
Scalable Verified Training for Provably Robust Image Classification

Sven Gowal*

DeepMind

sgowal@google.com

Krishnamurthy (Dj) Dvijotham*

dvij@google.com

Robert Stanforth*

stanforth@google.com

Rudy Bunel

Chongli Qin Jonathan Uesato Relja Arandjelović Timothy Mann Pushmeet Kohli

Abstract

Recent work has shown that it is possible to train deep

neural networks that are provably robust to norm-bounded

adversarial perturbations. Most of these methods are based

on minimizing an upper bound on the worst-case loss over

all possible adversarial perturbations. While these tech-

niques show promise, they often result in difficult optimiza-

tion procedures that remain hard to scale to larger networks.

Through a comprehensive analysis, we show how a simple

bounding technique, interval bound propagation (IBP), can

be exploited to train large provably robust neural networks

that beat the state-of-the-art in verified accuracy. While

the upper bound computed by IBP can be quite weak for

general networks, we demonstrate that an appropriate loss

and clever hyper-parameter schedule allow the network to

adapt such that the IBP bound is tight. This results in a

fast and stable learning algorithm that outperforms more

sophisticated methods and achieves state-of-the-art results

on MNIST, CIFAR-10 and SVHN. It also allows us to train

the largest model to be verified beyond vacuous bounds on a

downscaled version of IMAGENET.

1. Introduction

Despite the successes of deep learning [1], it is well-

known that neural networks are not robust. In particular, it

has been shown that the addition of small but carefully cho-

sen deviations to the input, called adversarial perturbations,

can cause the neural network to make incorrect predictions

with high confidence [2–6]. Starting with Szegedy et al. [6],

there has been a lot of work on understanding and generating

adversarial perturbations [3, 7], and on building models that

are robust to such perturbations [4, 8–10]. Unfortunately,

many of the defense strategies proposed in the literature are

targeted towards a specific adversary (e.g., obfuscating gra-

dients against projected gradient attacks), and as such they

are easily broken by stronger adversaries [11, 12]. Robust

optimization techniques, like the one developed by Madry

Perturbation found

through exhaustive search

(via MIP solver)

Perturbation found

using PGD

Empirically robust but

not provably robust model

Predictions

2 (MIP)

8 (PGD)

Figure 1: Example motivating why robustness to the projected

gradient descent (PGD) attack is not a true measure of robustness

(even for small convolutional neural networks). Given a seemingly

robust neural network, the worst-case perturbation of size ǫ = 0.1
found using 200 PGD iterations and 10 random restarts (shown at

the top) is correctly classified as an “eight”. However, a worst case

perturbation classified as a “two” can be found through exhaustive

search (shown at the bottom).

et al. [9], overcome this problem by trying to find the worst-

case adversarial examples at each training step and adding

them to the training data. While the resulting models show

strong empirical evidence that they are robust against many

attacks, we cannot yet guarantee that a different adversary

(for example, one that does brute-force enumeration to com-

pute adversarial perturbations) cannot find inputs that cause

the model to predict incorrectly. In fact, Figure 1 provides

an example that motivates why projected gradient descent

(PGD) – the technique at the core of Madry et al.’s method –

does not always find the worst-case attack (a phenomenon

also observed by Tjeng et al. [13]).

This has driven the need for formal verification: a prov-

able guarantee that neural networks are consistent with a

specification for all possible inputs to the network. Sub-

stantial progress has been made: from complete methods

14842

that use Satisfiability Modulo Theory (SMT) [14–16] or

Mixed-Integer Programming (MIP) [13, 17, 18] to incom-

plete methods that rely on solving a convex relaxation of

the verification problem [19–26]. Complete methods, which

provide exact robustness bounds, are expensive and difficult

to scale (since they perform exhaustive enumeration in the

worst case). Incomplete methods provide robustness bounds

that can be loose. However, they scale to larger models than

complete methods and, as such, can be used inside the train-

ing loop to build models that are not only robust, but also

intrinsically easier to verify [20, 23, 24, 27].

In this paper, we study interval bound propagation (IBP),

which is derived from interval arithmetic [14, 15, 28]: an

incomplete method for training verifiably robust classifiers.

IBP allows to define a loss to minimize an upper bound on

the maximum difference between any pair of logits when

the input can be perturbed within an ℓ∞ norm-bounded ball.

Compared to more sophisticated approaches [20, 23, 24, 27],

IBP is very fast – its computational cost is comparable to

two forward passes through the network. This enables us

to have a much faster training step, allowing us to scale to

larger models with larger batch sizes and perform more ex-

tensive hyper-parameter search. While the core approach

behind IBP has been studied to some extent in previous

papers [20, 23], blindly using it results in a difficult opti-

mization problem with unstable performance. Most notably,

we develop a training curriculum and show that this approach

can achieve strong results, outperforming the state-of-the-art.

The contributions of this paper are as follows:

• We propose several enhancements that improve the per-

formance of IBP for verified training. In particular,

we differentiate ourselves from Mirman et al. [20] by

using a different loss function, and by eliding the last

linear layer of the neural network, thereby improving

our estimate of the worst-case logits. We also develop

a curriculum that stabilizes training and improves gen-

eralization.

