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Abstract

We present a joint 3D pose and focal length estimation

approach for object categories in the wild. In contrast to

previous methods that predict 3D poses independently of the

focal length or assume a constant focal length, we explicitly

estimate and integrate the focal length into the 3D pose es-

timation. For this purpose, we combine deep learning tech-

niques and geometric algorithms in a two-stage approach:

First, we estimate an initial focal length and establish 2D-

3D correspondences from a single RGB image using a deep

network. Second, we recover 3D poses and refine the focal

length by minimizing the reprojection error of the predicted

correspondences. In this way, we exploit the geometric

prior given by the focal length for 3D pose estimation. This

results in two advantages: First, we achieve significantly

improved 3D translation and 3D pose accuracy compared

to existing methods. Second, our approach finds a geomet-

ric consensus between the individual projection parameters,

which is required for precise 2D-3D alignment. We evalu-

ate our proposed approach on three challenging real-world

datasets (Pix3D, Comp, and Stanford) with different object

categories and significantly outperform the state-of-the-art

by up to 20% absolute in multiple different metrics.

1. Introduction

3D object pose estimation aims at predicting the 3D rota-

tion and 3D translation of objects relative to the camera. It is

a fundamental yet unsolved computer vision problem with

many applications, including augmented reality, robotics,

and scene understanding. Recently, there have been great

advances in 3D object pose estimation from single RGB im-

ages on the category level [8, 28, 34, 41], thanks to the de-

velopment of deep learning and the creation of large-scale

datasets providing 3D annotations for RGB images [46, 47].

While recent approaches achieve high accuracy in terms

of 3D rotation, their accuracy in terms of 3D translation is

Figure 1: Images captured with two cameras having differ-

ent focal lengths. The appearance of the chair is similar in

both images, but the 3D poses are significantly different due

to the distinct focal lengths and object-to-camera distances.

often low [27, 42]. The main reason for this discrepancy

is illustrated in Figure 1, where we compare two images

of an object captured with cameras having different focal

lengths. The appearance of the object is similar in both im-

ages, even though the 3D poses are significantly different.

In fact, the appearance of an object in an image is not only

determined by the 3D pose, but also by the camera intrin-

sics. While changes in the 3D rotation always significantly

effect the appearance, changes in the 3D translation do not if

the translation direction and the ratio between the object-to-

camera distance and the focal length remain constant. Thus,

estimating the 3D translation of objects from RGB images

in the case of unknown intrinsics is highly ambiguous.

Existing approaches assume that the 3D pose estimation

method will implicitly learn the subtle appearance varia-

tions caused by different focal lengths from the data and

adapt the prediction accordingly [27, 42]. In practice, how-

ever, this is not the case, because deep networks do not find

the solutions we intend without explicit guidance.

To overcome this limitation, we propose to explicitly es-

timate and integrate the focal length into the 3D pose es-

timation. For this purpose, we introduce a two-stage ap-

proach that combines deep learning techniques and geomet-
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ric algorithms. In the first stage, we estimate an initial focal

length and establish 2D-3D correspondences from a single

RGB image using a deep network. In the second stage, we

perform a geometric optimization on the predicted corre-

spondences to recover 3D poses and refine the focal length.

In particular, we minimize the reprojection error between

predicted 2D locations and 3D points subject to the 3D rota-

tion, 3D translation, and the focal length by solving a PnPf

problem [29]. In this way, we exploit the geometric prior

given by the focal length for 3D pose estimation.

In contrast to existing approaches, which also predict 3D

poses and the focal length but only perform an independent

estimation of the individual parameters [42], our approach

has two main advantages: First, explicitly modeling the fo-

cal length in the 3D pose estimation yields significantly im-

proved 3D translation and 3D pose accuracy. Second, our

approach finds a geometric consensus between 3D poses

and the focal length. This results in a significantly improved

2D-3D alignment when projecting 3D models of objects

back onto the image, which is important for many applica-

tions like augmented reality. Therefore, we call our method

Geometric Projection Parameter Consensus (GP2C).

