). Next, the features are decoded
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into an action at = G(φt). Our goal is to learn features φt
which extract salient information for completing navigation

tasks and which generalize to new environments. Rather

than passively expecting the end-to-end training to result in

transferable features, we directly optimize portions of the

network with distinct objectives to produce representations

which are highly semantically meaningful and transferable.

3.3. Visual Encoder

Visual understanding comes in many forms and is highly

dependent on the desired end task. In the case of visual nav-

igation, the agent must convert pixel inputs into an implicit

or explicit geometric understanding of the environment’s

layout. To encapsulate these ideas, we train a bottleneck

encoder-decoder network supervised by several auxiliary

visual and motion tasks. Each task uses a shared encoder,

and produces a general purpose feature, φt. This feature is

then used as input to learn a set of task specific decoders.

Auxiliary Visual Tasks: We encourage the shared en-

coder to extract geometric information from the raw visual

input by augmenting the learning objective with the follow-

ing auxiliary visual tasks: (1) prediction of depth through a

depth decoder, D, (2) prediction of surface normals through

a surface normal decoder, S , and (3) RGB reconstruction

through a reconstruction decoder, R (sample outputs are

shown in the supplementary material). For an input image

It with ground truth depth,Dt and ground truth surface nor-

mals St, the learning objective for each of these auxiliary

visual decoders is as follows:

LD =
∑

pixels

‖D(φt)−Dt‖1 (1)

LS = 1−
∑

pixels

S(φt) · St

‖S(φt)‖2 ∗ ‖St‖2
(2)

LR =
∑

pixels

‖R(φt)− It‖1 (3)

We use the ℓ1 loss for reconstruction and depth to encour-

age edge sharpness. We use the cosine loss for the surface

normals as it is a more natural fit for an angular output.

Auxiliary Motion Tasks: We additionally encourage the

visual encoder to extract information which may be gener-

ically useful for future embodied tasks by adding the fol-

lowing auxiliary motion tasks: (1) predict the egomotion

(discrete action) of the agent with motion decoder E , and

(2) forecast the next features given the current features and

a one-hot encoding of the action performed with motion de-

coder P . For a visual encoding φt at time t, previous encod-

ing φt−1, and action at that causes the agent to move from

It−1 to It, the learning objective for each of these auxiliary

motion decoders is as follows:

LE = −
∑

a∈A

p(at = a) log(E(φt, φt−1)) (4)

LP = 1−
∑

features

P(φt−1, at) · φt
‖P(φt−1, at)‖2 ∗ ‖φt‖ 2

(5)

We use the cross-entropy loss as we use a discrete action

space, and we use the cosine loss for next feature prediction

as it directly normalizes for scale which stops the network

from forcing all the features arbitrarily close to 0.

All objectives affecting the learning of the visual encoder

can be summarized in the joint loss:

L = λRLR + λDLD + λSLS + λELE + λPLP

where λR, λD, λS , λE , λP are scalar hyperparameters

which control the trade-off between the various tasks in this

multi-task learning objective.

Rather than expecting our network to learn to extract ge-

ometric information decoupled from the policy decoders,

we force the visual representation to contain this informa-

tion directly. This decreases the likelihood of overfitting to

training environments and thus increases the likelihood that

our model generalizes to unseen environments.

3.4. Policy Decoder

Our policy decoder takes as input the visual features φt
and learns to predict a desired action, at+1, supervised by a

reward signal provided by the desired task. To avoid purely

reactive policies, we employ a GRU [4] to add temporal

context. The output of the policy layers predicts a probabil-

ity distribution over the discretized action space and a value

estimate for the current state. The probability distribution is

sampled to determine which action to perform next.

When training the policy decoder, we fix our visual en-

coder and optimize only the policy decoder weights for the

chosen task i.e. gradients do not propagate from the

source task to the visual layers (see Figure 2 for an il-

lustration of the gradient flow from the embodied task loss).

This prevents policy information from leaking into the vi-

sual representation, ensuring the visual encoder generalizes

well for many tasks. For the task of Point-to-Point Naviga-

tion we use two training strategies: BC and BC, PPO.