• We compare our trained models to those from other ap-

proaches in terms of robustness to PGD attacks [3] and

show that they are competitive against Madry et al. [9]

and Wong et al. [25] across a wide range of ℓ∞ pertur-

bation radii (hereafter denoted by ǫ). We also compare

IBP to Wong et al.’s method in terms of verified error

rates.

• We demonstrate that IBP is not only computationally

cheaper, but that it also achieves the state-of-the-art

verified accuracy for single-model architecture.1 We

reduce the verified error rate from 3.67% to 2.23%

on MNIST (with ℓ∞ perturbations of ǫ = 0.12), from

19.32% to 8.05% on MNIST (at ǫ = 0.3), and from

1The use of ensembles or cascades (as done by Wong et al. [25]) is

orthogonal to the work presented here.
2ǫ is measured with respect to images normalized between 0 and 1.

78.22% to 67.96% on CIFAR-10 (at ǫ = 8/255). Thus,

demonstrating the extent to which the model is able to

adapt itself during training so that the simple relaxation

induced by IBP is not too weak.

• We train the first provably robust model on IMAGENET

(downscaled to 64× 64 images) at ǫ = 1/255. Using

a WideResNet-10-10, we reach 93.87% top-1 verified

error rate. This constitutes the largest model to be

verified beyond vacuous bounds (a random or constant

classifier would achieve a 99.9% verified error rate).

• Finally, the code for training provably robust neural

networks using IBP is available at https://github.

com/deepmind/interval-bound-propagation.

2. Related Work

Work on training verifiably robust neural networks typi-

cally falls in one of two primary categories. First, there are

empirical approaches exemplified perfectly by Xiao et al.

[29]. This work takes advantage of the nature of MIP-based

verification – the critical bottleneck being the number of

integer variables the solver needs to branch over. The au-

thors design a regularizer that aims to reduce the number

of ambiguous ReLU activation units (units for which bound

propagation is not able to determine whether they are on or

off) so that verification after training using a MIP solver is

efficient. This method, while not providing any meaningful

measure of the underlying verified accuracy during training,

is able to reach state-of-the-art performance once verified

after training with a MIP solver.

Second, there are methods that compute a differentiable

upper bound on the violation of the specification to verify.

This upper bound, if fast to compute, can be used within a

loss (e.g., hinge loss) to optimize models through regular

Stochastic Gradient Descent (SGD). In this category, we

highlight the works by Raghunathan et al. [27], Wong et al.

[25], Dvijotham et al. [23] and Mirman et al. [20]. Raghu-

nathan et al. [27] use a semi-definite relaxation that provides

an adaptive regularizer that encourages robustness. Wong

et al. [25] extend their previous work [24], which considers

the dual formulation of the underlying LP. Critically, any

feasible dual solution provides a guaranteed upper bound on

the solution of the primal problem. This allows Wong and

Kolter to fix the dual solution and focus on computing tight

activation bounds that, in turn, yield a tight upper bound on

the specification violation. Alternatively, Dvijotham et al.

[23] fix the activation bounds and optimize the dual solution

using an additional verifier network. Finally, Mirman et al.

[20] introduce geometric abstractions that bound activations

as they propagate through the network. To the contrary of

the conclusions from these previous works, we demonstrate

that tighter relaxations (such as the dual formulation from

Dvijotham et al. [23], or the zonotope domain from Mirman

4843

et al. [20]) are not necessary to reach tight verified bounds.

IBP, which often leads to loose upper bounds for arbi-

trary networks, has a significant computational advantage,

since computing IBP bounds only requires two forward

passes through the network. This enables us to apply IBP to

significantly larger models and train with extensive hyper-

parameter tuning. We show that thanks to this capability, a

carefully tuned verified training process using IBP is able

to achieve state-of-the-art verified accuracy. Perhaps sur-

prisingly, our results show that neural networks can easily

adapt to make the rather loose bound provided by IBP much

tighter – this is in contrast to previous results that seemed

to indicate that more expensive verification procedures are

needed to improve the verified accuracy of neural networks

in image classification tasks.

3. Methodology

Neural network. We focus on feed-forward neural net-

works trained for classification tasks. The input to the net-

work is denoted x0 and its output is a vector of raw un-

normalized predictions (hereafter logits) corresponding to

its beliefs about which class x0 belongs to. During training,

the network is fed pairs of input x0 and correct output label

ytrue, and trained to minimize a misclassification loss, such

as cross-entropy.

For clarity of presentation, we assume that the neural

network is defined by a sequence of transformations hk for

each of its K layers. That is, for an input z0 (which we

define formally in the next paragraph), we have

zk = hk(zk−1) k = 1, . . . ,K (1)

The output zK ∈ R
N has N logits corresponding to N

classes.

Verification problem. We are interested in verifying that

neural networks satisfy a specification by generating a proof

that this specification holds. We consider specifications that

require that for all inputs in some set X (x0) around x0, the

network output satisfies a linear relationship

cTzK + d ≤ 0 ∀z0 ∈ X (x0) (2)

where c and d are a vector and a scalar that may depend on

the nominal input x0 and label ytrue. As shown by Dvijotham

et al. [22], many useful verification problems fit this defini-

tion. In this paper, we focus on the robustness to adversarial

perturbations within some ℓ∞ norm-bounded ball around the

nominal input x0.