In addition, we explore two possible methods for estab-

lishing 2D-3D correspondences from RGB images, which

approach the task from different directions. Our first

method predicts 3D points for known 2D locations by esti-

mating a 3D coordinate for each object pixel [1, 2, 17]. Our

second method predicts 2D locations for known 3D points

by estimating the 2D projections of the object’s 3D bound-

ing box corners [8, 33, 37]. Our experiments show that both

methods achieve comparable accuracy, but each method has

its respective advantages and disadvantages. Thus, we pro-

vide a detailed discussion comparing the two methods.

To demonstrate the benefits of our joint 3D pose and fo-

cal length estimation approach, we evaluate it on three chal-

lenging real-world datasets with different object categories:

Pix3D [35] (bed, chair, sofa, table), Comp [42] (car), and

Stanford [42] (car). We present quantitative as well as qual-

itative results and significantly outperform the state-of-the-

art. To summarize, our main contributions are:

• We present the first method for joint 3D pose and focal

length estimation that enforces a geometric consensus

between 3D poses and the focal length.

• We outperform the state-of-the-art by up to 20% ab-

solute in multiple metrics covering different aspects of

projective geometry including 3D translation, 3D pose,

focal length, and projection accuracy.

2. Related Work

In this section, we discuss previous work on 3D pose es-

timation for object categories and approaches for estimating

the camera intrinsics, in particular, the focal length.

2.1. 3D Pose Estimation

A recent trend in computer vision is to predict pose

parameters directly using deep learning. In this context,

numerous works predict only the 3D rotation of objects

using CNNs. These methods perform rotation classifica-

tion [34, 40, 41], regression [25, 46], or apply hybrid vari-

ants of both [24] using different parametrizations such as

Euler angles, quaternions, or exponentials maps.

In this work, however, we focus on the estimation of the

full 3D pose, i.e., the 3D rotation and 3D translation of ob-

jects. In this case, many approaches combine the 3D rota-

tion estimation techniques described above with 3D transla-

tion regression [21, 27, 28]. Because detecting and localiz-

ing objects in 2D is often a first step towards estimating the

3D pose, recent approaches integrate 3D pose estimation

techniques into object detection pipelines making the en-

tire system end-to-end trainable [18, 19, 42, 48]. However,

these methods do not explicitly take the camera intrinsics

into account, which results in poor performance on images

captured with different focal lengths, for example.

In contrast to these direct approaches, there is a large

amount of research on recovering the pose from 2D-3D cor-

respondences, additionally considering a camera model [9].

In this context, recent approaches use CNNs to predict the

2D locations of the projections of 3D keypoints from RGB

images [30, 32]. While [32] recovers the 3D pose from

the predicted 2D locations and a given 3D model using a

PnP algorithm, [30] recovers the 3D pose from the predicted

2D locations alone using a trained deformable shape model.

However, these approaches rely on category-specific se-

mantic 3D keypoints which need to be selected and anno-

tated manually for each 3D model.

In this work, we also predict 2D-3D correspondences

from RGB images, but do not rely on category-specific 3D

keypoints. In particular, we explore two different strate-

gies. Our first strategy is to predict 3D points for known

2D locations. A natural choice is to predict a 3D point for

each image pixel [1]. In this case, it is important to know

which pixels belong to an object and which pixels belong

to the background or another object [2]. Recently, it has

been shown that deep learning techniques for instance seg-

mentation [10] significantly increase the accuracy on this

task [17, 42]. In contrast to our approach, [17] relies on two

disjoint networks for instance segmentation and 3D point

regression followed by a geometric optimization assuming

a constant focal length. Instead, we use a single network

to perform both tasks and additionally optimize the focal

length. [42] on the other hand also regresses 3D points with

a single network, but relies on a second network to esti-

mate the 3D rotation from these points, compared to our

approach which uses a geometric optimization on arbitrary

2D-3D correspondences for joint 3D pose and focal length

estimation.
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Our second strategy is to predict the 2D locations of

known 3D points. In this case, we choose to predict vir-

tual 3D points which generalize across different objects and

categories, e.g., the corners of the 3D bounding box of an

object [33, 37], instead of category-specific 3D keypoints.

