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Abstract

Deep convolutional neural networks (DCNNs) have

dominated the recent developments in computer vision

through making various record-breaking models. However,

it is still a great challenge to achieve powerful DCNNs

in resource-limited environments, such as on embedded

devices and smart phones. Researchers have realized that

1-bit CNNs can be one feasible solution to resolve the

issue; however, they are baffled by the inferior performance

compared to the full-precision DCNNs. In this paper,

we propose a novel approach, called Bayesian optimized

1-bit CNNs (denoted as BONNs), taking the advantage of

Bayesian learning, a well-established strategy for hard

problems, to significantly improve the performance of

extreme 1-bit CNNs. We incorporate the prior distributions

of full-precision kernels and features into the Bayesian

framework to construct 1-bit CNNs in an end-to-end

manner, which have not been considered in any previous

related methods. The Bayesian losses are achieved with a

theoretical support to optimize the network simultaneously

in both continuous and discrete spaces, aggregating

different losses jointly to improve the model capacity.

Extensive experiments on the ImageNet and CIFAR

datasets show that BONNs achieve the best classification

performance compared to state-of-the-art 1-bit CNNs.

1. Introduction

Deep convolutional neural networks (DCNNs) have ex-

hibited their superior feature representation power in both

low-level [7, 15] and high-level vision tasks [10, 16, 23, 24].

However, this superiority comes with prohibitive computa-
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Figure 1. The evolution of the prior p(x), the distribution of

the observation y, and the posterior p(x|y) during learning,

where x is the latent variable representing the full-precision

parameters and y is the quantization error. At the beginning, the

parameters x are initialized according to a single-mode Gaussian

distribution. When our learning algorithm converges, the ideal

case is that (i) p(y) becomes a Gaussian distribution N (0, ν),
which corresponds to the minimum reconstruction error, and (ii)

p(x|y) = p(x) is a Gaussian mixture distribution with two modes

where the binarized values x̂ and −x̂ are located.

tion and storage overheads. In most cases, heavy parameters

of DCNNs are stored as floating point numbers, each of

which usually takes 32 bits, and the convolution operation

is implemented as matrix multiplication between floating-

point operands. These floating-point based operations are

time-consuming and storage-demanding. Consequently,

DCNNs are infeasible to be deployed on edge devices such

as cellphones and drones, due to the conflict between high

demands and limited resources. To tackle this problem,
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substantial approaches have been explored to compress

DCNNs by pruning [13, 9] or quantization [3].

Quantization approximates full-precision values with

lower-precision ones, therefore it can simultaneously accel-

erate the convolution operation and save storage expense. In

particular, 1-bit convolution neural networks (1-bit CNNs)

are the extreme cases of quantization, whose convolution

kernels and activations are binarized, such as ±1 in [4]

or ±αl in [20]. Recently, DoReFa-Net [29] exploits 1-bit

convolution kernels with low bit-width parameters and gra-

dients to accelerate both the training and inference phases.

Differently, ABC-Net [14] adopts multiple binary weights

and activations to approximate full-precision weights such

that the prediction accuracy degradation can be alleviated.

Beyond that, modulated convolutional networks are pre-

sented in [25] to only binarize the kernels, and achieve

better results than the compared baselines. Leng et al. [12]

borrows the idea from ADMM, which compresses deep

models with network weights represented by only a small

number of bits. Bi-real net [17] explores a new variant

of residual structure to preserve the real activations before

the sign function and proposes a tight approximation to the

derivative of the non-differentiable sign function. Zhuang

et al. [30] present 2∼4-bit quantization using a two-stage

approach to alternately quantize the weights and activations,

and provide an optimal tradeoff among memory, efficiency

and performance. Furthermore, WAGE [27] is proposed

to discretize both the training and inference processes,

and it quantizes not only weights and activations, but also

gradients and errors. In [8], a quantization method is

introduced based on a discrete back propagation algorithm

via projection for a better 1-bit CNNs. Other practices

are studied in [21, 1, 6] with improvements over previous

works.