A network is adversarially robust at a point x0 if there

is no choice of adversarial perturbation that changes the

classification outcome away from the true label ytrue, i.e.,

Adversarial

polytope
Interval

bounds Specification

Upper

bound

Figure 2: Illustration of interval bound propagation. From the left,

the adversarial polytope (illustrated in 2D for clarity) of the nominal

image of a “nine” (in red) is propagated through a convolutional

network. At each layer, the polytope deforms itself until the last

layer where it takes a complicated and non-convex shape in logit

space. Interval bounds (in gray) can be propagated similarly: after

each layer the bounds are reshaped to be axis-aligned bounding

boxes that always encompass the adversarial polytope. In logit

space, it becomes easy to compute an upper bound on the worst-

case violation of the specification to verify.

argmaxi zK,i = ytrue for all elements z0 ∈ X (x0). For-

mally, we want to verify that for each class y:

(ey−eytrue
)TzK ≤ 0 ∀z0 ∈ X (x0) = {x | ‖x−x0‖∞ < ǫ}

(3)

where ei is the standard ith basis vector and ǫ is the perturba-

tion radius.

Verifying a specification like (2) can be done by search-

ing for a counter-example that violates the specification con-

straint:

max
z0∈X (x0)

cTzK + d

subject to zk = hk(zk−1) k = 1, . . . ,K
(4)

If the optimal value of the above optimization problem is

smaller than 0, the specification (2) is satisfied.

Interval bound propagation. IBP’s goal is to find an up-

per bound on the optimal value of the problem (4). The sim-

plest approach is to bound the activation zk of each layer by

an axis-aligned bounding box (i.e., zk(ǫ) ≤ zk ≤ zk(ǫ)
3)

using interval arithmetic. For ℓ∞ adversarial perturbations

of size ǫ, we have for each coordinate zk,i of zk:

zk,i(ǫ) = min
z
k−1

(ǫ)≤zk−1≤zk−1(ǫ)
eT

i hk(zk−1)

zk,i(ǫ) = max
z
k−1

(ǫ)≤zk−1≤zk−1(ǫ)
eT

i hk(zk−1)
(5)

where z0(ǫ) = x0 − ǫ1 and z0(ǫ) = x0 + ǫ1. The above

optimization problems can be solved quickly and in closed

3For simplicity, we abuse the notation ≤ to mean that all coordinates

from the left-hand side need to be smaller than the corresponding coordi-

nates from the right-hand side.

4844

form for affine layers and monotonic activation functions.

An illustration of IBP is shown in Figure 2.

For the affine layers (e.g., fully connected layers, con-

volutions) that can be represented in the form hk(zk−1) =
Wzk−1 + b, solving the optimization problems (5) can be

done efficiently with only two matrix multiplies:

µk−1 =
zk−1 + zk−1

2

rk−1 =
zk−1 − zk−1

2
µk = Wµk−1 + b

rk = |W |rk−1

zk = µk − rk

zk = µk + rk

(6)

where | · | is the element-wise absolute value operator. Prop-

agating bounds through any element-wise monotonic acti-

vation function (e.g., ReLU, tanh, sigmoid) is trivial. Con-

cretely, if hk is an element-wise increasing function, we

have:

zk = hk(zk−1)

zk = hk(zk−1)
(7)

Notice how for element-wise non-linearities the (zk, zk)
formulation is better, while for affine transformations

(µk, rk) is more efficient (requiring two matrix multiplies

instead of four). Switching between parametrizations de-

pending on hk incurs a slight computational overhead, but

since affine layers are typically more computationally inten-

sive, the formulation (6) is worth it.

Finally, the upper and lower bounds of the output logits

zK can be used to construct an upper bound on the solution

of (4):

max
z
K
(ǫ)≤zK≤zK(ǫ)

cTzK + d (8)

Overall, the adversarial specification (3) is upper-bounded

by zK,y(ǫ) − zK,ytrue
(ǫ). It corresponds to an upper bound

on the worst-case logit difference between the true class ytrue

and any other class y.

Elision of the last layer. Bound propagation is not nec-

essary for the last linear layer of the network. Indeed, we

can find an upper bound to the solution of (4) that is tighter

than proposed by (8) by eliding the final linear layer with

the specification. Assuming hK(zK−1) = WzK−1 + b, we

have:

max
z
K
≤zK≤zK

zK=hK(zK−1)

cTzK + d

≥ max
z
K−1

≤zK−1≤zK−1

cThK(zK−1) + d

= max
z
K−1

≤zK−1≤zK−1

cTWzK−1 + cTb+ d

= max
z
K−1

≤zK−1≤zK−1

c′
T
zK−1 + d′

(9)

with c′ = W Tc and d′ = cTb + d, which bypasses the

additional relaxation induced by the last linear layer.

