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Abstract

While Physics-Based Simulation (PBS) can accurately

drape a 3D garment on a 3D body, it remains too costly

for real-time applications, such as virtual try-on. By con-

trast, inference in a deep network, requiring a single for-

ward pass, is much faster. Taking advantage of this, we

propose a novel architecture to fit a 3D garment template to

a 3D body. Specifically, we build upon the recent progress

in 3D point cloud processing with deep networks to extract

garment features at varying levels of detail, including point-

wise, patch-wise and global features. We fuse these features

with those extracted in parallel from the 3D body, so as to

model the cloth-body interactions. The resulting two-stream

architecture, which we call as GarNet, is trained using a

loss function inspired by physics-based modeling, and de-

livers visually plausible garment shapes whose 3D points

are, on average, less than 1 cm away from those of a PBS

method, while running 100 times faster. Moreover, the pro-

posed method can model various garment types with differ-

ent cutting patterns when parameters of those patterns are

given as input to the network.

1. Introduction

Garment simulation is useful for many purposes such as

virtual try-on, online shopping, gaming, and virtual reality.

Physics-Based Simulation (PBS) can deliver highly realistic

results, but at the cost of heavy computation, which makes

it unsuitable for real-time and web-based applications. As

shown in Fig. 1, in this paper, we propose to train a deep

network to produce visually plausible 3D draping results,

as achieved by PBS, but much faster.

Realistic simulation of cloth draping over the human

body requires accounting for the global 3D pose of the per-

This work was supported in part by the CTI Project 26455.1 PFES-ES.

GarNet Physics-Based	Simulation

Figure 1: Draping a sweater and a T-shirt. Our method produces

results as plausible as those of a PBS method, but runs 100x faster.

son and for the local interactions between skin and cloth

caused by the body shape. To this end, we introduce the ar-

chitecture depicted by Fig. 2. It consists of a garment stream

and a body stream. The body stream uses a PointNet [36]

inspired architecture to extract local and global information

about the 3D body. The garment stream exploits the global

body features to compute point-wise, patch-wise and global

features for the garment mesh. These features, along with

the global ones obtained from the body, are then fed to a fu-

sion subnetwork to predict the shape of the fitted garment.

In one implementation of our approach, shown in Fig. 2a,

the local body features are only used implicitly to compute

the global ones. In a more sophisticated implementation,

we explicitly take them into account to further model the

skin-cloth interactions. To this end, we introduce an auxil-

iary stream that first computes the K nearest body vertices

for each garment vertex, performs feature pooling on point-

wise body features and finally feeds them to the fusion sub-

network. This process is depicted by Fig. 2b. We will see

that it performs better than the simpler one, indicating that

local feature pooling is valuable.
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Figure 2: Two versions of our GarNet. Both take as input a target body and the garment mesh roughly aligned with the body pose by

using [20]. GarNet-Global: We fuse the global body features with the garment ones both early and late. GarNet-Local: In addition, we

use a nearest neighbor pooling for local body features and feed the result to the fusion network to combine the body and garment features.

By incorporating appropriate loss terms in the objec-

tive function that we minimize during training, at test time,

we avoid the need for extra post-processing steps to min-

imize cloth-body interpenetration and undue tightness that

PBS tools [31, 39, 32, 12], optimization-based [7] and data-

driven [14, 41] methods often require. Furthermore, by re-

lying on convolution and pooling operations, our approach

naturally scales to point clouds of arbitrary resolution. This

is in contrast to data-driven methods [14, 41] that rely on a

low-dimensional subspace whose size would typically need

to grow as the resolution increases, thus strongly affecting

these models’ memory requirements.

Our contribution is therefore a novel architecture for

static garment simulation that delivers fitting results in real-

time by properly modeling the body and garment interac-

tion, thus reducing cloth and body interpenetration. For

training purposes, we built a dataset that will be made pub-

lic1. It comprises a pair of jeans, a t-shirt and a sweater

worn by 600 bodies from the SMPL dataset [26] in various

poses. Experiments on our dataset show that our network

can effectively handle many body poses and shapes. More-

over, our approach can incorporate additional information,

such as cutting patterns, when available. To illustrate this,

we make use of the recently-published data of [41], which

contains different garment types with varying cutting pat-

terns. Our experiments demonstrate that our method out-

performs the state-of-the-art one of [41] on this dataset. Fi-

nally, whereas the PBS approach that we take as reference

takes more than 10 seconds to predict the shape of a gar-

ment, ours takes less than 70 ms, thus being practical for

real-time applications.