BC: We train the agent using behavioral cloning (BC)

where the ground truth represents the action which would

maximally decrease the geodesic distance between the cur-

rent position and the goal. This is trained in a “student-

forcing” regime i.e. the agent executes actions based on its

policy, but evaluates the actions using the ground truth.

BC, PPO: We initialize the agent with the weights from the

BC setting and update only the policy layers using the PPO

algorithm [30] with a shaped reward based on the geodesic

distance to the goal, Geo(P,G):

r
pointnav
t = Geo(Pt−1, G)−Geo(Pt, G) + λT (6)

1025



Shared	Visual	

Encoder

G
R
U

A
ct
.	
C
ri
.

F
C

Visual	Auxiliary	Tasks

Motion	Auxiliary	Tasks

Egomotion Prediction

Next	Feature	Prediction

F
C

F
C

F
C

Target	Input

Task	Decoders

Target	Embodied	Task

Point-to-Point	Navigation

Scene	Exploration

Learn

Freeze

Parameter	Updates

Sim2Sim	Transfer

Figure 3. SplitNet visual domain transfer. When the target visual

inputs differ from the source visual inputs while the desired em-

bodied task remains fixed, our model updates the shared visual en-

coder using only auxiliary visual and motion based learning tasks.

All decoder weights are frozen (to prevent overfitting), but gradi-

ents propagate through all decoder layers to the encoder.

where Pt is the agent’s location at time t, G is the goal

location, and λT is a small constant time penalty.

3.5. Selective Transfer to New Domains and Tasks

3.5.1 Adapting to new Visual Domains

By decomposing the learning task into a perceptual encoder

and a policy decoder, each supervised by their own objec-

tives, our model is able to learn more transferable visual

features than end-to-end methods. Furthermore, our model

can quickly adapt its perceptual understanding with auxil-

iary visual and motion based training in the target environ-

ment without needing to modify the policy. Figure 3 il-

lustrates the visual encoder adaptation learning procedure.

Given a small sample of data and tasks in the target do-

main, we backpropagate gradients through the policy de-

coder2 and the auxiliary task layers but freeze the weights

for all but the shared visual encoder. By doing so, our

model can quickly adapt its perception without overfitting

the policy to the small sample.

3.5.2 Adapting to new Tasks

When transferring to a new embodied task operating in

the same visual space, our model only needs to update the

policy decoder parameters (see Figure 4). While reusing

lower-level features for new tasks by replacing and retrain-

ing the final layers is a common technique in deep learn-

ing [7, 13, 8] our model naturally decouples perception

and reasoning offering a clear solution as to which layers

to freeze or finetune. Rich perceptual features often trans-

fer to tasks which require different reasoning assuming that

the representation encodes the necessary information for the

new task. By using auxiliary tasks to inform the updates to

2Without propagating gradients through the policy decoder, the encoder

feature representation shifts and no longer matches the policy decoder.
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Figure 4. SplitNet task transfer. When learning a new embodied

task for the same visual inputs as in the source initial learning,

our model fixes the shared visual encoder and updates the policy

decoder using the new target embodied loss.

the visual encoder, we aim to encourage learning of inter-

mediate features that capture semantically meaningful in-

formation which should better transfer to new tasks than

arbitrary latent features. For example, the latent features

from a purely end-to-end learned model may represent a

variety of different (sometimes spurious) correlations, while

our features must contain enough information to reconstruct

depth and surface normals etc., so the network should be

able to, for instance, avoid obstacles using the exact same

features. While this implies that the selection of an appro-

priate auxiliary task affects the success of our method, if

necessary our network can still be trained end-to-end using

the pretrained weights as initialization.

In the specific cases of transferring from Point-Nav to

Exploration or Flee we initialize the model with the weights

from the BC, PPO setting and update the policy decoder

layers using PPO with the new reward functions:

r
explore
t = ‖V isitedt‖ − ‖V isitedt−1‖+ λT (7)

r
flee
t = Geo(Pt, Pt0)−Geo(Pt−1, Pt0) + λT (8)

where ‖V isitedt‖ represents how many unique spatial

locations the agent has visited at time t.

4. Experiments

To evaluate visual navigation tasks we use the Habitat

scene renderer [28] on scenes from the near-photo-realistic

3D room datasets Matterport 3D (referred to as MP3D) [3]

and Gibson [35] as well as a third 3D navigation dataset

(referred to as IndoorEnv).