Loss. In the context of classification under adversarial per-

turbation, solving the optimization problem (8) for each

target class y 6= ytrue results in a set of worst-case logits

where the logit of the true class is equal to its lower bound

and the other logits are equal to their upper bound:

ẑK,y(ǫ) =

{

zK,y(ǫ) if y 6= ytrue

zK,ytrue
(ǫ) otherwise

(10)

That is for all y 6= ytrue, we have

(ey − eytrue
)TẑK(ǫ) = max

z
K
(ǫ)≤zK≤zK(ǫ)

(ey − eytrue
)TzK (11)

We can then formulate our training loss as

L = κ ℓ(zK , ytrue)
︸ ︷︷ ︸

Lfit

+(1− κ) ℓ(ẑK(ǫ), ytrue)
︸ ︷︷ ︸

Lspec

(12)

where ℓ is the cross-entropy loss and κ is a hyperparameter

that governs the relative weight of satisfying the specifi-

cation (Lspec) versus fitting the data (Lfit). If ǫ = 0 then

zK = ẑK(ǫ), and thus (12) becomes equivalent to a standard

classification loss.

Training procedure. To stabilize the training process and

get a good trade-off between nominal and verified accuracy

under adversarial perturbation, we create a learning curricu-

lum by scheduling the values of κ and ǫ:
• κ controls the relative weight of satisfying the speci-

fication versus fitting the data. Hence, we found that

starting with κ = 1 and slowly reducing it throughout

training helps get more balanced models with higher

nominal accuracy. In practice, we found that using a fi-

nal value of κ = 1/2 works well on MNIST, CIFAR-10,

SVHN and IMAGENET.

• More importantly, we found that starting with ǫ = 0
and slowly raising it up to a target perturbation radius

ǫtrain is necessary. We note that ǫtrain does not need to be

equal to the perturbation radius used during testing, us-

ing higher values creates robust models that generalize

better.

4845

Additional details that relate to specific datasets are available

in the supplementary material in Appendix A.

4. Results

We demonstrate that IBP can train verifiably robust net-

works and compare its performance to state-of-the-art meth-

ods on MNIST, CIFAR-10 and SVHN. Highlights include

an improvement of the verified error rate from 3.67% to

2.23% on MNIST at ǫ = 0.1, from 19.32% to 8.05% on

MNIST at ǫ = 0.3, and from 78.22% to 67.96% on CIFAR-

10 at ǫ = 8/255. We also show that IBP can scale to larger

networks by training a model on downscaled IMAGENET

that reaches a non-vacuous verified error rate of 93.87% at

ǫ = 1/255. Finally, Section 4.3 illustrates how training with

the loss function and curriculum from Section 3 allows the

training process to adapt the model to ensure that the bound

computed by IBP is tight.

Unless stated otherwise, we compute the empirical ad-

versarial accuracy (or error rate) on the test set using 200

untargeted PGD steps and 10 random restarts. As the ver-

ified error rate computed for a network varies greatly with

the verification method, we calculate it using an exact solver.

Several previous works have shown that training a network

with a loss function derived from a specific verification pro-

cedure renders the network amenable to verification using

that specific procedure only [23, 24, 27]. In order to cir-

cumvent this issue and present a fair comparison, we use

a complete verification algorithm based on solving a MIP –

such an algorithm is expensive as it performs a brute force

enumeration in the worst case. However, in practice, we find

that commercial MIP solvers like Gurobi can handle verifica-

tion problems from moderately sized networks. In particular,

we use the MIP formulation from Tjeng et al. [13]. For each

example of the test set, a MIP is solved using Gurobi with a

timeout of 10 minutes. Upon timeout, we fallback to solv-

ing a relaxation of the verification problem with a LP [15]

using Gurobi again. When both approaches fail to provide

a solution within the imparted time, we count the example

as attackable. Thus, the verified error rate reported may be

over-estimating the exact verified error rate.4 We always

report results with respect to the complete test set of 10K

images for both MNIST and CIFAR-10, and 26K images for

SVHN. For downscaled IMAGENET, we report results on the

validation set of 10K images.

4.1. MNIST, CIFAR-10 and SVHN

We compare IBP to three alternative approaches: the nom-

inal method, which corresponds to standard training with

4As an example, for the small model trained using Wong et al., there are

3 timeouts at ǫ = 0.1, 18 timeouts at ǫ = 0.2 and 58 timeouts at ǫ = 0.3
for the 10K examples of the MNIST test set. These timeouts would amount

to a maximal over-estimation of 0.03%, 0.18% and 0.58% in verified error

rate, respectively.

small medium large

CONV 16 4×4+2 CONV 32 3×3+1 CONV 64 3×3+1

CONV 32 4×4+1 CONV 32 4×4+2 CONV 64 3×3+1

FC 100 CONV 64 3×3+1 CONV 128 3×3+2

CONV 64 4×4+2 CONV 128 3×3+1

FC 512 CONV 128 3×3+1

FC 512 FC 512

hidden: 8.3K 47K 230K

params: 471K 1.2M 17M

Table 1: Architecture of the three models used on MNIST, CIFAR-

10 and SVHN. All layers are followed by RELU activations. The

last fully connected layer is omitted. “CONV k w×h+s” corresponds

to a 2D convolutional layer with k filters of size w×h using a stride

of s in both dimensions. “FC n” corresponds to a fully connected

layer with n outputs. The last two rows are the number of hidden

units (counting activation units only) and the number of parameters

when training on CIFAR-10.