2. Related Work

Many professional tools can model cloth deformations

realistically using Physics-Based Simulation (PBS) [31, 39,

32, 12]. However, they are computationally expensive,

which precludes real-time use. Furthermore, manual pa-

1Please check for the dataset at https://cvlab.epfl.ch/

research/garment-simulation/garnet/

rameter tuning is often required. First, we briefly review

recent approaches to overcoming these limitations. Then,

we summarize the deep network architectures for 3D point

cloud and mesh processing, and the related works for 3D

human/cloth modeling.

Data-Driven Approaches. They are computationally less

intensive and memory demanding, at least at run-time, and

have emerged as viable competitors to PBS. One of the

early methods [22] relies on generating a set of garment-

body pairs. At test time, the garment shape in an unseen

pose is predicted by linearly interpolating the garments in

the database. An earlier work [28] proposes a data-driven

estimation of the physical parameters of the cloth material

while [21] constructs a finite motion graph for detailed cloth

effects. In [18], potential wrinkles for each body joint are

stored in a database so as to model fine details in various

body poses. However, it requires performing this operation

for each body-garment pair. To speed up the computation,

the cloth simulation is modeled in a low-dimensional linear

subspace as a function of 3D body shape, pose and motion

in [10]. [13] also models the relation between 2D cloth de-

formations and corresponding bodies in a low-dimensional

space. [14] extends this idea to 3D shapes by factorizing the

cloth deformations according to what causes them, which is

mostly shape and pose. The factorized model is trained to

predict the garment’s final shape. [38] trains an MLP and

an RNN to model the cloth deformations by decomposing

them as static and dynamic wrinkles. Both [14] and [38],

however, require an a posteriori refinement to prevent cloth-

body interpenetration. In a recent approach, [41] relies on a

deep encoder-decoder model to create a joint representation

for bodies, garment sewing patterns, 2D sketches and gar-

ment shapes. This defines a mapping between any pair of

such entities, for example body-garment shape. However, it

relies on a Principal Component Analysis (PCA) represen-

tation of the garment shape, thus reducing the accuracy. In

contrast to [41], our method operates directly on the body

and garment meshes, removing the need for such a limiting

representation. We will show that our predictions are more
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accurate as a result.

Cloth fitting has been performed using 4D data scans

as in [24, 34]. In [34], garments deforming over time

are reconstructed using 4D data scans and the reconstruc-

tions are then retargeted to other bodies without account-

ing for physics-based clothing dynamics. Unlike in [34],

we aim not only to obtain visually plausible results but also

to emulate PBS for cloth fitting. In [24], fine wrinkles are

generated by a conditional Generative Adversarial Network

(GAN) that takes as input predicted, low-resolution normal

maps. This method, however, requires a computationally

demanding step to register the template cloth to the captured

4D scan, while ours needs only to perform skinning of the

template garment shape using the efficient method of [20].

Point Cloud and Mesh Processing. A key innovation

that has made our approach practical is the recent emer-

gence of deep architectures that allow for the processing of

point clouds [36, 37] and meshes [40]. PointNet [36, 37]

was the first to efficiently represent and use unordered

point clouds for 3D object classification and segmenta-

tion. It has spawned several approaches to point-cloud up-

sampling [46], unsupervised representation learning [44],

3D descriptor matching [11], and finding 2D correspon-

dences [45]. In our architecture, as in PointNet, we use

Multilayer Perceptrons (MLPs) for point-wise processing

and max-pooling for global feature generation. However,

despite its simplicity and representative power, point-wise

operations in PointNet [36] is not sufficient to produce visu-

ally plausible garment fitting results, as we experimentally

demonstrate by qualitative and quantitative analysis.