Although these prevailing 1-bit CNNs use much less

storage than conventional full-precision CNNs, yet com-

pared to full-precision CNNs, they suffer from degraded

accuracy in applications. Two reasons should account for

this degradation: 1) the relationship between full-precision

and 1-bit CNNs is not fully investigated for promoting the

performance of 1-bit CNNs; 2) Bayesian learning, as a

well-established strategy for global optimization [19, 2], is

overlooked in the field of 1-bit CNNs, although it can be

beneficial to the optimization of 1-bit CNNs according to

our observations.

In this paper, a Bayesian learning algorithm is proposed

to optimize our 1-bit CNNs, leading to improved accuracy

and efficiency. Theoretically speaking, we achieve two

novel Bayesian losses, with the help of Bayesian learning,

to solve the difficult problem of CNNs binarization. For

1-bit CNNs, the full-precision kernels are binarized to

two quantization values (centers) gradually. Ideally, the

quantization error is minimized when the full-precision ker-

nels follow a Gaussian mixture model with each Gaussian

centered at each quantization value. Given two centers

for 1-bit CNNs, two Gaussians forming the mixture model

are employed to model the full-precision kernels. The

whole procedure can be illustrated by Fig. 1, when the

learning algorithm converges with a binary quantization,

the ideal result should be that: (1) the reconstruction error

is minimized, and (2) the distribution of the parameters

is a Gaussian mixture model with two modes centered at

the binarized values separately. This assumption leads to

our two new losses, referred to as the Bayesian kernel

loss and Bayesian feature loss. The advantages of these

novel losses are twofold. On one hand, they can be

jointly applied with the conventional cross-entropy loss

within the same back-propagation pipeline, such that the

advantages of Bayesian learning is intrinsically inherited

to optimize difficult problems. On the other hand, they

can comprehensively supervise the training process of 1-bit

CNNs with respect to both the kernel distribution and the

feature distribution. In summary, the contributions of this

paper include:

(1) We propose two novel Bayesian losses to optimize

1-bit CNNs, which are designed via exploiting Bayesian

learning to fully investigate the intrinsic relationship be-

tween full-precision and 1-bit CNNs in terms of kernels and

features.

(2) We develop a novel Bayesian learning algorithm to

build 1-bit CNNs in an end-to-end manner. The proposed

losses supervise the training process considering both the

kernel distribution and the feature distribution, which are

more comprehensive and efficient.

(3) Our models achieve the best classification perfor-

mance compared to other state-of-the-art 1-bit CNNs on the

ImageNet and CIFAR datasets.

2. Proposed Method

Bayesian learning is one of the mainstreams in machine

learning, which has been applied to building and analyzing

neural networks to accomplish computer vision tasks [2,

18]. In the paper, we leverage the efficacy of Bayesian

learning to build 1-bit CNNs in an end-to-end manner. In

particular, we lead to two novel Bayesian losses, based on

which we optimize 1-bit CNNs with improved efficiency

and stability. In a unified theoretical framework, these

Bayesian losses not only take care of the kernel weight

distribution specific in 1-bit CNNs, but also supervise the

feature distribution. Fig. 2 shows how the losses interact

with a CNN backbone. For clarity, in Table 1 we first

describe the main notation used in the following sections.

2.1. Bayesian Losses

In state-of-the-art 1-bit CNNs [12, 20, 8], the opti-

mization involves in both continuous and discrete spaces.
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Figure 2. By considering the prior distributions of the kernels and features in the Bayesian framework, we achieve two new Bayesian losses

to optimize the calculation of 1-bit CNNs. The Bayesian kernel loss improves the layer-wise kernel distribution of each convolution layer,

while the Bayesian feature loss introduces the intra-class compactness to alleviate the disturbance induced by the quantization process.

