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Abstract

We present a joint 3D pose and focal length estimation

approach for object categories in the wild. In contrast to

previous methods that predict 3D poses independently of the

focal length or assume a constant focal length, we explicitly

estimate and integrate the focal length into the 3D pose es-

timation. For this purpose, we combine deep learning tech-

niques and geometric algorithms in a two-stage approach:

First, we estimate an initial focal length and establish 2D-

3D correspondences from a single RGB image using a deep

network. Second, we recover 3D poses and refine the focal

length by minimizing the reprojection error of the predicted

correspondences. In this way, we exploit the geometric

prior given by the focal length for 3D pose estimation. This

results in two advantages: First, we achieve significantly

improved 3D translation and 3D pose accuracy compared

to existing methods. Second, our approach finds a geomet-

ric consensus between the individual projection parameters,

which is required for precise 2D-3D alignment. We evalu-

ate our proposed approach on three challenging real-world

datasets (Pix3D, Comp, and Stanford) with different object

categories and significantly outperform the state-of-the-art

by up to 20% absolute in multiple different metrics.

1. Introduction

3D object pose estimation aims at predicting the 3D rota-

tion and 3D translation of objects relative to the camera. It is

a fundamental yet unsolved computer vision problem with

many applications, including augmented reality, robotics,

and scene understanding. Recently, there have been great

advances in 3D object pose estimation from single RGB im-

ages on the category level [8, 28, 34, 41], thanks to the de-

velopment of deep learning and the creation of large-scale

datasets providing 3D annotations for RGB images [46, 47].

While recent approaches achieve high accuracy in terms

of 3D rotation, their accuracy in terms of 3D translation is

Figure 1: Images captured with two cameras having differ-

ent focal lengths. The appearance of the chair is similar in

both images, but the 3D poses are significantly different due

to the distinct focal lengths and object-to-camera distances.

often low [27, 42]. The main reason for this discrepancy

is illustrated in Figure 1, where we compare two images

of an object captured with cameras having different focal

lengths. The appearance of the object is similar in both im-

ages, even though the 3D poses are significantly different.

In fact, the appearance of an object in an image is not only

determined by the 3D pose, but also by the camera intrin-

sics. While changes in the 3D rotation always significantly

effect the appearance, changes in the 3D translation do not if

the translation direction and the ratio between the object-to-

camera distance and the focal length remain constant. Thus,

estimating the 3D translation of objects from RGB images

in the case of unknown intrinsics is highly ambiguous.

Existing approaches assume that the 3D pose estimation

method will implicitly learn the subtle appearance varia-

tions caused by different focal lengths from the data and

adapt the prediction accordingly [27, 42]. In practice, how-

ever, this is not the case, because deep networks do not find

the solutions we intend without explicit guidance.

To overcome this limitation, we propose to explicitly es-

timate and integrate the focal length into the 3D pose es-

timation. For this purpose, we introduce a two-stage ap-

proach that combines deep learning techniques and geomet-
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ric algorithms. In the first stage, we estimate an initial focal

length and establish 2D-3D correspondences from a single

RGB image using a deep network. In the second stage, we

perform a geometric optimization on the predicted corre-

spondences to recover 3D poses and refine the focal length.

In particular, we minimize the reprojection error between

predicted 2D locations and 3D points subject to the 3D rota-

tion, 3D translation, and the focal length by solving a PnPf

problem [29]. In this way, we exploit the geometric prior

given by the focal length for 3D pose estimation.

In contrast to existing approaches, which also predict 3D

poses and the focal length but only perform an independent

estimation of the individual parameters [42], our approach

has two main advantages: First, explicitly modeling the fo-

cal length in the 3D pose estimation yields significantly im-

proved 3D translation and 3D pose accuracy. Second, our

approach finds a geometric consensus between 3D poses

and the focal length. This results in a significantly improved

2D-3D alignment when projecting 3D models of objects

back onto the image, which is important for many applica-

tions like augmented reality. Therefore, we call our method

Geometric Projection Parameter Consensus (GP2C).

