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Abstract

The task of blood vessel segmentation in microscopy im-

ages is crucial for many diagnostic and research applica-

tions. However, vessels can look vastly different, depending

on the transient imaging conditions, and collecting data for

supervised training is laborious.

We present a novel deep learning method for unsuper-

vised segmentation of blood vessels. The method is inspired

by the field of active contours and we introduce a new loss

term, which is based on the morphological Active Contours

Without Edges (ACWE) optimization method. The role of

the morphological operators is played by novel pooling lay-

ers that are incorporated to the network’s architecture.

We demonstrate the challenges that are faced by previ-

ous supervised learning solutions, when the imaging con-

ditions shift. Our unsupervised method is able to outper-

form such previous methods in both the labeled dataset, and

when applied to similar but different datasets. Our code, as

well as efficient pytorch reimplementations of the baseline

methods VesselNN and DeepVess is available on GitHub

https://github.com/shirgur/UMIS

1. Introduction

The field of microscopic imaging of blood vessels is

evolving rapidly. For example, several emerging techniques

allow rapid volumetric imaging of vascular dynamics in op-

tically clear [5] and turbid [20, 12] living brains. Such

technologies can lead to breakthroughs, both in understand-

ing neuro-vascular interactions in the neocortex and in fine-

grained medical diagnosis. However, this potential can only

materialize when automatic segmentation algorithms capa-

ble of fast and accurate estimation of vascular dynamics

from large volumetric movies become available.

In this work, we propose a novel unsupervised algorithm

for blood vessel segmentation. The need for an unsuper-

vised technique arises from the limitations of the currently

available training data. These limitations include: (i) the

datasets size, due to the amount of expert labor required,

(ii) the datasets do not represent the very high variability

that exists in imaging conditions between microscopes, im-

aged samples, and along the same experiment. (iii) High-

throughput imaging modalities[5, 12, 20] necessitate faster

segmentation algorithms that do not rely on human curation.

Since blood vessels and microvessels have a well-

defined tree shape, and are typically brighter than their

surroundings (due to the contrast agent), classical (non-

learning) algorithms can be used to tackle the problem. One

relatively successful method is the Active Contours Without

Edges (ACWE) method. However, the method is not accu-

rate enough to outperform learning-based techniques.

We build an unsupervised deep learning technique that

is inspired by the morphological ACWE method. The main

loss that we employ is motivated by the energy function of

ACWE. In addition, we introduce layers that implement the

morphological operators that ACWE employs. The result

is an unsupervised method that outperforms the supervised

methods that were applied in this field.

As an unsupervised method, our models are less likely

than the supervised methods to overfit the specific training

dataset. We are able to present evidence that applied across

datasets (trained on one dataset, applied to another), the new

method has an even larger performance gap from the super-

vised deep learning methods in the literature.

2. Related Work

Microvasscular segmentation Multi-photon laser scan-

ning microscopy (MPLSM) allows minimally-invasive in-

vestigation of turbid samples, such as living brains, with

sub-cellular resolutions [7, 35, 14, 32]. Rapid volumet-

ric movies can be reconstructed by steering the laser beam

across the volume and attributing the collected photons to

the illuminated voxels [12, 20], thereby utilizing photons
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that underwent multiple scatterings through the brain, from

the focal volume to the detector [14].

Blood vessel segmentation has been researched in sev-

eral domains, such as 3D CT and MRI [21, 8, 1], or 2D

retinal blood vessels, see [28, 22, 9] to name but a few.

More relevant to this paper, are the works of Tsai et al. [31]

for neurons and microvascular segmentation and Mille et

al. [26] for 2D and 3D branching structures extraction.

Neural network models for vessel segmentation are

faster and more accurate than classical methods. Tech-

niques for retinal blood vessel segmentation, such as [33,

9, 23] use CNNs and RNNs to perform supervised patch

based segmentation of 2D images. In the images domain of

two-photons microscopy, Cicek et al. [6] proposed a 3D-

Unet for vascular segmentation, Teikari et al. [30] intro-

duced VesselNN, which is a 2D-3D network architecture

for 3D segmentation. Haft-Javaherian et al. [11] recently

proposed DeepVess, which stands as the current SOTA.