Given the topology of the point clouds, for example in

the form of a triangulated mesh, graph convolution meth-

ods, unlike PointNet [36], can produce local features, such

as those of [6, 27, 29] that rely on hand-crafted patch oper-

ators. FeastNet [40] generalizes this approach by learning

how to dynamically associate convolutional filter weights

with features at the vertices of the mesh, and demonstrates

state-of-the-art performance on the 3D shape correspon-

dence problem. Similar to [40], we also use mesh convolu-

tions to extract patch-wise garment features that encode the

neighborhood geometry. However, in contrast to the meth-

ods whose tasks are 3D shape segmentation [36, 37] or 3D

shape correspondence [40, 6, 27, 29], we do not work with

a single point cloud or mesh as input, but with two: one for

the body and the other for the garment, which are combined

in our two-stream architecture to account for both shapes.

3D human body/cloth reconstruction. 3D body

shapes/cloth are modeled from RGB/RGBD cameras in

[49, 43, 42, 15, 2, 1, 47, 48] while garment and surface

reconstruction methods from images are addressed in

surface/wrinkle reconstruction from images [9, 3, 35].

Moreover, generative models reconstruct cloths in [25, 16].
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Figure 3: Garment branch of our network. The grey boxes and

the numbers in parenthesis denote network layers and their out-

put channel dimensions. Red and blue ones represent garment and

global body features, respectively. The green box is the mesh con-

volution subnetwork and depicted in more detail in Fig. 4. STN

stands for a Spatial Transformer Network used in PointNet [36].
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Figure 4: Mesh conv. subnetwork. The residual block is repeated

6 times. Dashed red rectangles indicate channel-wise concatena-

tion. The N × 3-dimensional tensors contain the 3D vertex loca-

tions of the input garment, which are passed at different stages via

skip connections.

3. 3D Garment Fitting

To fit a garment to a body in a specific pose, we start

by using a dual quaternion skinning (DQS) method [20]

that produces a rough initial garment shape that depends

on body pose. In this section, we introduce two variants

of our GarNet deep network to refine this initial shape and

produce the final garment. Fig. 2 depicts these two variants.

3.1. Problem Formulation

Let M0 be the template garment mesh in the rest pose

and let M = dqs(M0,B,J 0

M,JB,W) be the garment af-

ter skinning to the body B, also modeled as a mesh, by the

method [20]. Here, J 0

M and JB are the joints of M0 and
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B, respectively. W is the skinning weight matrix for M0.

Let fθ be the network with weights θ chosen so that the pre-

dicted garment GP given M and B is as close as possible to

the ground-truth shape GG. We denote the ith vertex of M,

B, GG and GP by Mi, Bi, G
G
i and G

P
i ∈ R

3, respectively.

Finally, let N be the number of vertices in M, GG and GP .

Since predicting deformations from a reasonable initial

shape is more convenient than predicting absolute 3D lo-

cations, we train fθ to predict a translation vector for each

vertex of the warped garment M that brings it as close as

possible to the corresponding ground-truth vertex. In other

words, we optimize with respect to θ so that

T P = fθ(M,B) ≈ T G , (1)

where T P and T G correspond to translation vectors from

the skinned garment M to the predicted and ground-truth

mesh, respectively, that is GP
i −Mi and G

G
i −Mi. There-

fore, the final shape of the garment mesh is obtained by

adding the translation vectors predicted by the network to

the vertex positions after skinning.

3.2. Network Architecture

We rely on a two-stream architecture to compute

fθ(M,B). The first stream, or body stream, takes as input

the body represented by a 3D point cloud while the second,

or garment stream, takes as input the garment represented

by a triangulated 3D mesh. Their respective outputs are fed

to a fusion network that relies on a set of MLP blocks to

produce the predicted translations T P of Eq. 1. To not only

produce a rough garment shape, but also predict fine details

such as wrinkles and folds, we include early connections

between the two streams, allowing the garment stream to

account for the body shape even when processing local in-

formation. As shown in Fig. 2, we implemented two dif-

ferent versions of the full architecture and discuss them in

detail below.

Body Stream. The first stream processes the body B in a

manner similar to that of PointNet [36] (see Sec. 3.4 for de-

tails). It efficiently produces point-wise and global features

that adequately represent body pose and shape. Since there

are no direct correspondences between 3D body points and

3D garment vertices, the global body features are key to in-

corporating such information while processing the garment.