In addition, we explore two possible methods for estab-

lishing 2D-3D correspondences from RGB images, which

approach the task from different directions. Our first

method predicts 3D points for known 2D locations by esti-

mating a 3D coordinate for each object pixel [1, 2, 17]. Our

second method predicts 2D locations for known 3D points

by estimating the 2D projections of the object’s 3D bound-

ing box corners [8, 33, 37]. Our experiments show that both

methods achieve comparable accuracy, but each method has

its respective advantages and disadvantages. Thus, we pro-

vide a detailed discussion comparing the two methods.

To demonstrate the benefits of our joint 3D pose and fo-

cal length estimation approach, we evaluate it on three chal-

lenging real-world datasets with different object categories:

Pix3D [35] (bed, chair, sofa, table), Comp [42] (car), and

Stanford [42] (car). We present quantitative as well as qual-

itative results and significantly outperform the state-of-the-

art. To summarize, our main contributions are:

• We present the first method for joint 3D pose and focal

length estimation that enforces a geometric consensus

between 3D poses and the focal length.

• We outperform the state-of-the-art by up to 20% ab-

solute in multiple metrics covering different aspects of

projective geometry including 3D translation, 3D pose,

focal length, and projection accuracy.

2. Related Work

In this section, we discuss previous work on 3D pose es-

timation for object categories and approaches for estimating

the camera intrinsics, in particular, the focal length.

2.1. 3D Pose Estimation

A recent trend in computer vision is to predict pose

parameters directly using deep learning. In this context,

numerous works predict only the 3D rotation of objects

using CNNs. These methods perform rotation classifica-

tion [34, 40, 41], regression [25, 46], or apply hybrid vari-

ants of both [24] using different parametrizations such as

Euler angles, quaternions, or exponentials maps.

In this work, however, we focus on the estimation of the

full 3D pose, i.e., the 3D rotation and 3D translation of ob-

jects. In this case, many approaches combine the 3D rota-

tion estimation techniques described above with 3D transla-

tion regression [21, 27, 28]. Because detecting and localiz-

ing objects in 2D is often a first step towards estimating the

3D pose, recent approaches integrate 3D pose estimation

techniques into object detection pipelines making the en-

tire system end-to-end trainable [18, 19, 42, 48]. However,

these methods do not explicitly take the camera intrinsics

into account, which results in poor performance on images

captured with different focal lengths, for example.

In contrast to these direct approaches, there is a large

amount of research on recovering the pose from 2D-3D cor-

respondences, additionally considering a camera model [9].

In this context, recent approaches use CNNs to predict the

2D locations of the projections of 3D keypoints from RGB

images [30, 32]. While [32] recovers the 3D pose from

the predicted 2D locations and a given 3D model using a

PnP algorithm, [30] recovers the 3D pose from the predicted

2D locations alone using a trained deformable shape model.

However, these approaches rely on category-specific se-

mantic 3D keypoints which need to be selected and anno-

tated manually for each 3D model.

In this work, we also predict 2D-3D correspondences

from RGB images, but do not rely on category-specific 3D

keypoints. In particular, we explore two different strate-

gies. Our first strategy is to predict 3D points for known

2D locations. A natural choice is to predict a 3D point for

each image pixel [1]. In this case, it is important to know

which pixels belong to an object and which pixels belong

to the background or another object [2]. Recently, it has

been shown that deep learning techniques for instance seg-

mentation [10] significantly increase the accuracy on this

task [17, 42]. In contrast to our approach, [17] relies on two

disjoint networks for instance segmentation and 3D point

regression followed by a geometric optimization assuming

a constant focal length. Instead, we use a single network

to perform both tasks and additionally optimize the focal

length. [42] on the other hand also regresses 3D points with

a single network, but relies on a second network to esti-

mate the 3D rotation from these points, compared to our

approach which uses a geometric optimization on arbitrary

2D-3D correspondences for joint 3D pose and focal length

estimation.
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Our second strategy is to predict the 2D locations of

known 3D points. In this case, we choose to predict vir-

tual 3D points which generalize across different objects and

categories, e.g., the corners of the 3D bounding box of an

object [33, 37], instead of category-specific 3D keypoints.