Active contours First introduced by Kass et al. [16],

active contours or snakes, are energy-minimizing methods

guided by external constraint forces that pull the snake or

contour towards features, such as lines and edges. These

methods typically require a user-specified initial contour to

start with. Variants of this method have increased the ro-

bustness and extended the applicability to new domains.

A geometric model for active contours was introduced by

Caselles et al. [2] and Yezzi et al. [34] with application to

CT and MRI images. Kichenassamy et al. [17] incorporated

gradients flows into the method. Geodesic Active Contour

(GAC) by Caselles et al. [3] deform according to an intrin-

sic geometric measures of the image.

In the field of optimization based active contours, the

ACWE work of Chan and Vese [4] and the work of

Marquez-Neila et al. on morphological active contours [25]

are the most relevant to our work. In ACWE, the borders do

not have to be well-defined by gradients, and the minimiza-

tion of the energy functional can be seen as a minimal par-

tition problem. In morphological active contours, the curve

evolution over time is calculated by computationally effi-

cient morphological operators. We give a brief review of

morphological ACWE in Sec. 3.

In the learning-based field, active contours did not fully

integrate as a learning concept, but as a method that can be

better optimized by a neural network. Rupprecht et al. [29]

for example, trained a class-specific CNN, which predicts a

vector pointing from the evolving contour towards the clos-

est point on the boundary of the object of interest. Similarly,

Marcos et al. [24] learn an active contour model parameter-

izations per instance, using a CNN. Other level-sets meth-

ods, such as [15, 18], use an additional loss that minimizes

the level-set functional, while we use the Euler-Lagrange in

Eq. 7 and a loss inspired by the ACWE algorithm. In all

methods, supervised learning is used.

Figure 1: Illustration of the nine 3D structuring elements of

B. Also used as masks in the morphological pooling layer.

We introduce the first full integration between an active

contour model and a learning-based model, where we use

the image attachment term of the ACWE as a loss, and the

morphological curvature operators as a new type of network

layer. Together, we obtain an unsupervised learning algo-

rithm for performing vascular segmentation.

3. Active Contours Without Edges

In the following section, we present a brief review of the

morphological ACWE method, since it motivates our learn-

ing based method. For a detailed explanation, we kindly

refer the reader to [25].

Let C : R+ × [0, 1] → R
3 be the parametrized 3D curve

over time. We start by describing the contour evolution by

a partial differential equation (PDE). A differential operator

L defines the curve evolution over time with the PDE Ct =
L(C), and L can be rewritten as L(C) = F ·N , which is the

product between the normal N to the curve, and the scalar

field F , which determines the velocity of evolution for each

point in the curve.

We consider a level-set representation of C, defined as u :
R

+×R
3 → R such that C(t) = {(x, y, z) : u(t, (x, y, z)) =

0}, to express the evolution of the curve as in [27, 19]:

∂u

∂t
= F · |∇u| (1)

where F can be defined as the normal to the curve, i.e. F ∈
{1,−1}, or as the intrinsic heat equation [10], i.e. F = K,

where K is the Euclidean curvature of C.

3D Curvature morphological operator Monotone

contrast-invariant and translation-invariant operators are

called morphological operators, such as dilation and ero-

sion. Let B be a set of structuring elements that uniquely

defines a morphological operator, and h is the size of that

operator, we now define two morphological operators:

SIu(x) = sup
B∈B

inf
y∈x+hB

u(y) (2)

ISu(x) = inf
B∈B

sup
y∈x+hB

u(y) (3)

where B contains all hyper-disks of radius 1 centered at the

origin, and in our three-dimensional discrete case, the nine

rectangular surfaces centered at the origin of a 3 × 3 × 3
cube (see Fig. 1).