We observed no improvement by using mesh convolution

layers in this stream.

Garment Stream. The second stream takes as input the

warped garment M and the global body features extracted

by the body stream to also compute point-wise and global

features. As we will see in the results section, this suffices

for a rough approximation of the garment shape but not to

predict wrinkles and folds. We therefore use the garment

mesh to create patch-wise features, that account for the local
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Figure 5: K nearest neighbor pooling in Fig. 2b. We compute

the K nearest neighbor body vertices of each garment vertex and

max-pool their local features.

neighborhood of each garment vertex by using mesh con-

volution operations [40]. In other words, instead of using

a standard PointNet architecture, we use the more sophisti-

cated one depicted by Fig. 3 to compute point-wise, patch-

wise, and global features. As shown in Fig. 3, the features

extracted at each stage are forwarded to the later stages via

skip connections. Thus, we directly exploit the low-level

information while extracting higher-level representations.

Fusion Network. Once the features are produced by the

garment and body streams, they are concatenated and given

as input to the fusion network shown as a purple box in

Fig. 2. It consists of four MLP blocks shared by all the

points, as done in the segmentation network of PointNet

[36]. The final MLP block outputs the 3D translations T P

of Eq. 1 from the warped garment shape M.

Global and Local Variants. Fig. 2a depicts the GarNet-

Global version of our architecture. It discards the point-

wise body features produced by the body stream and ex-

clusively relies on the global body ones. Note, however,

that the local body features are still implicitly used because

the global ones depend on them. This enables the network

to handle the garment/body dependencies without requir-

ing explicit correspondences between body points and mesh

vertices. In the more sophisticated GarNet-Local architec-

ture depicted by Fig. 2b, we explicitly exploit the point-

wise body features by introducing a nearest neighbor pool-

ing step to compute separate local body features for each

garment vertex. It takes as input the point-wise body fea-

tures and uses a nearest neighbor approach to compute ad-

ditional features that capture the proximity of M to B and

feeds them into the fusion network, along with the body

and garment features. This step shown in Fig. 5 improves

the prediction accuracy due to the explicit use of local body

features.

3.3. Loss Function

To learn the network weights, we minimize the loss func-

tion L(GG,GP ,B,M). We designed it to reduce the dis-

tance of the prediction GP to the ground truth GG while
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also incorporating regularization terms derived from phys-

ical constraints. The latter also depend on the body B and

the garment M. We therefore write L as

Lvertex + λpenLpen + λnormLnorm + λbendLbend , (2)

where λpen, λnorm, and λbend are weights associated with

the individual terms described below. We will study the

individual impact of these terms in the results section.

Data Term. We take Lvertex to be the average L2 dis-

tance between the vertices of GG and GP ,

1

N

N
∑

i=1

∥

∥G
G
i −G

P
i

∥

∥

2

, (3)

where N is the total number of vertices.

Interpenetration Term. To assess whether a garment
vertex is inside the body, we first find the nearest body ver-
tex. At each iteration of the training process, we perform
this search for all garment vertices. This yields C(B,GP ), a
set of garment-body index pairs. We write Lpen as

∑

{i,j}∈C(B,GP )

✶{‖GP
j
−GG

j
‖<dtol}

ReLU(−N
T
Bi

(GP
j −Bi))/N, (4)

to penalize the presence of garment vertices inside the

body. Here, NBi
is the normal vector at the ith body vertex,

as depicted by Fig 6a. This formulation penalizes garment

vertex GP
j for not being on the green subspace of its cor-

responding body vertex Bi, provided that it is less than a

distance dtol from its ground-truth position. In other words,

the constraint only comes into play when the vertex is suffi-

ciently close to its true position to avoid imposing spurious

constraints at the beginning of the optimization. The loss

term also penalizes traingle-triangle intesections between

the body and the garment, which could happen when two

neighboring garment vertices are close to the same body

vertex. Unlike in [14], we do not force the garment vertex

to be within a predefined distance of the body because, in

some cases, garment vertices can legitimately be far from it.