cross-entropy loss; adversarial training, following Madry

et al. [9], which generates adversarial examples on the fly

during training; and Wong et al. [25], which trains models

that are provably robust. We train three different model ar-

chitectures for each of the four methods (see Table 1). The

first two models (i.e., small and medium) are equivalent to

the small and large models in Wong et al. [25]. 5 The third

model (i.e., large) is significantly larger (in terms of number

of hidden units) than any other verified model presented in

the literature. On MNIST, for each model and each method,

we trained models that are robust to a wide range of pertur-

bation radii by setting ǫtrain to 0.1, 0.2, 0.3 or 0.4. During

testing, we test each of these 12 models against ǫ ∈ [0, 0.45].
On CIFAR-10, we train the same models and methods with

ǫtrain ∈ {2/255, 8/255} and test on the same ǫ = ǫtrain value.

On SVHN we used ǫtrain = 0.01 and only test on ǫ = ǫtrain.

Figures 3a and b compare IBP to Wong et al. on MNIST

for all perturbation radii between 0 and 0.45 across all mod-

els. Remember that we trained each model architecture

against many ǫtrain values. The bold lines show for each

model architecture, the model trained with the perturbation

radius ǫtrain that performed best for a given ǫ (i.e., x-axis)

The faded lines show all individual models. Across the full

spectrum, IBP achieves good accuracy under PGD attacks

and higher provable accuracy (computed by an exact veri-

fier). We observe that while Wong et al. is competitive at

small perturbation radii (when both ǫ and ǫtrain are small), it

quickly degrades as the perturbation radius increases (when

ǫtrain is large). For completeness, Figure 3c also compares

IBP to Madry et al. with respect to the empirical accuracy

against PGD attacks of varying intensities. We observe that

IBP tends to be slightly worse than Madry et al. for similar

network sizes – except for the large model where Madry et al.

5We do not train our large model with Wong et al. as we could not scale

this method beyond the medium sized model.

4846

(a) (b) (c)

Figure 3: Accuracy against different adversarial perturbations: (a) shows the verified/provable worst-case accuracy compared to Wong et al.,

(b) shows the empirical adversarial accuracy computed by running PGD compared to Wong et al., and (c) shows the empirical adversarial

accuracy computed by running PGD compared to Madry et al.. Faded lines show individual models of a given size (i.e., small, medium and

large) trained with ǫtrain = {0.1, 0.2, 0.3, 0.4}, while bold lines show the best accuracy across across all ǫtrain values for each model size.

In (a), for Wong et al., the dots correspond to exact bounds computed using a MIP solver, while the black bold line corresponds to a lower

bound computed using [25] without random projections.

is likely overfitting (as it performs worse than the medium-

sized model).

Table 4 provides additional results and also includes re-

sults from the literature. The test error corresponds to the

test set error rate when there is no adversarial perturbation.

For models that we trained ourselves, the PGD error rate

is calculated using 200 iterations of PGD and 10 random

restarts. The verified bound on the error rate is obtained

using the MIP/LP cascade described earlier. A dash is used

to indicate when we could not verify models beyond trivial

bounds within the imparted time limits. For such cases, it is

useful to consider the PGD error rate as a lower bound on the

verified error rate. All methods use the same model architec-

tures (except results from the literature). For clarity, we do

not report the results for all ǫtrain values and all model archi-

tectures (Table 6 in the appendix reports additional results).

Figure 3 already shows the effect of ǫtrain and model size in

a condensed form. Compared to Wong et al., IBP achieves

lower error rates under normal and adversarial conditions, as

well as better verifiable bounds, setting the state-of-the-art

in verified robustness to ℓ∞-bounded adversarial attacks on

most pairs of dataset and perturbation radius. Additionally,

IBP remains competitive against Madry et al. by achieving a

lower PGD error rate on CIFAR-10 with ǫ = 8/255 (albeit

at the cost of an increased nominal error rate).6 CIFAR-10

with ǫ = 2/255 is the only combination where IBP is worse

than Wong et al. [25]. From our experience, the method from

Wong et al. is more effective when the perturbation radius

is small (as visible on Figure 3a), thus giving a marginally

6This result only holds for our constrained set of network sizes. The

best known empirical adversarial error rate for CIFAR-10 at ǫ = 8/255
using Madry et al. is 52.96% when using 20 PGD steps and no restarts.

As a comparison, our large model on CIFAR-10 achieves an empirical

adversarial error rate of 60.1% when using 20 PGD steps and no restarts.

ǫ Method Test error PGD Verified

1/255
Nominal 48.84% 100.00% –

Madry et al. 51.52% 70.03% –

IBP 84.04% 90.88% 93.87%

Table 2: Downscaled IMAGENET results. Comparison of the

nominal test error (under no perturbation), empirical PGD error

rate, and verified bound on the error rate. The verified error rate is

computed using IBP bounds only, as running a complete solver is

too slow for this model.

better feedback when training on CIFAR-10 at ǫ = 2/255.