4.1. Baselines

We compare our results against traditional end-to-end

(E2E) training algorithm results for all experiments. These

can be trained via the PPO algorithm, via behavioral cloning

(BC), or pretrained with BC and finetuned with PPO. One
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common technique across deep learning is to pretrain mod-

els on ImageNet [5], and finetune the entire network on the

desired task, which we also include as a baseline. We do

not freeze any weights when training E2E methods. We ad-

ditionally include blind (but learned) agents for each task

and random-action agents to benchmark task difficulty. For

Point-Nav, we also include a Blind Goal Follower which

aligns itself in the direction of goal vector and moves for-

ward, realigning after it collides with obstacles.

4.2. Generalization to Unseen Environments

The ability for an algorithm to generalize to unseen en-

vironments represents its effectiveness in real-world scenar-

ios. To begin analyzing our model, we experiment with the

standard protocol of training and evaluating on data from

the same simulator, partitioning the scenes into train and

test. We compare performance for the Point-Nav task on

three simulators (IndoorEnv, MP3D [3], Gibson [35]) eval-

uating in never-before-seen scenes. We use the SPL metric

proposed in [1] which can be stated as

SPL =
1

N

N∑

i=1

Si

ℓi

max(pi, ℓi)
(9)

where Si is a success indicator for episode i, pi is the path

length, and ℓi is the shortest path length. This combines

the accuracy (success) of a navigation method with its effi-

ciency (path length) where 1.0 would be an oracle agent.

Effective policies generalize by understanding the geom-

etry of the scenes rather than trying to localize into a known

map based on the visual inputs. SplitNet outperforms all

other methods by a wide margin on all three environments

(shown in Table 1). Surprisingly, pretraining on ImageNet

IndoorEnv MP3D [3] Gibson [35]

SPL Success SPL Success SPL Success

Random 0.012 0.027 0.011 0.016 0.046 0.028

Blind Goal Follower 0.199 0.203 0.155 0.158 0.325 0.319

Blind BC 0.159 0.323 0.232 0.382 0.351 0.603

Blind BC, PPO 0.291 0.377 0.317 0.471 0.427 0.643

Blind PPO 0.258 0.371 0.313 0.463 0.538 0.822

E2E PPO 0.324 0.529 0.322 0.477 0.634 0.831

E2E BC 0.343 0.548 0.459 0.737 0.509 0.824

E2E BC, PPO 0.393 0.593 0.521 0.733 0.606 0.869

ImageNet Pretrain, E2E BC 0.280 0.499 0.315 0.552 0.548 0.843

ImageNet Pretrain, E2E BC, PPO 0.338 0.440 0.450 0.539 0.642 0.737

SplitNet BC 0.421 0.687 0.517 0.808 0.584 0.865

SplitNet BC, PPO 0.560 0.703 0.716 0.844 0.701 0.855

Table 1. Performance on Unseen Environments. Blind methods

are not provided with visual input but still receive an updated goal

vector. “BC, PPO” methods are first trained with a softmax loss to

take the best next action and are finetuned with the PPO algorithm.

does not offer better generalization, likely because the fea-

tures required for ImageNet are sufficiently different from

those needed to navigate effectively (note, the convolutional

weights trained on ImageNet are not frozen during BC and

PPO training). This is true even compared to E2E without

pretraining on ImageNet.

As qualitative intuition about the performance of the var-

ious methods, we depict the policies for a subset of methods

on an example MP3D episode from in Figure 5. For a fixed

start (blue diamond) and goal (green star) location, we show

the output trajectory from each method where the trajectory

color (ranging from blue to red) denotes the number of steps

so far. If a policy failed to reach the goal, the final destina-

tion is denoted with a red “x”. From this visualization we

can see that SplitNet using BC and PPO successfully com-

pletes the task and does so with the shortest overall path.

At the beginning of the episode SplitNet BC is stuck behind

the wall, but eventually is able to navigate away from the

wall and reach the target.