Note that the Bayesian feature loss is only applied to the fully-connected layer.

Table 1. A brief description of the main notation used in the paper.

X l
i : full-precision kernel vector wl: modulation vector µl

i: mean of X l
i Ψ

l: covariance of X l

X̂ l
i : quantized kernel vector fm: features of class m λ: trade-off scalar for LB cm: mean of fm

i: kernel index l: layer index m: class index k: dimension index

Il: number of kernels at layer l L: number of layers M : number of classes ν: variance of quantization error

In particular, training a 1-bit CNN involves three steps:

forward pass, backward pass, and parameter update through

gradients. The binarized weights (x̂) are only considered

during the forward pass (inference) and gradient calcula-

tion. After updating the parameters, we have the full-

precision weights (x). As revealed in [12, 20, 8], how

to connect x̂ with x is the key to determine the network

performance. In this paper, we propose to solve it in a

probabilistic framework, in order to obtain optimal 1-bit

CNNs.

Bayesian kernel loss. We start with the fundamentals:

given a parameter, we want it to be as close as possible

before and after quantization, such that the quantization

effect is minimized. Then, define

y = w−1
◦ x̂− x, (1)

where x, x̂ ∈ R
n are the full-precision and quantized

vectors respectively, w ∈ R
n denotes a learned vector to

reconstruct x, ◦ represents the Hadamard product, and y is

the reconstruction error assumed to obey a Gaussian prior

with zero mean and variance ν. Given y, we seek x̂ for

binary quantization (1-bit CNNs) such that:

x̂ = max p(x|y), (2)

which indicates that under the most probable y (correspond-

ing to y = 0 and x = w−1 ◦ x̂, i.e., the minimum

reconstruction error), the distribution of the latent variable

x is a Gaussian mixture with two modes, locating at the

quantization values, as shown in Fig. 1. And we have:

p(x|y) ∝ exp(−
1

2
(x− 󰁨µ)TΨ−1(x− 󰁨µ))

+ exp(−
1

2
(x+ 󰁨µ)TΨ−1(x+ 󰁨µ)),

(3)

where we set 󰁨µ = w−1 ◦ x̂. However, Eq. 2 is difficult

to solve. From a Bayesian perspective, we resolve this

problem via maximum a posteriori (MAP) estimation:

max p(x|y) = max p(y|x)p(x)

= min ||x̂− w ◦ x||22 − 2ν log(p(x)),
(4)

where

p(y|x) ∝ exp(−
1

2ν
||y||22) ∝ exp(−

1

2ν
||x̂−w ◦ x||22).

(5)

In Eq. 5, we assume that all the components of the quantiza-

tion error y are i.i.d, thus resulting in such a simplified form.

As shown in Fig. 1, for 1-bit CNNs, x is usually quantized

to two numbers with the same absolute value. Thus, p(x) is
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modeled as a Gaussian mixture with two modes:

p(x)=
1

2
(2π)−

N

2 det(Ψ)−
1

2 {exp(−
(x− µ)TΨ−1(x− µ)

2
)

+ exp(−
(x+ µ)TΨ−1(x+ µ)

2
)}

≈
1

2
(2π)−

N

2 det(Ψ)−
1

2 {exp(−
(x+−µ+)

T
Ψ

−1

+ (x+ − µ+)

2
)

+ exp(−
(x− + µ−)

T
Ψ

−1

−

(x− + µ−)

2
)}

(6)

where x is divided into x+ and x− according to the signs

of the elements in x and N is the dimension of x. Eq.

6 is obtained based on the assumption that the overlap

between x+ and x− is neglected. Accordingly, Eq. 4 can

be rewritten as:

min||x̂−w ◦ x||22 + ν(x+ − µ+)
T
Ψ

−1
+ (x+ − µ+)

+ ν(x− + µ−)
T
Ψ

−1
− (x− + µ−) + ν log(det(Ψ)),

(7)

where µ− and µ+ are solved independently. det(Ψ) is

accordingly set to be the determinant of the matrix Ψ− or

Ψ+. We call Eq. 7 the Bayesian kernel loss.