Normal Term. We write Lnorm as

1

NF

NF
∑

i=1

(

1−
(

F
G
i

)T
F

P
i

)2

, (5)

to penalize the angle difference between the ground-truth

and predicted facet normals. Here, NF , FG
i and F

P
i are the

number of facets, the normal vector of the ith ground-truth

facet and of the corresponding predicted one, respectively.

Bending Term. We take Lbend to be

1

|N2|

∑

{i,k}∈N2

| ‖GP
i −G

P
k ‖ − ‖GG

i −G
G
k ‖ |, (6)

𝐁" 𝐍$%

𝐍$%
& (𝐆)

* − 𝐁")

𝐆)
*

𝟗𝟎°

(a)

𝐆"
#

𝐆$
#

𝐆%
#

𝐆"
&

𝐆$
&

𝑮%
&

𝑑%,$
&

𝑑%,$
#

𝑑%,$
& − 𝑑%,$

#

(b)

Figure 6: Interpenetration and Bending loss terms. (a) The in-

terpenetration term Lpen penalizes a garment vertex G
P
j for being

on the wrong side of the corresponding body point Bi. (b) The

bending term Lbend penalizes the distance between two neighbors

of GP
j to differ from that in the ground truth.

to emulate the bending constraint of NvCloth [31], the PBS

method we use, which is an approximation of the one in

[30]. Here, N2 denotes a set of pairs of vertices connected

by a shortest path of two edges. This term helps preserve

the distance between neighboring vertices of a given vertex,

as shown in Fig. 6b. Although it is theoretically possible to

consider larger neighborhoods, the number of pairs would

grow exponentially.

3.4. Implementation Details

To apply the skinning method of [20], we compute the

skinning weight matrix W using Blender [5] given the pose

information of the garment mesh. The garment stream em-

ploys 6 residual blocks depicted in Fig. 4 following the

common practice of ResNet [17]. In each block, we adopt

the mesh convolution layer proposed in [40], which uses

1-ring neighbors to learn patch-wise features at each con-

volution layer. As the mesh convolution operators rely on

trainable parameters to weigh the contribution of neigh-

bors, we always concatenate the input vertex 3D locations

to their input vectors so that the network can learn topology-

dependent convolutions. While using the exact PointNet ar-

chitecture of [36] in the body stream, we observed that all

point-wise body features converged to the same feature vec-

tor, which seems to be due to ReLU saturation. To prevent

this, we use leaky ReLUs with a slope of 0.1 and add a skip

connection from the output of the first Spatial Transformer

Network (STN) to the input of the second MLP block. To

use the body features in the garment stream as shown in

Fig. 3, the 512-dimensional global body features are re-

peated for each garment vertex. For the local body pooling

depicted by Fig. 5, we downscale the 3D body points along

with their point-wise features by a factor 10. This is done

by average pooling applied to the point-wise body features

with a 16 neighborhood size. For the local max-pooling

of body features in Fig. 5, the number of neighbors is 15.
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To increase the effectiveness of the interpenetration term in

Eq. (4), each matched body point Bi is extended in the di-

rection of its normal vector by 20% of average edge length

of the mesh to ensure that penetrations are well-penalized,

and the tolerance parameter dtol is set to 0.05 for both our

dataset and that of [41]. Additional details are given in the

supplementary material. To train the network, we use the

PyTorch [33] implementation of the Adam optimizer [23]

with a learning rate of 0.001. In all the experiments reported

in the following section, we empirically set the weights of

Eq. 2, λnormal, λpen and λbend to 0.3, 1.0 and 0.5.

4. Experiments

In this section, we evaluate the performance of our

framework both qualitatively and quantitatively. We first

introduce the evaluation metrics we use, and conduct ex-

tensive experiments on our dataset to validate our architec-

ture design. Then, we compare our method against the only

state-of-the art method [41] for which the training and test-

ing data is publicly available. Finally, we perform an abla-

tion study to demonstrate the impact of our loss terms.

4.1. Evaluation Metrics

We introduce the following two quality measures:

Edist =
1

N

N
∑

i=1

‖GG
i −G

P
i ‖ , (7)

Enorm =
1

NF

NF
∑

i=1

arccos

(

(FG
i )

T
F

P
i

‖FG
i ‖‖F

P
i ‖

)

. (8)

Edist is the average vertex-to-vertex distance between the

predicted mesh and the ground-truth one, while Enorm is

the average angular deviation of the predicted facet normals

to the ground-truth ones. As discussed in [7], the latter is

important because the normals are key to the appearance of

the rendered garment.