Recently, it has been shown that this approach can be ex-

tended to make predictions without the use of 3D models

during inference [8]. In contrast to our work, [8] assumes

that all objects are already detected and localized in 2D, and

uses a constant focal length.

2.2. Focal Length Estimation

Computing the focal length and other camera intrin-

sics from 2D-3D correspondences has a long tradition in

computer vision [7, 9]. In this context, the intrinsic and

extrinsic parameters of the camera are often recovered

jointly [29, 44]. For this purpose, numerous works explic-

itly estimate the focal length and the 3D pose of the camera

by solving a PnPf problem [31, 50, 51].

In practice, these methods require precise 2D-3D corre-

spondences, which are often selected manually or using cal-

ibration grids [39, 49]. Many applications, however, require

automatic calibration. In specific cases, it is possible to ex-

ploit geometric image elements such as lines [6], vanishing

points [36], or circles [4] to compute the intrinsics, but these

methods do not generalize to arbitrary natural images.

Thus, recent works estimate the focal length from RGB

images without requiring particular geometric structures us-

ing deep learning [42, 43]. In this work, we take a sim-

ilar approach. However, in contrast to existing methods,

we propose a different parametrization and additionally use

2D-3D correspondences to refine the predicted focal length.

3. Joint 3D Pose and Focal Length Estimation

Given a single RGB image, we want to predict the fo-

cal length and the 3D pose of each object in an image. For

this purpose, we introduce a two-stage approach that com-

bines deep learning techniques and geometric algorithms,

as shown in Figure 2. In the first stage, we predict an ini-

tial focal length and establish 2D-3D correspondences using

deep learning (Sec. 3.1). In the second stage, we perform a

geometric optimization on the predicted correspondences to

recover 3D poses and refine the focal length (Sec. 3.2).

3.1. Stage 1: Deep Focal Length and 2D­3D
Correspondence Estimation

To predict the focal length as well as 2D-3D correspon-

dences with a single deep network, we extend the gen-

eralized Faster/Mask R-CNN framework [10, 34]. This

generic multi-task framework includes a 2D object detec-

tion pipeline to perform per-image and per-object computa-

tions. In this way, we address multiple different tasks using

Figure 2: Overview of our proposed two-stage approach.

Stage 1: We predict an initial focal length and establish

2D-3D correspondences using deep learning. Stage 2: We

perform a geometric optimization on the predicted corre-

spondences to recover 3D poses and refine the focal length.

a single end-to-end trainable network. For our implemen-

tation, we use a Feature Pyramid Network [22] on top of

a ResNet-101 backbone [11, 12] and finetune a model pre-

trained for instance segmentation on COCO [23].

In the context of the generalized Faster/Mask R-CNN

framework, an output branch provides one or more subnet-

works with different structure and functionality. We intro-

duce two dedicated output branches for estimating the focal

length and 2D-3D correspondences alongside the existing

object detection branches.

Focal Length. The focal length branch provides one sub-

network which performs a per-image computation. In this

case, we regress a scalar for each image from the entire spa-

tial resolution of the shared feature maps computed by the

convolutional network backbone. In contrast to previous

work, we propose to regress a logarithmic parametrization

of the focal length

yf = ln(f), (1)

instead of predicting the focal length f directly [42], which

has two advantages: First, the logarithmic parametrization

reduces the bias towards minimizing the error on long fo-

cal lengths during the optimization of the network. This is

meaningful because, regarding the estimation of the focal

length, the relative error is more important than the abso-

lute error. Second, the logarithmic parametrization achieves

a more balanced sensitivity across the entire range of the fo-

cal length. Otherwise, the sensitivity is significantly higher

for short focal lengths than for long focal lengths. During

training, we optimize yf using the Huber loss [16].

2D-3D correspondences. For establishing 2D-3D corre-

spondences, we explore two distinct methods. Both meth-

ods approach the problem from different directions and pro-

duce significantly different correspondences and represen-

tations, as shown in Figure 3. However, our overall ap-

proach works with any kind of 2D-3D correspondences and

does not depend on a specific format. Thus, the method

for establishing correspondences can be exchanged. This is

extremely useful, because different methods have their re-

spective advantages and disadvantages which we discuss in

our experiments in Sec. 4.3.
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(a) (b) (c)

Figure 3: Visualization of two different forms of 2D-3D

correspondences: (a) Image, (b) Location field which en-

codes XYZ 3D coordinates for each pixel (LF), and (c) 2D

projections of the object’s 3D bounding box corners (BB).