Bayesian feature loss. This loss is designed to alleviate

the disturbance caused by the extreme quantization process

in 1-bit CNNs. Considering the intra-class compactness, the

features fm of the mth class supposedly follow a Gaussian

distribution with the mean cm as revealed in the center loss

[26]. Similar to the Bayesian kernel loss, we define ym
f =

fm − cm and ym
f ∼ N (0,σm), and have:

min||fm − cm||22+
K󰁛

k=1

󰁫
σ
−2

m,k(fm,k−cm,k)
2+log(σ2

m,k)
󰁬
,

(8)

which is called the Bayesian feature loss. In Eq. 8, σm,k,

fm,k and cm,k are the kth elements of σm, fm and cm,

respectively.

2.2. Optimized 1-bit CNNs with Bayesian learning

We employ the two Bayesian losses to facilitate the

optimization of 1-bit CNNs. We name this method as

Bayesian Optimized 1-bit CNNs (BONNs). Now, we can

reformulate the two Bayesian losses for 1-bit CNNs as

follows:

LB =
λ

2

L󰁛

l=1

Il󰁛

i=1

{||X̂ l
i −wl

◦X l
i ||

2
2

+ ν(X l
i+ − µl

i+)
T (Ψl

i+)
−1(X l

i+ − µl
i+)

+ ν(X l
i− + µl

i−)
T (Ψl

i−)
−1(X l

i− + µl
i−)

+ ν log(det(Ψl))}+
θ

2

M󰁛

m=1

{||fm − cm||22

+

K󰁛

k=1

󰁫
σ
−2

m,k(fm,k − cm,k)
2 + log(σ2

m,k)
󰁬
},

(9)

where X l
i , l ∈ {1, ..., L}, i ∈ {1, ..., Il} is the vectorization

of the ith kernel matrix at the lth convolutional layer,

wl is a vector used to modulate X l
i , and µl

i and Ψ
l
i

are the mean and covariance of the ith kernel vector at

the lth layer, respectively. Furthermore, we assume the

parameters in the same kernel are independent, and thus Ψl
i

become a diagonal matrix with the identical value (σl
i)

2,

the variance of the ith kernel of the lth layer. In this case,

the calculation of the inverse of Ψl
i is speeded up, and also

all the elements of µl
i are identical, equal to µl

i. Note that

in our implementation, all elements of wl are replaced by

their average during the forward process. Accordingly, only

a scalar instead of a matrix is involved in the inference, and

thus the computation is significantly accelerated.

In BONNs, the cross-entropy loss Ls, the Bayesian

kernel loss and the Bayesian feature loss are aggregated

together to build the total loss as:

L = LS + LB . (10)

The Bayesian kernel loss constrains the distribution of the

convolution kernels to a symmetric Gaussian mixture with

two modes, and simultaneously, minimizes the quantization

error through the ||X̂ l
i − wl ◦ X l

i ||
2
2 term. Meanwhile

the Bayesian feature loss modifies the distribution of the

features to reduce the intra-class variation for better classi-

fication.

2.3. Backward Propagation

To minimize Eq. 9, we update X l
i , w

l, µl
i, σ

l
i, cm and

σm using the stochastic gradient descent (SGD) algorithm,

which is elaborated in the following.