In their study, [25] showed that K can be expressed by a

curvature morphological operator defined as SI ◦ IS.
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Morphological ACWE Let C be the parametrized curve

evolution and I be an image, the Morphological ACWE

functional to be minimized as defined in the work of [25, 4]

is as follows:

F (c1, c2, C) =µ · length(C) + v · area(inside(C))

+ α

∫

inside(C)

||I(x)− c1||dx

+ β

∫

outside(C)

||I(x)− c2||dx

(4)

where c1 and c2 are the mean of the values inside and out-

side C, and defined as follows:

c1(C) =

∫

inside(C)
I(x)dx

∫

inside(C)
dx

(5)

c2(C) =

∫

outside(C)
I(x)dx

∫

outside(C)
dx

(6)

The parameters µ and v control the length (or curvature) and

area of C, as defined in [4]. The Euler-Lagrange equation

for the functional F (see [25] for details) is as follows:

∂u

∂t
= |∇u|

(

µdiv

(
∇u

|∇u|

)

−v−α(I−c1)
2+β(I−c2)

2

)

(7)

where in the experiments of [25], v is set to 0, and the pa-

rameters α and β are set to 1 and 2, respectively. ∇u is

computed using central differences along the three axis x,y,

and z. The resulting ACWE algorithm is written as follows:

Γ = |∇u|(α(I − c1)
2 − β(I − c2)

2) (8)

un+ 1

2 (x) =







1 if Γ < 0

0 if Γ > 0

un otherwise

(9)

un+1(x) =
(
(SI ◦ IS)µun+ 1

2

)
(x) (10)

where Γ is the image attachment term, as defined by [25].

The superscript is the iteration number.

4. Method

In order to implement the ACWE principle as a network,

we turn the iterative energy minimization that occurs in

Eq. 9 into a loss, and the morphological operations in Eq. 10

into novel morphological layers.

The segmentation network receives an input I ∈
[0, 1]1×k×m×n, which is a 3D intensity-response input vol-

ume, where k×m× n are the volume dimensions of a sin-

gle intensity channel. The network outputs a segmentation

map, S ∈ [0, 1]1×k×m×n, and thresholding is performed

to obtain the final result. To lower the ambiguity of S, and

the sensitivity to thresholding, we employ a compound loss,

which encourages output results to have 0 or 1 values.

4.1. Network Architecture

The network’s architecture is illustrated in Fig. 2 and

consists of a main Encoder-Decoder branch with skip con-

nections, denoted as E and Dseg (for segmentation), respec-

tively, followed by successive operations of Morphological

Pooling Layer (Eq. 14-15) for smoothing. It is trained in

an unsupervised manner, using an auxiliary reconstruction

loss, provided by an additional decoder Drec, which is used

only during training, and outputs an estimated input Ī .

The network components are then rewritten as follows:

S̄(I) := Dseg(E(I)) (11)

S(I) := SI(IS(. . . (SI(IS
︸ ︷︷ ︸

SI◦IS µ times

(S̄(I)))))) (12)

Ī := Drec(E(I)) (13)

where S̄ is the segmentation before smoothing, and S is the

segmentation mask obtained after applying the morpholog-

ical pooling layers SI and IS in Eq. 12 µ times (the two

layers are defined below).

Our Encoder architecture is based on ResNet34 [13]

with 3D convolutions. In addition to the ResNet’s output

E(I), there are two intermediate layers that are fed directly

into the subsequent decoder: C2 (C3) is the output of the

ResNet’s 2nd (3rd) block. Each of the two decoders Dseg

and Drec consists of three Upsampling blocks with skip

connections, as detailed in the appendix.

Morphological Pooling Layer Illustrated in Fig. 3 for

the 2D case, the layer implements the IS and SI operations

as differentiable layers, which are not learned, but play a

role in the backpropagation. These layers employ the set of

nine structuring elements B, as explained in Sec. 3, where

each element B ∈ B is a binary mask of size 3 × 3 × 3 as

illustrated in Fig. 1. The layers first perform masked max

pooling ∀B ∈ B, and then take the maximum or minimum

across all results, according to the desired operation (SI or

IS respectively). Formally:

SI(x) := max
B∈B

−MaskPool(−x,B) (14)

IS(x) := min
B∈B

MaskPool(x,B) (15)

MaskPool(x,B) := max{x⊗B} (16)

The MaskPool function first applies an element-wise mul-

tiplication between the mask and the input, denoted by ⊗,

and then takes the maximum over all locations. Fig. 3 illus-

trates the 2D case.