Recently, it has been shown that this approach can be ex-

tended to make predictions without the use of 3D models

during inference [8]. In contrast to our work, [8] assumes

that all objects are already detected and localized in 2D, and

uses a constant focal length.

2.2. Focal Length Estimation

Computing the focal length and other camera intrin-

sics from 2D-3D correspondences has a long tradition in

computer vision [7, 9]. In this context, the intrinsic and

extrinsic parameters of the camera are often recovered

jointly [29, 44]. For this purpose, numerous works explic-

itly estimate the focal length and the 3D pose of the camera

by solving a PnPf problem [31, 50, 51].

In practice, these methods require precise 2D-3D corre-

spondences, which are often selected manually or using cal-

ibration grids [39, 49]. Many applications, however, require

automatic calibration. In specific cases, it is possible to ex-

ploit geometric image elements such as lines [6], vanishing

points [36], or circles [4] to compute the intrinsics, but these

methods do not generalize to arbitrary natural images.

Thus, recent works estimate the focal length from RGB

images without requiring particular geometric structures us-

ing deep learning [42, 43]. In this work, we take a sim-

ilar approach. However, in contrast to existing methods,

we propose a different parametrization and additionally use

2D-3D correspondences to refine the predicted focal length.

3. Joint 3D Pose and Focal Length Estimation

Given a single RGB image, we want to predict the fo-

cal length and the 3D pose of each object in an image. For

this purpose, we introduce a two-stage approach that com-

bines deep learning techniques and geometric algorithms,

as shown in Figure 2. In the first stage, we predict an ini-

tial focal length and establish 2D-3D correspondences using

deep learning (Sec. 3.1). In the second stage, we perform a

geometric optimization on the predicted correspondences to

recover 3D poses and refine the focal length (Sec. 3.2).

3.1. Stage 1: Deep Focal Length and 2D­3D
Correspondence Estimation

To predict the focal length as well as 2D-3D correspon-

dences with a single deep network, we extend the gen-

eralized Faster/Mask R-CNN framework [10, 34]. This

generic multi-task framework includes a 2D object detec-

tion pipeline to perform per-image and per-object computa-

tions. In this way, we address multiple different tasks using

Figure 2: Overview of our proposed two-stage approach.

Stage 1: We predict an initial focal length and establish

2D-3D correspondences using deep learning. Stage 2: We

perform a geometric optimization on the predicted corre-

spondences to recover 3D poses and refine the focal length.

a single end-to-end trainable network. For our implemen-

tation, we use a Feature Pyramid Network [22] on top of

a ResNet-101 backbone [11, 12] and finetune a model pre-

trained for instance segmentation on COCO [23].

In the context of the generalized Faster/Mask R-CNN

framework, an output branch provides one or more subnet-

works with different structure and functionality. We intro-

duce two dedicated output branches for estimating the focal

length and 2D-3D correspondences alongside the existing

object detection branches.

Focal Length. The focal length branch provides one sub-

network which performs a per-image computation. In this

case, we regress a scalar for each image from the entire spa-

tial resolution of the shared feature maps computed by the

convolutional network backbone. In contrast to previous

work, we propose to regress a logarithmic parametrization

of the focal length

yf = ln(f), (1)

instead of predicting the focal length f directly [42], which

has two advantages: First, the logarithmic parametrization

reduces the bias towards minimizing the error on long fo-

cal lengths during the optimization of the network. This is

meaningful because, regarding the estimation of the focal

length, the relative error is more important than the abso-

lute error. Second, the logarithmic parametrization achieves

a more balanced sensitivity across the entire range of the fo-

cal length. Otherwise, the sensitivity is significantly higher

for short focal lengths than for long focal lengths. During

training, we optimize yf using the Huber loss [16].

2D-3D correspondences. For establishing 2D-3D corre-

spondences, we explore two distinct methods. Both meth-

ods approach the problem from different directions and pro-

duce significantly different correspondences and represen-

tations, as shown in Figure 3. However, our overall ap-

proach works with any kind of 2D-3D correspondences and

does not depend on a specific format. Thus, the method

for establishing correspondences can be exchanged. This is

extremely useful, because different methods have their re-

spective advantages and disadvantages which we discuss in

our experiments in Sec. 4.3.
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(a) (b) (c)

Figure 3: Visualization of two different forms of 2D-3D

correspondences: (a) Image, (b) Location field which en-

codes XYZ 3D coordinates for each pixel (LF), and (c) 2D

projections of the object’s 3D bounding box corners (BB).