SplitNet BC, PPO: SPL = 0.938 Blind BC, PPO: SPL = 0SplitNet BC: SPL = 0.486 E2E BC, PPO: SPL = 0

Point-to-Point Navigation from MP3D Validation Set

0 steps 500 steps

Figure 5. Qualitative comparison of Point-Nav policies on MP3D validation. An exemplar validation episode (fixed start and end

location) and the predicted trajectories from baselines and SplitNet.
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Number Train Scenes Test Data Number Train Scenes Test Data

IndoorEnv MP3D (Train) MP3D (Val) MP3D Gibson (Train) Gibson (Val)

(Source) (Target) SPL Success (Source) (Target) SPL Success

Source E2E BC, PPO 990 0 0.257 0.412 61 0 0.609 0.866

Source SplitNet BC, PPO 990 0 0.376 0.539 61 0 0.651 0.764

Target E2E BC 0 1 0.211 0.321 0 1 0.396 0.589

Target E2E Finetune 990 1 Failure Failure 61 1 Failure Failure

Target SplitNet Transfer 990 1 0.447 0.596 61 1 0.686 0.822

Target E2E BC 0 10 0.259 0.463 0 10 0.501 0.782

Target E2E Finetune 990 10 0.401 0.612 61 10 0.667 0.870

Target SplitNet Transfer 990 10 0.531 0.681 61 10 0.727 0.854

Target E2E BC, PPO 0 All (61) 0.521 0.733 0 All (72) 0.606 0.869

Target SplitNet BC, PPO 0 All (61) 0.716 0.844 0 All (72) 0.701 0.855

Table 2. Performance transferring across simulation environments (Sim2Sim). Our method, SplitNet, significantly outperforms the

end-to-end (E2E) baseline at the task of transferring across simulated environments. For reference, we also report the performance of a

source only trained model (top two rows) or a target only trained model (bottom two rows). “Failure” indicates that performance on the

target data decreases after finetuning.
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Figure 6. MP3D Point-Nav Performance vs episode difficulty.

We compare our method, SplitNet, to end-to-end (E2E) and blind

learned baselines and report SPL performance as a function of

starting geodesic distance from the goal. SplitNet outperforms on

all starting distances, especially on the more difficult episodes.

We further analyze the performance of SplitNet com-

pared to baselines as a function of the geodesic distance be-

tween the starting and goal locations in Figure 6. This dis-

tance is highly correlated with the difficulty of an episode.

Unsurprisingly, all methods degrade as the starting location

is moved further from the goal location, but SplitNet retains

its advantage over baselines irrespective of the episode dif-

ficulty. Additionally, we see the performance gap widen

over the more difficult episodes, meaning we handle diffi-

cult episodes better than the baselines.

4.3. Transfer Across Simulators

We now study the ability for our method to transfer be-

tween visual environments for the fixed task of Point-Nav.

We denote Source to be the initial simulator in which we

train our model using both BC and PPO and denote this

initial model as “Source SplitNet BC, PPO.” The base-

line source model that uses end-to-end training is denoted

as “Source E2E BC, PPO.” We then compare our method

for transfer to the new simulator Target, described in Sec-

tion 3.5.1 and denoted as “Target SplitNet Transfer,” against

the end-to-end baseline finetuned on the target, “Target E2E

Finetune.” For reference, we also present the performance

of training an end-to-end model using only the available tar-

get data, denoted as “Target E2E BC.”

Table 2 reports our main results for this Sim2Sim

transfer problem as a function of the amount of avail-

able target scenes during training. We report performance

for the two transfer settings of IndoorEnv→MP3D and

MP3D→Gibson. These simulators differ in terms of com-

plexities of differing rendering appearance (as seen in Fig-

ure 1), different environment construction methods (syn-

thetic vs. depth-scan reconstruction), and different environ-

ment size. Again, SplitNet outperforms all baselines across

all experiments in terms of the SPL metric and performs

better or comparable to the baseline in terms of success for

all transfer setups. Even with no extra data, our initially

learned network is more generalizable to new environments,

especially those which are significantly different in appear-

ance (IndoorEnv→MP3D). Of note, in both cases, SplitNet

given 10 scenes from the target dataset matches or outper-

forms the end-to-end baseline SPL given the entire target

dataset.