The two types of Morphological Pooling Layers are then

used to smooth the intermediate segmentation S̄ and obtain

the final segmentation mask S, according to Eq. 12, where

the two morphological operations are applied µ = 3 times.
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Figure 2: 3D segmentation network architecture. C2 and C3 are intermediate convolution blocks from ResNet, serving as

skip-inputs for both Dseg and Drec.
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Figure 3: Illustration of 2D Masked Pooling Layer activa-

tion on a single window.

4.2. Training loss

We employ a compound loss:

L =λ1LAC + λ2Lrank + λ3Ltight+

λ4Lrec + λ5LMV + λ6LME

(17)

where λ1, .., λ6 are weights. The various terms of the loss

function are defined below.

Active contour loss Our main loss term, LAC , is derived

from the ACWE algorithm, specifically Eq. 8 which deter-

mine the segmentation value in Eq. 9. We first rewrite Eq. 8

to fit our network terminology:

Γ = ‖∇S̄‖1(α(I − c1)
2 − β(I − c2)

2) (18)

where ∇S̄ is the intermediate segmentation derivatives

in x, y, and z, computed using the central differences

method. We define c1 and c2 similarly to Eq 5- 6 as:

c1 =

∑

p I(p)S(p)
∑

p S(p)
(19) c2 =

∑
I(p)(1− S(p))
∑

p 1− S(p)
(20)

Following [25], we set α = 1 and β = 2 for all experiments.

As can be seen from Eq. 9, when Γ < 0, we need to en-

courage the segmentation to output 1, and conversely, out-

put 0, if Γ > 0. Therefore, we penalize elements of S for

which this is not the case. This is done by the following

loss, which is computed for each point p in the volume:

LAC(p) =

{

exp(Γ(p)S(p)) if Γ(p) <= 0

exp(−Γ(p)(1− S(p))) if Γ(p) > 0
(21)

The volume loss is LAC = EpLAC(p). The loss is high,

if the exponent is applied to a value that is close to zero.

This happens if the term Γ(p) is negative and S(p) is close

to zero, or if Γ(p) is positive and S(p) is close to one.

Ranking loss Lrank plays two roles in the learning pro-

cess. Firstly, it enforces c1 to represent the higher values in

the input image, segmenting the reflective substance. Sec-

ondly, it encourages a larger gap between c1 and c2.

Lrank = exp(c2 − c1) (22)

Reconstruction loss Since learning is performed without

supervision, we further constrain the encoder to preserve the

information of the input data by adding the Lrec reconstruc-

tion loss:

Lrec = Ep

[
(Ī(p)− I(p))2 + ‖∇Ī(p)‖1

]
(23)

where ∇Ī is a regularization (smoothing) term.

Minimal segmentation loss To avoid the case where the

segmentation mask contains the entire image, which seems

to be a stable solution when the training data is noisy, we

encourage the network to output a tight (or minimal) seg-

mentation:

Ltight = A(S) =
∑

p

S(p) (24)

where A(S) is the area of segmentation S.

Disjunctive loss We add two additional loss terms to

push the segmentation output away from the intermediate

values and towards 0 or 1. The Maximal Variance loss:

LMV = exp(Ep[S(p)
2]− E[S(p)]2) (25)

and the the Maximal Entropy loss:

LME = Ep[−S(p) · log(S(p))] (26)
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4.3. Training the network

The same settings are used in all experiments and the

hyperparameters are fixed to the following values: λ1 =
1, λ2 = 10−2, λ3 = λ4 = 10−3, λ5 = 10−3 and λ6 =
10−6. An Adam optimizer, with a learning rate of 0.0001,

is used. Training is done on a single NVIDIA Titan-X 12G

Pascal GPU, and takes about 20 minutes to train.