Our first method predicts 3D points for known 2D loca-

tions. In particular, we establish correspondences between

2D image pixels which belong to the object and 3D coor-

dinates on the surface of the object. We represent these

correspondences in the form of a location field (LF) [42],

which provides dense 2D-3D correspondences in an image-

like format, as shown in Figure 3b. A location field has the

same size and spatial resolution as its reference RGB im-

age, but the three channels encode XYZ 3D coordinates in

the object coordinate system instead of RGB colors. Due

to its image-like structure, this representation is well-suited

for regression with a CNN.

Our second method predicts 2D locations for known 3D

points. In this case, we predict the 2D projections of the

object’s 3D bounding box corners (BB) [33], as shown in

Figure 3c. Since the 3D coordinates of the bounding box

corners are unknown during inference, we also predict the

3D dimensions of the object along the XYZ axes [8] from

which we derive the required 3D points. We represent

these sparse 2D-3D correspondences in the form of a 19-

dimensional vector, which consists of the 2D locations of

the eight bounding box corners (16 values) and the 3D di-

mensions of the object (3 values).

As shown in Figure 4, we implement a separate 2D-

3D correspondences branch for each method. In contrast

to the focal length branch, both branches perform region-

based per-object computations: For each detected object,

an associated spatial region of interest in the feature maps is

aligned to a fixed size feature representation with a low spa-

tial resolution, e.g., 14 × 14. These aligned features serve

as an input to one of our two proposed branches. Thus,

the chosen 2D-3D correspondences branch is evaluated N

times for each image, where N is the number of detected

objects. We identify the chosen 2D-3D correspondences

method by adding a suffix: Ours-LF or Ours-BB.

For the LF method, the correspondences branch provides

two different fully convolutional subnetworks to predict a

tensor of 3D points and a 2D object mask at a spatial res-

olution of 28 × 28. The 2D mask is then applied to the

tensor of 3D points to get a low-resolution location field.

Figure 4: Two alternative branches for predicting 2D-3D

correspondences from an RGB image (LF and BB).

We found this approach to produce significantly higher ac-

curacy compared to directly regressing a low-resolution lo-

cation field which tends to predict over-smoothed 3D coor-

dinates around the object silhouette.

The resulting low-resolution location field can be up-

scaled and padded to obtain a high-resolution location field

with the same spatial resolution as the input image. How-

ever, we sample 2D-3D correspondences from the low-

resolution location field and only adjust their 2D locations

to match the input image resolution. In this way, we avoid

generating a large number of 2D-3D correspondences with-

out providing additional information.

For the BB method, the correspondences branch also

provides two subnetworks, but this time with fully con-

nected output layers. One subnetwork predicts the 2D lo-

cations of the object’s 3D bounding box corners, the other

subnetwork estimates the 3D dimensions of the object. In

this case, we regress the 2D location in normalized coor-

dinates relative to the spatial resolution of the aligned fea-

tures. Again, we adjust the predicted 2D locations to match

the input image resolution.

During training, we optimize the 3D points and 2D mask

(Ours-LF), or the 2D projections and 3D dimensions (Ours-

BB) using the Huber loss [16]. The final network loss is

a combination of our focal length loss, our chosen 2D-3D

correspondences loss, and the 2D object detection losses of

the generalized Faster/Mask R-CNN framework [10, 34].

3.2. Stage 2: Geometric Optimization

Once we established correspondences between 2D loca-

tions and 3D points, we use the same geometric optimiza-

tion for all methods. In this case, we perform a non-linear

optimization of the PnPf problem [29] which finds a geo-

metric consensus between the individual projection param-

eters. In particular, we minimize the reprojection error

ereproj =
1

N

NX

i=1

L(‖ProjR,t,f (X i)− x i‖2) , (2)
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