Our first method predicts 3D points for known 2D loca-

tions. In particular, we establish correspondences between

2D image pixels which belong to the object and 3D coor-

dinates on the surface of the object. We represent these

correspondences in the form of a location field (LF) [42],

which provides dense 2D-3D correspondences in an image-

like format, as shown in Figure 3b. A location field has the

same size and spatial resolution as its reference RGB im-

age, but the three channels encode XYZ 3D coordinates in

the object coordinate system instead of RGB colors. Due

to its image-like structure, this representation is well-suited

for regression with a CNN.

Our second method predicts 2D locations for known 3D

points. In this case, we predict the 2D projections of the

object’s 3D bounding box corners (BB) [33], as shown in

Figure 3c. Since the 3D coordinates of the bounding box

corners are unknown during inference, we also predict the

3D dimensions of the object along the XYZ axes [8] from

which we derive the required 3D points. We represent

these sparse 2D-3D correspondences in the form of a 19-

dimensional vector, which consists of the 2D locations of

the eight bounding box corners (16 values) and the 3D di-

mensions of the object (3 values).

As shown in Figure 4, we implement a separate 2D-

3D correspondences branch for each method. In contrast

to the focal length branch, both branches perform region-

based per-object computations: For each detected object,

an associated spatial region of interest in the feature maps is

aligned to a fixed size feature representation with a low spa-

tial resolution, e.g., 14 × 14. These aligned features serve

as an input to one of our two proposed branches. Thus,

the chosen 2D-3D correspondences branch is evaluated N

times for each image, where N is the number of detected

objects. We identify the chosen 2D-3D correspondences

method by adding a suffix: Ours-LF or Ours-BB.

For the LF method, the correspondences branch provides

two different fully convolutional subnetworks to predict a

tensor of 3D points and a 2D object mask at a spatial res-

olution of 28 × 28. The 2D mask is then applied to the

tensor of 3D points to get a low-resolution location field.

Figure 4: Two alternative branches for predicting 2D-3D

correspondences from an RGB image (LF and BB).

We found this approach to produce significantly higher ac-

curacy compared to directly regressing a low-resolution lo-

cation field which tends to predict over-smoothed 3D coor-

dinates around the object silhouette.

The resulting low-resolution location field can be up-

scaled and padded to obtain a high-resolution location field

with the same spatial resolution as the input image. How-

ever, we sample 2D-3D correspondences from the low-

resolution location field and only adjust their 2D locations

to match the input image resolution. In this way, we avoid

generating a large number of 2D-3D correspondences with-

out providing additional information.

For the BB method, the correspondences branch also

provides two subnetworks, but this time with fully con-

nected output layers. One subnetwork predicts the 2D lo-

cations of the object’s 3D bounding box corners, the other

subnetwork estimates the 3D dimensions of the object. In

this case, we regress the 2D location in normalized coor-

dinates relative to the spatial resolution of the aligned fea-

tures. Again, we adjust the predicted 2D locations to match

the input image resolution.

During training, we optimize the 3D points and 2D mask

(Ours-LF), or the 2D projections and 3D dimensions (Ours-

BB) using the Huber loss [16]. The final network loss is

a combination of our focal length loss, our chosen 2D-3D

correspondences loss, and the 2D object detection losses of

the generalized Faster/Mask R-CNN framework [10, 34].

3.2. Stage 2: Geometric Optimization

Once we established correspondences between 2D loca-

tions and 3D points, we use the same geometric optimiza-

tion for all methods. In this case, we perform a non-linear

optimization of the PnPf problem [29] which finds a geo-

metric consensus between the individual projection param-

eters. In particular, we minimize the reprojection error

ereproj =
1

N

N∑

i=1

L(‖ProjR,t,f (Xi)− xi‖2) , (2)
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where Xi is a 3D point and xi its corresponding 2D loca-

tion. ProjR,t,f (·) performs the projection from the 3D ob-

ject coordinate system onto the 2D image plane with respect

to the rotation R, translation t, and focal length f . L(·) is a

loss function, such as the standard squared loss L(x) = x2

or the more robust Cauchy loss [38] L(x) = ln(1 + x2),
and N denotes the number of correspondences.