The 3D input volume of our network has a size of

32 × 128 × 128, where 32 is for the z dimension. At train

time, we crop the training samples to fit the network’s in-

put shape. At test time, a sliding window is applied, with a

stride of 8× 16× 16. The resulting outputs of the network

are then averaged at every 3D location. Reflection padding

is applied to the test images before slicing, to support a uni-

form sampling pattern across the entire volume.

4.4. Unsupervised fine tuning

An unsupervised method has the advantage that it can

be applied to the test data without seeing the labels, i.e.,

one can naturally apply transductive learning and update the

network based on the test data. This is especially helpful in

the cross-domain scenario.

When we follow this protocol (we mark it explicitly as

FT), the network, which was previously pre-trained on the

training data, continues to train on the test data. In all of our

transductive learning experiments, we use the same learning

rate for both training and fine-tuning. For a fair comparison

with supervised methods, we perform the additional train-

ing for the same length of time, as it takes to evaluate the

test set with the relatively fast DeepVess method [11].

5. Experiments

We present three types of experiments. First, we com-

pare our method with supervised literature neural network

methods such as DeepVess [11] by Haft-Javaherian et al.

and VesselNN [30] by Teikari et al., and classic optimiza-

tion methods, such as the morphological ACWE method

presented above. This is done in the supervised setting,

where one trains on the training split and tests on the test

split of the same dataset. Second, we test the generaliza-

tion capability of each method in a cross-datasets evalu-

ation, where each method is first trained on the training

set of dataset A and then tested on the test set of dataset

B. Finally, we present qualitative results on a new 4D mi-

crovascular intravital dataset of neuronal activity and vas-

cular cross-section volumetric movie. This dataset suffers

from a relatively low Signal to Noise Ratio (SNR), and from

sparse images at every time frame.

In our experiments we use two re-implementations of

state-of-the-art supervised methods for vessels segmenta-

tion, verifying that we are able to obtain the same level

of results for these baselines as the original, less efficient,

implementations. For both datasets, we compare the re-

sults of our algorithm to those of two previous unsupervised

segmentation algorithms - morphological ACWE [25] and

VIDA [31], in order to add unsupervised baseline methods.

5.1. Datasets

The three datasets employed consist of microvascular

images produced by two-photon microscopy methods for

in-vivo (turbid living brains) and in-vitro (optically cleared

fixated brain slices) imaging. Due to the sensitivity of such

a process in terms of noise, magnification and the sub-

ject being monitored, the data can vary in scale, resolu-

tion and SNR. This strengthens the significance of cross-

domain generalization capabilities in this field, and supports

our cross-dataset evaluation.

All datasets are normalized by their mean and standard

deviation, followed by a range stretching, such that the min-

imal value is 0 and the maximal is 1.

The DeepVess dataset consists of one 200 × 256 × 256
(z × x× y) in-vivo vascular image volume with expert an-

notations, divided into train and test. 24 additional vascular

images are provided without annotation. For a fair compar-

ison, we did not use the latter in our experiments.

The VesselNN dataset consists of 12 20×256×256 mouse

cortex and tumor vascular image volume with ground truth

annotations, divided into 10 train and 2 test volumes.

4D-NVIV (Neurovascular Intravital Volumetric) dataset

tracks neuronal activity and vascular cross-section across

an entire volume of a living mouse brain. It consists of a

4D movie spanning 110 × 512 × 108 × 67527 voxels. As

done in previous work, we segment the 3D data obtained

after integrating over time.

Evaluation metrics We evaluate our results using the

following common segmentation metrics. Average Pre-

cision (AP) is the average precision extracted from the

precision-recall graph. F1 score = 2 · (precision ·
recall)/(precision + recall). Sensitivity = TP/(TP +
FN), Specificity = TN/(TN +FP ), TN and FP being the

true positive rate and the false positive rate, respectively.

Jaccard index (JI) = TP/(TP + FP + FN). DICE =

(2 · TP )/(2 · TP + FP + FN). Mean Intersection Over

Union (mIoU) is the mean of all JI calculated for a sequence

of thresholds between 0-1.

5.2. Results

In Tab. 1 and 2 we show results for the two annotated

datasets, evaluated using common segmentation metrics.