2.3.1 Updating X l
i

We define δXl

i

as the gradient of the full-precision kernel

X l
i , and have:

δXl

i

=
∂L

∂X l
i

=
∂LS

∂X l
i

+
∂LB

∂X l
i

. (11)
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For each term in Eq. 11, we have:

∂LS

∂X l
i

=
∂LS

∂X̂ l
i

∂X̂ l
i

∂(wl ◦X l
i)

∂(wl ◦X l
i)

∂X l
i

=
∂LS

∂X̂ l
i

◦ 1−1≤wl◦Xl

i
≤1 ◦w

l,

(12)

∂LB

∂X l
i

= λ{wl
◦

󰁫
wl

◦X l
i − X̂ l

i

󰁬

+ ν[(σl
i)

−2
◦ (X l

i+ − µl
i+)

+ (σl
i)

−2
◦ (X l

i− + µl
i−)],

(13)

where 1 is the indicator function, which is widely used to

estimate the gradient of non-differentiable parameters [20],

and (σl
i)

−2 is a vector whose all elements are equal to

(σl
i)

−2.

2.3.2 Updating wl

Likewise, δwl is composed of the following two parts:

δwl =
∂L

∂wl
=

∂LS

∂wl
+

∂LB

∂wl
. (14)

For each term in Eq. 14, we have:

∂LS

∂wl
=

Il󰁛

i=1

∂LS

∂X̂ l
i

∂X̂ l
i

∂(wl ◦X l
i)

∂(wl ◦X l
i)

∂wl

=

Il󰁛

i=1

∂LS

∂X̂ l
i

◦ 1−1≤wl◦Xl

i
≤1 ◦X

l
i ,

(15)

∂LB

∂wl
= λ

Il󰁛

i=1

(wl
◦X l

i − X̂ l
i) ◦X

l
i . (16)

2.3.3 Updating µl
i and σl

i

Note that we use the same µl
i and σl

i for each kernel, so the

gradients here are scalars. The gradients δµl

i

, and δ
σ
l

i

are

computed as:

δµl

i

=
∂L

∂µl
i

=
∂LB

∂µl
i

=
λν

KIl

KIl󰁛

k=1

󰀫
(σl

i)
−2(µl

i −X l
i,k), X l

i,k ≥ 0,

(σl
i)

−2(µl
i +X l

i,k), X l
i,k < 0,

(17)

δ
σ
l

i

=
∂L

∂σl
i

=
∂LB

∂σl
i

=
λν

KIl

KIl󰁛

k=1

󰀫
−(σl

i)
−3(X l

i,k − µl
i)

2+(σl
i)

−1, X l
i,k≥0,

−(σl
i)

−3(X l
i,k + µl

i)
2+(σl

i)
−1, X l

i,k<0,
(18)

Algorithm 1 Optimized 1-bit CNN with Bayesian learning

Input:

The training dataset; the full-precision kernels X; the

modulation vector w; the learning rate η, regularization

parameter λ, θ and variance ν.

Output:

The BONN based on the updated X , w, µ, σ, cm, σm.

1: Initialize X and w randomly, and then estimate µ, σ based

on the average and variance of X , respectively;

2: repeat

3: // Forward propagation

4: for l = 1 to L do

5: X̂l
i = wl

◦ sign(Xl
i), ∀i; // Each element of wl is

replaced by the average of all elements.

6: Perform activation binarization; // Using the sign

function

7: Perform 2D convolution with X̂l
i , ∀i;

8: end for

9: // Backward propagation

10: Compute δ
X̂l

i

= ∂Ls

∂X̂l

i

, ∀l, i;

11: for l = L to 1 do

12: Calculate δ
Xl

i

, δ
wl , δµl

i

, δ
σl

i

; // using Eqs. 11∼18

13: Update parameters Xl
i ,w

l, µl
i,σ

l
i using SGD;

14: end for

15: Update cm,σm;

16: until the algotirhm converges.

where X l
i,k, k ∈ {1, ...,KIl}, denotes the kth element

of vector X l
i . We update cm using the same strategy

as the center loss [26] in the fine-tuning process, while

updating σm,k based on LB is straightforward, which is not

elaborated here for brevity. The above equations show that

the proposed method is trainable in an end-to-end manner.

Finally we summarize the whole learning procedure in

Algorithm 1.