We minimize ereproj over both the 3D pose and the fo-

cal length. In this case, a minimum of four 2D-3D corre-

spondences is needed to find a unique solution [45], be-

cause each correspondence gives two independent equa-

tions and we optimize seven parameters: the 3-DoF rota-

tion, the 3-DoF translation, and the 1-DoF focal length. In

practice, however, it is important to use more 2D-3D corre-

spondences to compensate for the presence of noise.

Following the strategy of previous PnP(f) ap-

proaches [13, 20, 31], we compute an initial solution

in O(n) time followed by an iterative refinement technique.

For our initial solution, we compute the 3D rotation and

3D translation using EPnP [20] with our predicted focal

length. Providing a good initial focal length is a key factor

in achieving high accuracy in terms of 3D translation. In

theory, it is also possible to recover the focal length using

2D-3D correspondences from scratch [29, 31], but this

requires extremely accurate and clean correspondences.

For correspondence estimation on the category level in the

wild, however, we are facing fuzzy and noisy predictions.

In this case, a low reprojection error is achieved by finding

the correct ratio between the object-to-camera distance

and the focal length. Thus, we cannot assume that the

geometric optimization will find the correct absolute focal

length from scratch.

Taking this into account, we jointly optimize the 3D ro-

tation, 3D translation, and focal length during our iterative

refinement. For this purpose, we employ a Newton-Step-

based optimization [5] depending on the loss function L,

i.e., Levenberg-Marquardt [26] (squared loss) or Subspace

Trust-Region Interior-Reflective [3] (Cauchy loss).

Our approach naturally handles different projection

models (egocentric or allocentric) [19]. Additionally,

jointly optimizing the 3D poses of multiple objects in an

image together with the focal length is straightforward. In

this case, we compute the initial solution as before, but per-

form our iterative refinement for 1 + 6N parameters where

N is the number of detected objects. We did not evalu-

ate this joint refinement though, because available category

level datasets with focal length annotations just provide 3D

annotations for one object per image, even if there are mul-

tiple objects in the image [35, 42]. In most cases, we are

still able to detect the other objects, but do not have ground

truth annotations to evaluate them, as shown in our qualita-

tive results in Sec. 4.1. Moreover, our approach can readily

be extended to deal with more complex camera models in-

cluding skew, off-center principal point, asymmetric aspect

ratio or lens distortions [29]. However, currently there are

no datasets with this kind of annotations.

4. Experimental Results

To demonstrate the benefits of our joint 3D pose and fo-

cal length estimation approach (GP2C), we evaluate it on

three challenging real-world datasets1 with different object

categories: Pix3D [35] (bed, chair, sofa, table), Comp [42]

(car), and Stanford [42] (car). In particular, we provide a

quantitative and qualitative evaluation of our approach in

comparison to the state-of-the-art in Sec. 4.1, analyze im-

portant aspects in Sec. 4.2, and discuss advantages and dis-

advantages of our two presented methods for establishing

2D-3D correspondences in Sec. 4.3. To cover different as-

pects of projective geometry in our evaluation, we use the

following well-established metrics:

Detection. We report the detection accuracy AccD0.5
which

gives the percentage of objects for which the intersection

over union between the ground truth 2D bounding box and

the predicted 2D bounding box is larger than 50% [47]. This

metric is an upper bound for other Acc metrics since we do

not make blind predictions.

Rotation. We compute the geodesic distance

eR =
‖log(RT

gtRpred)‖F√
2

(3)

between the ground truth rotation matrix Rgt and the pre-

dicted rotation matrix Rpred which gives the minimal an-

gular distance. We report the median of this distance

(MedErrR) and the percentage of objects for which the

distance is below the threshold of π
6

or 30◦ (AccRπ

6
) [41].