Note, that our approach to visual environement transfer

includes finetuning only the visual encoder in the target en-

vironment and leaving the policy decoder fixed. One may

wonder whether this is the optimal approach or whether our

method would benefit from target updates to the policy de-

coder as well. To answer this question, in Table 3 we report

performance comparing the initial source SplitNet perfor-

mance to that of finetuning either only the visual encoder

(“V”) which is our proposed approach or finetuning both the

visual encoder and policy decoder (“V+P”). Interestingly,

we found that allowing updates to both the visual encoder

and policy decoder in the target environment lead to signif-

icant overfitting which resulted in failed generalization to
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SplitNet Model
Layers Number

SPL Success
Finetuned Target Scenes

Transfer IndoorEnv → MP3D (train): Eval MP3D (val)

Source Only - - 0.376 0.539

Finetune Target V+P 1 0.435 0.586

Finetune Target V 1 0.447 0.596

Finetune Target V+P 10 0.400 0.552

Finetune Target V 10 0.531 0.681

Transfer MP3D → Gibson (train): Eval Gibson (val)

Source Only - - 0.651 0.764

Finetune Target V+P 1 Failure Failure

Finetune Target V 1 0.686 0.822

Finetune Target V+P 10 Failure Failure

Finetune Target V 10 0.727 0.854

Table 3. Ablation of SplitNet Sim2Sim transfer strategy. Split-

Net only updates the visual encoder (“V”) and fixes the policy de-

coder (“P”) when finetuning the source SplitNet model on a target

visual environment. In contrast, finetuning both V+P on the target

leads to degraded performance.

the unseen scenes from the validation sets. This confirms

the benefit of our split training approach.

4.4. Transfer Across Tasks

We test the ability for SplitNet to learn a new task by first

training the network on Point-Nav and using our approach

to transfer the model to the novel tasks of Exploration and

Flee. All three tasks require the ability to transform 2D vi-

sual inputs into 3D scene geometry, but the decisions about

what to do based on the perceived geometry are drastically

different. Since SplitNet decouples the policy from the per-

ception, it learns features which readily transfer to a novel,

but related task.

Figure 7 shows that SplitNet immediately begins to learn

effective new policies, outperforming the other methods al-

most right away. In Exploration, our method is able to

reuse its understanding of depth to quickly learn to approach

walls, then turn at the last second and head off in a new di-

rection. For the Flee task, our method identifies long empty

hallways and navigates down those away from the start lo-

cation. None of the other methods learn robust obstacle-

avoidance behavior or geometric scene understanding. In-

stead they latch on to simple dataset biases such as “repeat-

edly move forward then rotate.” Oracle agents perform at

33.5 and 19.5 respectively, but are not directly comparable

in that they benefit from knowing the environment layout

before beginning the episode.

4.5. Analysis of Auxiliary Objectives

Our method was designed as a solution for generaliza-

tion on a downstream embodied task. However, SplitNet

also learns outputs for the auxiliary visual and motion tasks.

While our goal is not to surpass state-of-the-art performance

on these auxiliary tasks it is still useful to verify that the
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Figure 7. IndoorEnv Task2Task performance as a function of

target training episodes. SplitNet Transfer and E2E Transfer are

first trained on IndoorEnv Point-Nav, but SplitNet only updates the

policy layers whereas E2E updates the entire network. E2E from

scratch is randomly initialized a episode 0. The Blind method only

receives its previous action as input and is randomly initialized.

Oracle agents perform at 33.5 and 19.5 respectively.

visual encodings match our expectations. We therefore in-

clude several examples which show the auxiliary outputs in

the supplemental material. In our our initial experiments,

we found depth and normal estimation to be the most im-

portant auxiliary task as they most directly translate to nav-

igation understanding (free space, geometry, etc.). A com-

plete ablation of auxiliary tasks and its consequences is left

as future work.

5. Conclusion

We introduce SplitNet, a method for decomposing em-

bodied learning tasks to enable fast and accurate transfer

to new environments and new tasks. By disentangling the

visual encoding of the state from the policy for a task, we

learn more robust features which can be frozen or adapted

based on the changed domain. Our model matches the per-

formance of end-to-end methods even with six times less

data. We believe SplitNet may prove to be a useful step-

ping stone in transferring networks from simulation envi-

ronments onto robots in the real-world.
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