Additional results are available in Appendix D. Appendix C

also details an ablative study that demonstrates that (i) using

cross-entropy (rather than a hinge or softplus loss on each

specification) improves verified accuracy across all datasets

and model sizes, that (ii) eliding the last linear layer also

provides a small but consistent improvement (especially for

models with limited capacity), and that (iii) the schedule on

ǫ is necessary.

Finally, we note that when training the small network on

MNIST with a Titan Xp GPU (where standard training takes

1.5 seconds per epoch), IBP only takes 3.5 seconds per epoch

compared to 8.5 seconds for Madry et al. and 2 minutes for

Wong et al. (using random projection of 50 dimensions).

Indeed, as detailed in Section 3 (under the paragraph interval

bound propagation), IBP creates only two additional passes

through the network compared to Madry et al. for which we

used seven PGD steps.

4.2. Downscaled IMAGENET

This section demonstrates the scalability of IBP by train-

ing, to the best of our knowledge, the first model with

non-vacuous verifiable bounds on IMAGENET. We train

4847

(a) Training step 0 (b) Training step 200 (c) Training step 800

Figure 4: Evolution of the adversarial polytope (in gray) around the same input during training. The outer approximation computed using

IBP is shown in green.

a WideResNet-10-10 with 8M parameters and 1.8M hidden

units, almost an order of magnitude greater than the number

of hidden units in our large network. The results in Table 2

are obtained through standard non-robust training, adversar-

ial training, and robust training using IBP on downscaled

images (i.e., 64× 64). We use all 1000 classes and measure

robustness (either empirical or verifiably) using the same

one-vs-all scheme used for MNIST, CIFAR-10 and SVHN.

Additional details are available in the supplementary mate-

rial in Appendix A. We realize that these results are pale

in comparison to the nominal accuracy obtained by larger

non-robust models (i.e., Real et al. [30] achieving 16.1%

top-1 error rate). However, we emphasize that no other work

has formally demonstrated robustness to norm-bounded per-

turbation on IMAGENET, even for small perturbations like

ǫ = 1/255.

4.3. Tightness

Figure 4 shows the evolution of an adversarial polytope

and its outer approximation during training. In this setup

(similar to Wong and Kolter [24]), we train a 2-100-100-

100-2 network composed of fully-connected layers with

ReLU activations on a toy two-dimensional dataset. This

dataset consists of 13 randomly drawn 2-dimensional points

in [0, 1]2, five of which are from the positive class. The ℓ∞
distance between each pair of points is at least 0.08, which

corresponds to the ǫ and ǫtrain values used during testing

and training, respectively. The adversarial polytope at the

last layer (shown in gray) is computed by densely sampling

inputs within an ℓ∞-norm bounded ball around a nominal

input (corresponding to one of the positive training exam-

ples). The outer bounds (in green) correspond to the interval

bounds at the last layer computed using (5). We observe that,

while initially the bounds are very loose, they do become

tighter as training progresses.

To judge the tightness of IBP quantitatively, we compare

the final verified error rate obtained using the MIP/LP cas-

cade describe earlier with the upper bound estimates from

Dataset Epsilon IBP bound MIP bound

MNIST

ǫ = 0.1 2.92% 2.23%

ǫ = 0.2 4.53% 4.48%

ǫ = 0.3 8.21% 8.05%

ǫ = 0.4 15.01% 14.88%

CIFAR-10
ǫ = 2/255 55.88% 49.98%

ǫ = 8/255 68.44% 67.96%

SVHN ǫ = 0.01 39.35% 37.60%

Table 3: Tightness of IBP verified bounds on the error rate.

This table compares the verified bound on the error rate obtained

using the MIP/LP cascade with the estimates from IBP only (ob-

tained using the worst-case logits from (10)). The models are the

ones reported in Table 4.

IBP only. Table 3 shows the differences. We observe that

IBP itself is a good estimate of the verified error rate and pro-

vides estimates that are competitive with more sophisticated

solvers (when models are trained using IBP). While intuitive,

it is surprising to see that the IBP bounds are so close to

the MIP bounds. This highlights that verification becomes

easier when models are trained to be verifiable as a simple

method like IBP can verify a large proportion of the MIP

verified samples. This phenomenon was already observed

by Dvijotham et al. [23] and Xiao et al. [29] and explains

why some methods cannot be verified beyond trivial bounds

within a reasonable computational budget.

5. Conclusion

We have presented an approach for training verifiable

models and provided strong baseline results for MNIST,

CIFAR-10, SVHN and downscaled IMAGENET. Our experi-

ments have shown that the proposed approach outperforms

competing techniques in terms of verified bounds on adver-

sarial error rates in image classification problems, while also

training faster. In the future, we hope that these results can

serve as a useful baseline. We believe that this is an impor-

tant step towards the vision of specification-driven ML.