As can be seen, our method outperforms all methods in the

majority of metrics, where due to the tradeoff between sen-

sitivity and specificity, the F1 score and the Average Preci-

sion are the more informative metrics.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

DeepVess dataset [11] VesselNN dataset [30]

Figure 4: Qualitative segmentation results on the DeepVess dataset (left) and the VesselNN dataset (right). All images are a

z slice from either dataset. Green - Expert annotations, Blue - Our segmentation, Red - DeepVess segmentation. (a) Input

image (b) Expert annotations. (c)-(f) Results generated by training and testing on the same dataset, (c) Our output (d) Our +

annotations, (e) DeepVess output, (f) DeepVess + annotations. (g)-(j) Cross-datasets results where training is preformed on

the opposite dataset, (g) Our output (h) Our + annotations, (i) DeepVess output, (j) DeepVess + annotations.

Cross-Datasets evaluation In this setup, each method is

trained on dataset A and evaluated on dataset B. As can

be seen from Tab. 3, our method significantly outperforms

supervised methods. We also provide results for the fine-

tuning technique, which seem to contribute most in the case

of transitioning from the DeepVess to VesselNN dataset.

Since VesselNN is more diverse and relatively larger, unsu-

pervised fine-tuning is less effective in the other direction.

Qualitative results from both the within dataset and cross

dataset experiments are shown in Fig. 4. Both our method

and the supervised DeepVess method present a good overlap

with the ground truth data on the within dataset evaluation

of the DeepVess data. On the second dataset, our results are

markedly better for this protocol. On the cross dataset ex-

periment, the gap in performance in support of our method

is sizable in both datasets.
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Algorithm Supervised AP F1 Sensitivity Specificity JI DICE mIoU

Cicek et al. [6] X - - 0.700 0.982 0.594 0.726 -

VesselNN [30]† X 0.867 0.732 0.868 0.989 0.777 0.732 0.765

DeepVess [11]† X 0.889 0.820 0.951 0.984 0.807 0.820 0.828

VIDA [31] 0.179 0.304 0.998 0.564 0.179 0.304 0.372

Morph-ACWE [25] 0.483 0.676 0.743 0.957 0.511 0.676 0.722

Ours 0.909 0.829 0.992 0.986 0.811 0.829 0.838

Table 1: Training and testing on the DeepVess dataset. †represents an improved re-implementation of the method.

Algorithm Supervised AP F1 Sensitivity Specificity JI DICE mIoU

VesselNN [30]† X 0.786 0.739 0.898 0.934 0.705 0.739 0.503

DeepVess [11]† X 0.804 0.757 0.901 0.986 0.713 0.757 0.629

VIDA [31] 0.591 0.589 0.452 0.984 0.418 0.589 0.624

Morph-ACWE [25] 0.505 0.528 0.367 0.998 0.364 0.505 0.599

Ours 0.834 0.776 0.923 0.929 0.721 0.776 0.760

Table 2: Training and testing on the VesselNN dataset.†represents an improved re-implementation of the method.

Algorithm Transition AP F1 Sensitivity Specificity JI DICE mIoU

VesselNN [30]†

DeepVess dataset →
VesselNN dataset

0.528 0.188 0.110 0.991 0.108 0.188 0.469

DeepVess [11]† 0.664 0.562 0.469 0.960 0.395 0.562 0.604

Ours 0.684 0.662 0.833 0.915 0.501 0.662 0.681

Ours - FT 0.752 0.715 0.901 0.940 0.563 0.715 0.727

VesselNN [30]†

VesselNN dataset →
DeepVess dataset

0.164 0.175 0.142 0.948 0.096 0.175 0.482

DeepVess [11]† 0.701 0.506 0.351 0.996 0.505 0.506 0.637

Ours 0.895 0.803 0.988 0.917 0.671 0.803 0.821

Ours - FT 0.902 0.808 0.979 0.970 0.678 0.808 0.815

Table 3: Training on A and testing on B data (A → B). FT - Unsupervised fine-tune on A data for t seconds, where t is the

time taken for DeepVess to perform evaluation. †represents an improved re-implementation of the method.