4.2. Analysis on our Dataset

We created a large dataset featuring various poses and

body shapes. We first explain how we built it and then test

various aspects of our framework on it.

Dataset Creation. We used the Nvidia physics-based

simulator NvCloth [31] to fit a T-shirt, a sweater and a pair

of jeans represented by 3D triangulated meshes with 10k

vertices on synthetic bodies generated by the SMPL body

model [26], represented as meshes with 6890 vertices. To

incorporate a variety of poses, we animated the SMPL bod-

ies using the yoga, dance and walking motions from the

CMU mocap [8] dataset. The training, validation and test

sets consist of 500, 20 and 80 bodies, respectively. The T-

shirt, the sweater and the jeans have, on average, 40, 23 and

31 poses, respectively. To guarantee repeatability for simi-

lar body shapes and poses, each simulation was performed

by starting from the initial pose of the input garment.

Quantitative Results. Recall from Section 3.2 that we

implemented two variants of our network, GarNet-Global

that relies solely on global body-features and GarNet-

Local that also exploits local body-features by performing

nearest neighbor pooling as shown in Fig. 5. As the third

variant, we implemented a simplified version of GarNet-

Global in which we removed the mesh convolution layers

that produce patch-wise garment features. It therefore per-

forms only point-wise operations (i.e. 1×1 conv.) and max-

pooling layer, and we dub it GarNet-Naive, which can also

be interpreted as a two-stream PointNet [36] with extra skip

connections. We also compare against the garment warped

by dual quaternion skinning (DQS) [20], which only de-

pends on the body pose.
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Figure 7: Average precision curves for the vertex distance and the

facet normal angle error.

In Table 1, we report our results in terms of the Edist and

Enorm of Section 4.1. In Fig. 7, we plot the corresponding

average precision curves for T-shirts, jeans and sweaters.

The average precision is the percentage of vertices/normals

of all test samples whose error is below a given thresh-

old. GarNet-Naive does worse than the two others, which
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GarNet-Naive GarNet-Global GarNet-Local PBS

Figure 8: Comparison on the T-shirt. GarNet-Naive produces

artifacts near the shoulder while GarNet-Local, GarNet-Global

and PBS yield similar results.

Jeans T-shirt Sweater

Edist/Enorm Edist/Enorm Edist/Enorm
GarNet-Local 0.88/5.63 0.93/8.97 0.97/9.21

GarNet-Global 1.01/5.85 1.05/9.48 1.03/9.36

GarNet-Naive 2.13/12.59 1.78/13.48 1.13/10.3

DQS [20] 11.43/22.0 9.98/30.74 6.47/24.64

Table 1: Average distance in cm and face normal angle difference

in degrees between the PBS and predicted vertices.

GarNet-Local GarNet-Global GarNet-Naive PBS PBS†

time (ms) 68 59 0.2 > 19000 >7200

Table 2: Comparison of the computation time. We used a sin-

gle Nvidia TITAN X GPU for PBS and for our networks. In our

case, forward propagation was done with a batch size of 16. PBS†

stands for PBS computation excluding the time spent during the

warping of template garment onto the target body pose.

underlines the importance of patch-wise garment features.

GarNet-Global and GarNet-Local yield comparable re-

sults with an overall advantage to GarNet-Local. Finally,

in Table 2, we report the computation times of our networks

and of the employed PBS software. Note that both variants

of our approach yield a 100× speedup.

Tests on unseen poses. The T-shirt dataset is split such

that 50% (25%) of the poses (uniformly sampled within

each motion) are in the training set; the rest are in the test

set. The distance and angle errors increases to 1.16 (1.68)

cm and 9.71 (11.88)◦. Since our poses are carefully sam-

pled to ensure diversity, the performance on the splits above

indicate generalization ability.