Translation. We report the relative translation distance

et =
‖tgt − tpred‖2

‖tgt‖2
(4)

between the ground truth translation tgt and the predicted

translation tpred [15].

Pose. We calculate the average normalized distance of all

transformed model points in 3D space

eR,t = avg
X∈M

dbbox

dimg

· ‖Transfgt(X)− Transfpred(X)‖2
‖tgt‖2

(5)

to evaluate 3D pose accuracy [14, 15]. In this case, each

3D point X of the ground truth 3D model M is trans-

formed using the ground truth 3D pose Transfgt(·) and the

predicted 3D pose Transfpred(·) subject to rotation and trans-

lation. We normalize this distance by the relative size of

1Details on the datasets and the evaluation setup are provided in the

supplementary material.
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Detection Rotation Translation Pose Focal Projection

Method Dataset Class AccD0.5

MedErrR AccRπ

6

MedErrt MedErrR,t MedErrf MedErrP AccP0.1·1 ·101 ·101 ·101 ·102

[42]

Pix3D bed

98.4% 5.82 95.3% 1.95 1.56 2.22 6.05 74.9%

Ours-LF 99.0% 5.13 96.3% 1.41 1.04 1.43 3.52 90.6%

Ours-BB 99.5% 5.40 97.9% 1.66 1.17 1.59 3.55 93.2%

[42]

Pix3D chair

94.9% 7.52 88.0% 2.69 1.58 1.98 6.04 75.3%

Ours-LF 95.2% 7.52 88.8% 1.92 1.21 1.62 3.41 88.2%

Ours-BB 97.3% 6.95 91.0% 1.68 1.08 1.58 3.24 90.9%

[42]

Pix3D sofa

96.5% 4.73 94.8% 2.28 1.62 2.42 4.33 82.2%

Ours-LF 96.5% 4.49 95.0% 1.92 1.33 1.79 2.56 93.7%

Ours-BB 98.3% 4.40 97.0% 1.63 1.16 1.73 2.13 95.6%

[42]

Pix3D table

94.0% 10.94 72.9% 3.16 2.28 3.03 8.90 53.6%

Ours-LF 94.0% 10.53 73.5% 2.16 1.62 2.05 5.92 69.5%

Ours-BB 95.7% 10.80 77.2% 2.81 1.78 2.10 5.74 72.4%

[42]

Pix3D mean

96.0% 7.25 87.8% 2.52 1.76 2.41 6.33 71.5%

Ours-LF 96.2% 6.92 88.4% 1.85 1.30 1.72 3.85 85.5%

Ours-BB 97.7% 6.89 90.8% 1.94 1.30 1.75 3.66 88.0%

[42]

Comp car

98.9% 5.24 97.6% 3.30 2.35 3.23 7.85 73.7%

Ours-LF 98.8% 5.23 97.9% 2.61 1.86 2.97 4.21 95.1%

Ours-BB 98.9% 4.87 98.1% 2.55 1.84 2.95 3.87 95.7%

[42]

Stanford car

99.6% 5.43 98.0% 2.33 1.80 2.34 7.46 76.4%

Ours-LF 99.6% 5.38 98.3% 1.93 1.51 2.01 3.72 96.2%

Ours-BB 99.6% 5.24 98.3% 1.92 1.47 2.07 3.25 96.5%

Table 1: Experimental results on the Pix3D, Comp, and Stanford datasets. We significantly outperform the state-of-the-art in

the 3D translation, 3D pose, focal length, and projection metrics. We explain the reported numbers in detail in Sec. 4.1.

the object in the image using the ratio between the ground

truth 2D bounding box diagonal dbbox and the image diag-

onal dimg, and the L2-norm of the ground truth translation

‖tgt‖2. This normalization provides an unbiased metric for

3D pose evaluation in the case of unknown intrinsics.

Focal Length. We report the relative focal length error

ef =
|fgt − fpred|

fgt

(6)

between the ground truth focal length fgt and the predicted

focal length fpred [31, 44].