3. Experiments

We perform the image classification task on the CIFAR-

10/100 [11] and ILSVRC12 ImageNet datasets [5] to eval-

uate the performance of BONNs. Considering the favorable

generalization capability of our method, BONNs could be

integrated in any DCNN variants. For a fair comparison

with other state-of-the-art 1-bit CNNs, we apply Wide-

Resnet (WRN) [28] and ResNet18 [10] as the full-precision

backbone networks. In the following experiments, both

the kernels and the activations are binarized. The leading

performances reported in the following sections verify the

superiority of our BONNs.
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3.1. Datasets and Implementation Details

3.1.1 Datasets

CIFAR-10 [11] is a natural image classification dataset,

composed of a training set and a test set, each with 50,000

and 10,000 32×32 color images, respectively. These im-

ages span across 10 different classes, including airplanes,

automobiles, birds, cats, deer, dogs, frogs, horses, ships

and trucks. Comparatively, CIFAR-100 is a more com-

prehensive dataset containing 100 classes. On CIFAR-

10/100, WRNs are employed as the backbones of BONNs.

In comparison, ILSVRC12 ImageNet object classification

dataset [5] is more diverse and challenging. It contains

1.2 million training images, and 50,000 validation images,

across 1000 classes. For comparing with other state-of-

the-art methods on this dataset, we adopt ResNet18 as the

backbone to verify the effectiveness and superiority of our

BONNs.

3.1.2 WRN

The structure of WRN is similar to ResNet in general. Yet

additionally, a depth factor k is introduced to control the

feature map depth expansion through 3 stages, while the

spatial dimension of the features is kept the same. For

brevity, we set k to 1 in the experiments. Besides, the

number of channels in the first stage is another important

parameter in WRN. We set it to 16 and 64, thus resulting

in two network configurations: 16-16-32-64 and 64-64-

128-256. In the 64-64-128-256 network, a dropout layer

with a ratio of 0.3 is added to prevent overfitting. The

learning rate is initially set to 0.01, which decays by 20%

per 60 epochs until reaching the maximum epoch of 200

on CIFAR-10/100. We set ν to 1e − 4 for quantization

error in WRN. Bayesian feature loss is only used in the

fine-tuning process. Other training details are the same as

those described in [28]. WRN-22 denotes a network with

22 convolutional layers and similarly for WRN-40.

3.1.3 ResNet18

For ResNet18, we binarize the features and kernels in the

backbone convolution layers without convolution layers in

shortcuts, following the settings and network modifications

in Bi-Real Net [17]. The SGD algorithm is with a momen-

tum of 0.9 and a weight decay of 1e − 4. The learning

rate for wl,σl
i is set to 0.01, while for X l

i , µ
l
i and other

parameters the rates are set to 0.1. ν is set to 1e − 3 for

the quantization error in ResNet18. The strategy of the

learning rate decay is also employed, which is a degradation

of 10% for every 30 epochs before the algorithm reaches the

maximum epoch of 70.

Figure 3. We demonstrate the kernel weight distribution of the

first binarized convolution layer of BONNs. Before training,

we initialize the kernels as a single-mode Gaussian distribution.

From the 2th epoch to the 200th epoch, with λ fixed to 1e − 4,

the distribution of the kernel weights becomes more and more

compact with two modes, which confirms that the Bayesian kernel

loss can regularize the kernels into a promising distribution for

binarization.

Figure 4. Weight distribution of XNOR and BONN, both based

on WRN22 (2nd, 8th and 14th convolutional layers) after 200

epochs. The weight distribution difference between XNOR and

BONN indicates that the kernels are regularized with our proposed

Bayesian kernel loss, across the convolutional layers.

Table 2. Effect of using or not using the Bayesian losses on the

ImageNet dataset. The backbone is ResNet18.