Qualitative Results. Fig. 8 depicts the results of the

GarNet-Local, GarNet-Global and GarNet-Naive archi-

tectures. The GarNet-Global results are visually similar

to the GarNet-Local ones on the printed page; however,

GarNet-Global produces a visible gap between the body

and the garment while the garment draped by GarNet-

Local is more similar to the PBS one. GarNet-Naive gen-

erates some clearly visible artifacts, such as spurious wrin-

kles near the right shoulder. By contrast, the predictions

GarNet-Local GarNet-Global [41]

Dist. % 0.89 1.15 3.01

Angle. ∢ 7.40 7.53 N/A

Table 3: Distance % and angle error on the shirt dataset of [41].

of GarNet-Local closely match those of the PBS method

while being much faster. We provide further evidence of

this in Fig. 9 for three different garment types. Additonal

visual results are provided in the supplementary material.

4.3. Results on the Dataset of [41]

As discussed in Section 2, [41] is the only non-PBS

method that addresses a problem similar to ours and for

which the data is publicly available. Specifically, the main

focus of [41] is to drape a garment on several body shapes

for different garment sewing patterns. Their dataset con-

tains 7000 samples consisting of a body shape in the T-

pose, sewing parameters, and the fitted garment. Hence,

the inputs to the network are the body shape and the gar-

ment sewing parameters. To use GarNet for this purpose,

we take one of the fitted garments from the training set

to be the template input to our network, and concatenate

the sewing parameters to each vertex feature before feed-

ing them to the MLP layers of our network. The modified

architecture is described in more detail in the supplemen-

tary material. We use the same training (95%) and test

(5%) splits as in [41] and compare our results with theirs

in terms of the normalized L2 distance percentage, that is,

100× ‖GG −GP ‖/‖GG‖, where GG and GP are the vec-

torized ground-truth and predicted vertex locations normal-

ized to the range [0, 1]. We use this metric here because it

is the one reported in [41]. As evidenced by Table 3, our

framework generalizes to making use of garment parame-

ters, such as sewing patterns, and significantly outperforms

the state-of-the-art one of [41].

Ablation study. We conducted an ablation study on the

dataset of [41] to highlight the influence of the different

terms in our loss function. We trained the network by in-

dividually removing the penetration, bending, and normal

term. We also report results without both the normal and

bending terms. As shown in Table 4, using the normal and

bending terms significantly improves the angle accuracy.

This is depicted in Fig. 10 where the normal term helps

remove the spurious wrinkles. While turning off the pen-

etration term has limited impact on the quantitative results,

it causes more severe interpenetration, as shown in Fig. 10.

5. Conclusion

In this work, we have introduced a new two-stream net-

work architecture that can drape a 3D garment shape on

different target bodies in many different poses, while run-

ning 100 times faster than a physics-based simulator. Its
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Figure 9: GarNet-Local (top) vs PBS (bottom) results for several poses. Note how similar they are, even though the former were

computed in approx. 70ms instead of 20s. Our method successfully predicts the overall shape and details with intermediate frequency.

No penet. No norm. Full Loss PBS

Figure 10: Ablation study. Reconstruction without some of the

loss terms results in interpenetration (left) or different wrinkles at

the back (second from left). By contrast, using the full loss yields

a result very similar to the PBS one (two images on the right).

key elements are an approach to jointly exploiting body and

garment features and a loss function that promotes the sat-

isfaction of physical constraints. By also taking as input

different garment sewing patterns, our method generalizes

to accurately draping different styles of garments.

Our model can drape the garment shapes to within 1 cm

Loss Function Edist Enormal

Lvertex + Lpen 0.55 8.88

Lvertex + Lpen + Lbend 0.67 9.90

Lvertex + Lnorm + Lbend 0.69 7.39

Lvertex + Lpen + Lnorm 1.08 7.40

Lvertex + Lpen + Lnorm + Lbend 0.72 7.36

Table 4: Ablation study on the shirt dataset of [41].

average distance from those of a PBS method while limiting

interpenetrations and other artifacts. However, it still has a

tendency to remove high-frequency details, as also observed

in [14, 38], because regression tends to smooth. In future

work, we will explore conditional Generative Adversarial

Networks [19] to add subtle wrinkles to further increase the

realism of our reconstructions, as in [24]. Another avenue

of research we intend to investigate is mesoscopic-scale

augmentation, as was done in [4], to enhance the recon-

structed faces.
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