4848

Dataset Epsilon Method Test error PGD Verified

MNIST ǫ = 0.1

Nominal 0.65% 27.72% –

Madry et al. (ǫtrain = 0.2) 0.59% 1.34% –

Wong et al. (ǫtrain = 0.1) 1.08% 2.89% 3.01%

IBP (ǫtrain = 0.2) 1.06% 2.11% 2.23%

Reported in literature*

Xiao et al. [29]** 1.05% 3.42% 4.40%

Wong et al. [25] 1.08% – 3.67%

Dvijotham et al. [23] 1.20% 2.87% 4.44%

MNIST ǫ = 0.2

Nominal 0.65% 99.57% –

Madry et al. (ǫtrain = 0.4) 0.70% 2.39% –

Wong et al. (ǫtrain = 0.2) 3.22% 6.93% 7.27%

IBP (ǫtrain = 0.4) 1.66% 3.90% 4.48%

Reported in literature

Xiao et al. [29] 1.90% 6.86% 10.21%

MNIST ǫ = 0.3

Nominal 0.65% 99.63% –

Madry et al. (ǫtrain = 0.4) 0.70% 3.73% –

Wong et al. (ǫtrain = 0.3) 13.52% 26.16% 26.92%

IBP (ǫtrain = 0.4) 1.66% 6.12% 8.05%

Reported in literature

Madry et al. [9] 1.20% 6.96% –

Xiao et al. [29] 2.67% 7.95% 19.32%

Wong et al. [25] 14.87% – 43.10%

MNIST ǫ = 0.4
Nominal 0.65% 99.64% –

Madry et al. (ǫtrain = 0.4) 0.70% 5.52% –

IBP (ǫtrain = 0.4) 1.66% 10.34% 14.88%

CIFAR-10 ǫ = 2/255

Nominal 16.66% 87.24% –

Madry et al. (ǫtrain = 2/255) 15.54% 42.01% –

Wong et al. (ǫtrain = 2/255) 36.01% 45.11% 49.96%

IBP (ǫtrain = 2/255) 29.84% 45.09% 49.98%

Reported in literature

Xiao et al. [29] 38.88% 50.08% 54.07%

Wong et al. [25] 31.72% – 46.11%

CIFAR-10 ǫ = 8/255

Nominal 16.66% 100.00% 100.00%

Madry et al. (ǫtrain = 8/255) 20.33% 75.95% –

Wong et al. (ǫtrain = 8/255) 71.03% 78.14% 79.21%

IBP (ǫtrain = 8/255) 50.51% 65.23% 67.96%

Reported in literature

Madry et al. [9] 12.70% 52.96% –

Xiao et al. [29] 59.55% 73.22% 79.73%

Wong et al. [25] 71.33% – 78.22%

Dvijotham et al. [23]*** 51.36% 67.28% 73.33%

SVHN ǫ = 0.01

Nominal 5.13% 94.14% –

Madry et al. (ǫtrain = 0.01) 6.18% 29.06% –

Wong et al. (ǫtrain = 0.01) 18.10% 32.41% 37.96%

IBP (ǫtrain = 0.01) 14.82% 32.46% 37.60%

Reported in literature

Wong and Kolter [24] 20.38% 33.74% 40.67%

Dvijotham et al. [23] 16.59% 33.14% 37.56%

Table 4: Comparison with the state-of-the-art. Comparison of the nominal test error (no adversarial perturbation), error rate under PGD

attacks, and verified bound on the error rate. The PGD error rate is calculated using 200 iterations of PGD and 10 random restarts. Dashes

“–” indicate that we were unable to verify these networks beyond the trivial 100% error rate bound within the imparted time limit; for such

cases we know that the verified error rate must be at least as large as the PGD error rate. For the models we trained ourselves, we indicate

the ǫtrain that lead to the lowest verified (or – when not available – empirical) error rate. Results from Mirman et al. [20] are only included in

Appendix D as, due to differences in image normalization, different ǫ were used; we confirmed with the authors that our IBP results are

significantly better.

* Results reported from the literature may use different network architectures. Their empirical PGD error rate may have been computed with

a different number of PGD steps and a different number of restarts (when possible we chose the closest setting to ours). Except for the

results from Xiao et al. [29], the reported verified bound on the error rate is not computed with an exact solver and may be over-estimated.

** For this model, Xiao et al. [29] only provides estimates computed from 1000 samples (rather than the full 10K images).

*** Dvijotham et al. [23] use a slightly smaller ǫ = 0.03 = 7.65/255 for CIFAR-10.

4849

References

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep

Learning. MIT Press, 2016. 1

[2] Nicholas Carlini and David Wagner, “Adversarial examples

are not easily detected: Bypassing ten detection methods,” in

Proceedings of the 10th ACM Workshop on Artificial Intelli-

gence and Security. ACM, 2017, pp. 3–14. 1

[3] ——, “Towards evaluating the robustness of neural networks,”

in 2017 IEEE Symposium on Security and Privacy. IEEE,

2017, pp. 39–57. 1, 2

[4] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy,

“Explaining and harnessing adversarial examples,” arXiv

preprint arXiv:1412.6572, 2014. 1

[5] Alexey Kurakin, Ian Goodfellow, and Samy Bengio, “Ad-

versarial examples in the physical world,” arXiv preprint

arXiv:1607.02533, 2016.

[6] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus,

“Intriguing properties of neural networks,” arXiv preprint

arXiv:1312.6199, 2013. 1

[7] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin

Kwok, “Synthesizing robust adversarial examples,” in Interna-

tional Conference on Machine Learning, 2018, pp. 284–293.