Bayesian kernel loss 󰃀 󰃀

Bayesian feature loss 󰃀 󰃀

Accuracy
Top-1 56.3 58.3 58.4 59.3

Top-5 79.8 80.8 80.8 81.6

3.2. Ablation Study

In this section, we evaluate the effects of the hyper-

parameters on the performance of BONNs, including λ

and θ. The Bayesian kernel loss and the Bayesian feature

loss are balanced by λ and θ, respectively, for adjusting

the distributions of kernels and features in a better form.

CIFAR-10 and WRN22 are used in the experiments. The
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Table 3. Test accuracies on the CIFAR-10/100 datasets. BONNs are based on WRNs [20]. We calculate the number of parameters for each

model and the numbers refer to the models on CIFAR-10. Note that for the full-precision models, each parameter takes 32 bits, while for

the binary models, each takes only 1 bit.

Model Kernel stage #Param
Dataset

CIFAR-10 CIFAR-100

WRN22 16-16-32-64 0.27M 91.66 67.51

XNOR-Net 16-16-32-64 0.27M 81.90 53.17

BONN 16-16-32-64 0.27M 87.34 60.91

WRN22 64-64-128-256 4.33M 94.96 -

XNOR-Net 64-64-128-256 4.33M 88.52 -

BONN 64-64-128-256 4.33M 92.36 -

Figure 5. The evolution of the binarized values, |x|s, during the

training process of XNOR and BONN. They are both based on

WRN22 (2nd, 3rd, 8th and 14th convolutional layers) and the

curves are not sharing the same y-axis. The binarized values of

XNOR Net tend to converge to small and similar values but these

of BONN are learned diversely.

implementation details are given below.

We first vary λ and also set it to zero for validating

the influence of the Bayesian kernel loss on the kernel

distribution. The utilization of the Bayesian kernel loss

effectively improves the accuracy on CIFAR-10. But the

accuracy does not increase with λ, which indicates what

we need is not a larger λ, but a proper λ to reasonably

balance the relationship between the cross-entropy loss and

the Bayesian kernel loss. For example, when λ is set to

1e − 4, we obtain an optimal balance and the classification

accuracy is the best.

The hyper-parameter θ dominates the intra-class varia-

tions of the features, and the effect of the Bayesian feature

loss on the features is also investigated by changing θ. The

results illustrate that the classification accuracy varies in a

way similar to λ, which verifies that the Bayesian feature

loss can lead to a better classification accuracy when a

proper θ is chosen.

To understand the Bayesian losses better, we carry out

an experiment to examine how each loss affects the perfor-

mance. According to the above experiments, we set λ to

1e− 4 and θ to 1e− 3, if they are used. As shown in Table

2, both the Bayesian kernel loss and the Bayesian feature

loss can independently improve the accuracy on ImageNet,

and when applied together, the Top-1 accuracy reaches the

highest value of 59.3%.

Besides, Fig. 3 illustrates the distribution of the kernel

weights, with λ fixed to 1e−4. During the training process,

the distribution is gradually approaching the two-mode

GMM as assumed previously, confirming the effectiveness

of the Bayesian kernel loss in a more intuitive way. We

also compare the kernel weight distribution between XNOR

Net and BONN. As is shown in Fig. 4, the kernel weights

learned in XNOR Net distribute tightly around the threshold

value but these in BONN are regularized in a two-mode

GMM style. The Fig. 5 shows the evolution of the

binarized values during the training process of XNOR

Net and BONN. The two different pattern indicates the

binarized values learned in BONN are more diverse.

3.3. Results on the CIFAR-10/100 datasets

We first evaluate our proposed BONNs in comparison

with XNOR-Net [20] with WRN backbones and also report

the accuracy of full-precision WRNs on CIFAR-10 and

CIFAR-100. Three WRN variants are chosen for a com-

prehensive comparison: 22-layer WRNs with the kernel

stage of 16-16-32-64 and 64-64-128-256. We also use

data augmentation where each image is with a padding size

of 4 and is randomly cropped into 32 × 32 for CIFAR-

10/100. Table 3 indicates that BONNs outperform XNOR-

Net on both datasets by a large margin in all the three cases.