Projection. To evaluate all projection parameters, we com-

pute the average normalized reprojection distance

eP = avg
X∈M

‖Projgt(X)− Projpred(X)‖2
dbbox

. (7)

In this case, each 3D point X of the ground truth 3D model

M is projected to a 2D location using the ground truth pro-

jection parameters Projgt(·) and the predicted projection pa-

rameters Projpred(·) subject to rotation, translation, and focal

length. dbbox is the ground truth 2D bounding box diagonal.

We report the median of this distance (MedErrP ) and the

percentage of objects for which the distance is below the

threshold of 0.1 (AccP0.1
) [42].

4.1. Comparison to the State­of­the­Art

We first present quantitative results of our approach us-

ing our two different methods for establishing 2D-3D cor-

respondences (Ours-LF and Ours-BB) and compare them to

the state-of-the-art. To this end, we reimplemented the ap-

proach of [42] and achieve comparable results, even outper-

forming their reported MedErrP and AccP0.1
scores due to

our improved backbone architecture and initialization. The

results are summarized in Table 1. We achieve consistent

results across all datasets and categories, thus, we provide a

joint discussion based on the evaluated metrics:

Detection. All methods achieve high detection accuracy

(AccD0.5
). This is not surprising, because we fine-tune a

model pre-trained for instance segmentation on COCO [23].

In fact, all evaluated categories are also present in COCO.
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Image Ground Truth [42] Ours-LF Ours-BB

Figure 5: Qualitative 3D pose and focal length estimation

results for all evaluated datasets and categories. We project

the ground truth 3D model onto the image using the 3D

pose and focal length predicted by different approaches. In

contrast to [42], our approach finds a geometric consensus

between the parameters which results in improved 2D-3D

alignment, e.g., the scale of the projection. We highlight re-

spective samples with frames. Best viewed in digital zoom.

Rotation. Also, all methods achieve high rotation accu-

racy (MedErrR and AccRπ

6
). Our reported numbers are

in line with the results of previous work on rotation esti-

mation in the wild [8, 41, 42] and confirm that 3D rota-

tion can robustly be recovered from 2D observations up to

a certain precision. Only for the category table, we observe

sub-average accuracy. In fact, almost all tables have sym-

metries, as can be seen in Figure 5, which sometimes con-

fuse all evaluated methods, because they predict a single 3D

pose rather than a distribution (see last table sample).

Translation. In terms of translation accuracy (MedErrt),

our approach significantly outperforms the state-of-the-art.

Directly predicting the 3D translation from a local image

window of an object is highly ambiguous in the case of un-

known intrinsics. By explicitly estimating and integrating

the focal length into the 3D pose estimation, we exploit a

geometric prior and achieve a relative improvement of 20%.

Pose. In the case of unknown intrinsics, the 3D pose accu-

racy (MedErrR,t) is primarily governed by the translation

accuracy. Therefore, we also observe a relative improve-

ment of 20% compared to the state-of-the-art.

Focal Length. Considering the focal length accuracy

(MedErrf ), our approach outperforms the state-of-the-art

by a relative improvement of 10% due to our logarithmic

parametrization and refinement.

Projection. Finally, we report the projection metrics

(MedErrP and AccP0.1
), which evaluate all predicted pa-

rameters. In these metrics, we achieve the largest improve-

ment compared to the state-of-the-art: 20% absolute in

AccP0.1
and 40% relative in MedErrP across all datasets.

In contrast to an independent estimation of the individual

projection parameters, our approach finds a geometric con-

sensus which results in improved 2D-3D alignment and re-

projection error. This quantitative improvement is also re-

flected in our qualitative results shown in Figure 5. In this

experiment, our approach consistently produces a higher

quality 2D-3D alignment compared to the state-of-the-art

for objects of different categories. This significant improve-

ment can be accounted to the fact that we minimize the re-

projection error during inference. However, we want to em-

phasize that the 3D model is only used for the evaluation.

The 3D poses and focal length are solely computed from a

single RGB image in our approach.