4D datasets segmentation The 4D-NVIV dataset differs

from previous datasets in its larger field-of-view and low

SNR, due to the high acquisition rate. We ran both our

method, and the DeepVess method, after training on the

larger and more diverse dataset of VesselNN.

The data is completely unannotated, and evaluation was

done by experts who examined the output and preferred, in

all cases, our output over that obtained by DeepVess. To il-

lustrate the preference, the experts have tracked penetrating

vessels across the 3D stack. This was done for four blood

vessels, marked by red, green, blue and yellow squares in

Fig. 5. It is evident that our method is able to produce a

more reliable segmentation, where the vessel topology can

be observed across cortical layers. For example, the red

vessel is a penetrating artery, from which a smaller arteri-

ole branches off at a depth of z = 100µm below cortical

surface. The ability to segment vessels in 4D data enables

the highly sought after analysis of cerebral blood flow in

dynamic, large field of view, imaging.

Speed Performance As can be seen from the results in

Tab. 1- 3, and Fig. 5- 4, our method outperforms previous

methods. We further look at the computational time that

each method needs to process results. Because each method

outputs a different output shape, we report the computation

time in units of seconds per voxel.

The F1-score results on the DeepVess dataset is used

as the other axis, and are shown for both within and cross

dataset experiments. As can be seen in Fig. 7, our method

outperforms the previous work along both axes.

Ablation Study We examined the significance of the dif-

ferent loss terms used in our method, by removing these

terms one by one. Specifically, the following variants were

tests: (i) without Lrank, in which case the disjunctive loss

can collapse the output of all zero or all one. (ii) without

LAC , in which case the optimization becomes a variant of

adaptive thresholding. (iii) replacing S with S̄ in Eq. 21, ex-

amining the effect of the morphological pooling layer. (iv)
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Figure 5: Qualitative results from a 4D movie. Columns -

depth from brain surface. The SNR decreases with imaging

depth. Rows - Input, Our output, DeepVess output. Col-

ored boxes - expert markers of penetrating vessels.

(a) (b) (c)

Figure 6: Illustration of the effect caused by replacing S
with S̄ in Eq. 21. (a) the input image. (b) the output of our

method. (c) the output of our method when not employing

the morphological layers.

using only LAC , which is the new loss term we introduce.

(v) using only LAC+Lrank, which are the two main losses.

As can be seen in Tab. 4, the role of both LAC and

Lrank is very significant. One can note that the use of LAC

(Eq. 21) as a single loss already produces favorable results,

supporting this novel loss term. The importance of the mor-

phological layers can be observed by the drop in perfor-

mance, when replacing S by S̄ in Eq. 21. Visually, as can

be seen in Fig. 6, this results in a stripped output. We hy-

pothesize that this pattern emerges as a way to increase the

local gradient in Eq. 18.

6. Conclusion

The quantitative analysis of blood vessel microscopy im-

ages requires accurate segmentation capabilities. While the

task can be solved in a supervised way, the lack of carefully

curated training data and the large domain shift between ex-
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Figure 7: Computation rate vs. F1-score on DeepVess

dataset. Vector lines represent the drop in performance,

when performing cross-dataset evaluation.

Losses AP F1 JI DICE mIoU

L w/o Lrank 0.100 0.159 0.086 0.159 0.459

L w/o LAC 0.617 0.437 0.280 0.437 0.608

Eq. 21 w/ S̄ 0.831 0.707 0.618 0.707 0.779

LAC 0.866 0.798 0.665 0.798 0.805

LAC+Lrank 0.889 0.817 0.689 0.817 0.821

Ours L 0.909 0.829 0.708 0.829 0.838

Table 4: Ablation study showing results for various losses.

perimental settings, create the need for alternative methods.

The morphological ACWE method is a relatively recent

active contour algorithm that is well-motivated and robust.

In our work, it is reincarnated as a deep learning method

that is able to benefit from employing a training set, as well

as from the accumulated experience in our community of

effectively employing CNNs. Our work, therefore, provides

not just a state of the art solution that is based on novel

losses and new types of layers, but also a case study for

turning classical and powerful computer vision techniques

into deep learning methods.
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