1

[8] Nicolas Papernot, Patrick Drew McDaniel, Xi Wu, Somesh

Jha, and Ananthram Swami, “Distillation as a defense to

adversarial perturbations against deep neural networks,” in

2016 IEEE Symposium on Security and Privacy, SP 2016.

Institute of Electrical and Electronics Engineers Inc., 2016,

pp. 582–597. 1

[9] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu, “Towards deep learn-

ing models resistant to adversarial attacks,” in International

Conference on Learning Representations, 2018. 1, 2, 5, 8, 11

[10] Harini Kannan, Alexey Kurakin, and Ian Goodfellow, “Adver-

sarial logit pairing,” arXiv preprint arXiv:1803.06373, 2018.

1

[11] Jonathan Uesato, Brendan ODonoghue, Pushmeet Kohli, and

Aaron Oord, “Adversarial risk and the dangers of evaluat-

ing against weak attacks,” in International Conference on

Machine Learning, 2018, pp. 5032–5041. 1

[12] Anish Athalye, Nicholas Carlini, and David Wagner, “Obfus-

cated gradients give a false sense of security: Circumventing

defenses to adversarial examples,” in International Confer-

ence on Machine Learning, 2018, pp. 274–283. 1

[13] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake, “Evaluating

robustness of neural networks with mixed integer program-

ming,” in International Conference on Learning Representa-

tions, 2019. 1, 2, 5

[14] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and

Mykel J Kochenderfer, “Reluplex: An efficient smt solver for

verifying deep neural networks,” in International Conference

on Computer Aided Verification. Springer, 2017, pp. 97–117.

2

[15] Ruediger Ehlers, “Formal verification of piece-wise lin-

ear feed-forward neural networks,” in International Sympo-

sium on Automated Technology for Verification and Analysis.

Springer, 2017, pp. 269–286. 2, 5

[16] Nicholas Carlini, Guy Katz, Clark Barrett, and David L

Dill, “Ground-truth adversarial examples,” arXiv preprint

arXiv:1709.10207, 2017. 2

[17] Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet

Kohli, and M Pawan Kumar, “Piecewise linear neural net-

work verification: a comparative study,” arXiv preprint

arXiv:1711.00455, 2017. 2

[18] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess,

“Maximum resilience of artificial neural networks,” in Interna-

tional Symposium on Automated Technology for Verification

and Analysis. Springer, 2017, pp. 251–268. 2

[19] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-

Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon,

“Towards fast computation of certified robustness for relu

networks,” in International Conference on Machine Learning,

2018, pp. 5273–5282. 2

[20] Matthew Mirman, Timon Gehr, and Martin Vechev, “Dif-

ferentiable abstract interpretation for provably robust neural

networks,” in Proceedings of the 35th International Confer-

ence on Machine Learning, vol. 80, 2018, pp. 3578–3586. 2,

3, 8, 13, 14

[21] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar

Tsankov, Swarat Chaudhuri, and Martin Vechev, “Ai 2: Safety

and robustness certification of neural networks with abstract

interpretation,” in IEEE Symposium on Security and Privacy,

2018.

[22] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal,

Timothy A Mann, and Pushmeet Kohli, “A dual approach

to scalable verification of deep networks.” in UAI, 2018, pp.

550–559. 3

[23] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth,

Relja Arandjelovic, Brendan O’Donoghue, Jonathan Uesato,

and Pushmeet Kohli, “Training verified learners with learned

verifiers,” arXiv preprint arXiv:1805.10265, 2018. 2, 5, 7, 8,

13

[24] Eric Wong and Zico Kolter, “Provable defenses against ad-

versarial examples via the convex outer adversarial polytope,”

in International Conference on Machine Learning, 2018, pp.

5283–5292. 2, 5, 7, 8

[25] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico

Kolter, “Scaling provable adversarial defenses,” in Advances

in Neural Information Processing Systems, 2018, pp. 8400–

8409. 2, 5, 6, 8, 11, 12, 14

[26] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang,

and Suman Jana, “Formal security analysis of neural net-

works using symbolic intervals,” in 27th {USENIX} Security

Symposium ({USENIX} Security 18), 2018, pp. 1599–1614.

2

[27] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang, “Cer-

tified defenses against adversarial examples,” in International

Conference on Learning Representations, 2018. 2, 5

[28] Teruo Sunaga, “Theory of interval algebra and its application

to numerical analysis,” RAAG memoirs, vol. 2, no. 29-46, p.

209, 1958. 2

[29] Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiul-

lah, and Aleksander Madry, “Training for faster adversarial

robustness verification via inducing reLU stability,” in Inter-

4850

national Conference on Learning Representations, 2019. 2,

7, 8

[30] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le, “Regularized evolution for image classifier architecture

search,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, 2019, pp. 4780–4789. 7

[31] Diederik P Kingma and Jimmy Ba, “Adam: A method for

stochastic optimization,” arXiv preprint arXiv:1412.6980,

2014. 11

[32] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard et al., “Tensorflow: a

system for large-scale machine learning.” in OSDI, vol. 16,

2016, pp. 265–283. 11

[33] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana,

“Mixtrain: Scalable training of formally robust neural net-

works,” arXiv preprint arXiv:1811.02625, 2018. 14

4851