Compared with the full-precision WRNs, BONNs eliminate

the accuracy degradation to an acceptable level, e.g., only

2.6% left on the backbone WRN22 with 64-64-128-256,

which verifies the advantage of our method in building 1-

bit CNNs.

3.4. Results on the ImageNet dataset

To further evaluate the performance of our method, we

evaluate BONNs on the ImageNet dataset. Fig. 6 shows

the curves of the Top-1 and Top-5 training/test accuracies.
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Figure 6. Training and Test accuracies on ImageNet when λ =
1e − 4, which shows the superiority of the proposed BONN over

XNOR-Net. The backbone of the two networks is ResNet18.

Table 4. Test accuracies on ImageNet. ’W’ and ’A’ refer to the

weight and activation bitwidth respectively. The backbone of all

the models is ResNet18.

Model W A Top-1 Top-5

ResNet18 32 32 69.3 89.2

BWN 1 32 60.8 83.0

DoReFa-Net 1 4 59.2 81.5

TBN 1 2 55.6 79.0

BNN 1 1 42.2 67.1

XNOR-Net 1 1 51.2 73.2

ABC-Net 1 1 42.7 67.6

Bi-Real Net 1 1 56.4 79.5

PCNN 1 1 57.3 80.0

BONN 1 1 59.3 81.6

Notably, we adopt two data augmentation methods in the

training set: 1) cropping the image to the size of 224×224

at a random location, and 2) flipping the image horizontally.

In the test set, we simply crop the image to 224×224 in the

center. ResNet18 is the backbone, only with slight structure

adjustments as described in [17].

We compare the performance of BONN with other

state-of-the-art quantized networks, including BWN [20],

DoReFa-Net [29], TBN [22], XNOR-Net [20], ABC-Net

[14], BNN [4], Bi-Real Net [17] and PCNN [8]. Table

4 indicates that our BONN obtains the highest accuracy

among these 1-bit CNNs, in which Bi-Real Net and PCNN

perform most similar to BONN, yet BONN outperforms

them by about 3% and 2% in Top-1 accuracy, respectively.

Moreover, due to the application of the clip function [17],

Bi-Real Net is trained in a two-stage procedure which

requires an extra cost. It is also worth mentioning that

DoReFa-Net and TBN use more than 1-bit to quantize the

activations, yet we still get better performance in compar-

ison. These results show that BONNs are not limited to

small datasets, but also work well on large datasets. This

further verifies the generalization capability of our BONNs.

3.5. Memory Usage and Efficiency Analysis

In a full-precision network, each parameter requires 32

bits to save it. While in 1-bit CNNs, each parameter is

stored with just 1 bit. In BONNs, we follow a strategy

adopted by XNOR-Net, which keeps full-precision the pa-

rameters in the first convolution layer, all 1×1 convolutions

and the fully connected layer. This leads to an overall

compression rate of 11.10 for ResNet18. For efficiency

analysis, if all of the operands of the convolutions are

binary, then the convolutions can be estimated by XNOR

and bit-counting operations.[4]. In this way, we can get 58×
faster on CPUs [20].

4. Conclusion and future work

In this paper, we have proposed Bayesian optimized 1-

bit CNNs (BONNs), which take the full-precision kernel

and feature distributions into consideration, resulting in a

unified Bayesian framework with two new Bayesian losses.

The Bayesian losses are used to adjust the distributions of

kernels and features towards an optimal solution. Compre-

hensive studies on the hyper-parameters for the Bayesian

losses have been conducted. Extensive experiments on

CIFAR and ImageNet demonstrate that BONNs achieve the

best classification performance for WRNs and ResNet18,

and have superior performance over other 1-bit CNNs. In

the future, we plan to explore our proposed BONNs on

deeper networks like ResNet34 and on different tasks other

than classification.
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