4.2. Analysis

Next, we analyze two important aspects of our approach:

(a) the robustness of our predicted 2D-3D correspondences

and (b) the importance of the focal length for estimating

3D poses from these correspondences. For this purpose, we

perform experiments on Pix3D, which is the most challeng-

ing dataset, because it provides multiple object categories

and has the largest variation in object scale.
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Projection

Method PnP MedErrP · 102 AccP0.1

Ours-LF

Standard 3.88 85.3%

RANSAC 3.87 85.4%

Cauchy 3.85 85.5%

Ours-BB

Standard 3.68 87.5%

RANSAC 3.68 87.6%

Cauchy 3.66 88.0%

Table 2: Evaluation of different PnP strategies. The results

show that our predicted 2D-3D correspondences are reliable

and do not contain single extreme outliers.

First, we run our approaches using different PnP strate-

gies and compare the obtained results using the projection

metrics (MedErrP and AccP0.1
) in Table 2. In partic-

ular, we compare the standard approach, which is sensi-

tive to outliers due to the squared loss L(x) = x2, to

the more robust RANSAC scheme and Cauchy loss [38]

L(x) = ln(1 + x2).

All three PnP strategies achieve similar performance for

both Ours-LF and Ours-BB. This experiment shows that our

predicted 2D-3D correspondences do not contain single ex-

treme outliers which are often present in traditional interest-

point-based approaches. This is due to the fact that all 2D-

3D correspondences are computed from a low dimensional

feature embedding which produces consistent predictions2.

Second, to demonstrate the importance of the focal

length for estimating 3D poses from 2D-3D correspon-

dences, we initialize the geometric optimization with three

different focal lengths and compare the results using the 3D

pose distance in Figure 6. In this experiment, we plot the

percentage of objects for which the 3D pose distance is be-

low a threshold varying in the range [0,1] (AccR,t).

As expected, if we initialize the geometric optimization

with the ground truth focal length, we achieve the highest

3D pose accuracy. However, for 3D pose estimation in the

wild, the focal length is unknown during inference. In this

case, we can use a constant or a predicted focal length for

initialization. Even if we use the best possible constant fo-

cal length, which is the median focal length of the train-

ing dataset, the accuracy drops significantly. Instead, if we

initialize using our predicted focal length, we achieve im-

proved 3D pose accuracy. However, there is still a gap in the

accuracy compared to using the ground truth focal length.

4.3. Discussion

So far, our results show that both presented 2D-3D corre-

spondence estimation methods (LF and BB) achieve a sim-

2Qualitative examples of our predicted 2D-3D correspondences are

provided in the supplementary material.
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Figure 6: Evaluation of different initial focal lengths. The

results show that a good initial estimate of the focal length

is a key factor for achieving high 3D pose accuracy.

ilar level of accuracy. However, each method has specific

characteristics advantageous for different tasks.

For example, LF implicitly handles truncations and oc-

clusions, because it estimates 3D points for visible object

parts and resolves occlusions using the 2D mask. Moreover,

the predicted dense 2D-3D correspondences might also be

useful for other tasks like dense depth estimation or shape

reconstruction. However, this method requires detailed 3D

models for training.

In contrast, BB only requires accurate 3D bounding

boxes for training. The overall design of this method is sim-

pler and more lightweight, which makes it easier to imple-

ment and train. This is also reflected in our reported num-

bers, which show a slight advantage compared to LF. Ad-

ditionally, BB always gives a fixed number of sparse 2D-

3D correspondences. This results in fast inference, which

is beneficial for real-time applications, for example. How-

ever, while this method is well-suited for dealing with box-

shaped objects like cars, other approaches might perform

better on highly non-box-shaped objects.

5. Conclusion

Estimating the 3D poses of objects in the wild is an im-

portant but challenging task. In particular, predicting the

3D translation is difficult due to ambiguous appearances re-

sulting from different focal lengths. For this purpose, we

present the first joint 3D pose and focal length estimation

approach that enforces a geometric consensus between 3D

poses and the focal length. Our approach combines deep

learning techniques and geometric algorithms to explicitly

estimate and integrate the focal length into the 3D pose es-

timation. We evaluate our approach on three challenging

real-world datasets (Pix3D, Comp, and Stanford) and sig-

nificantly outperform the state-of-the-art by up to 20%.
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