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Abstract

The task of blood vessel segmentation in microscopy im-
ages is crucial for many diagnostic and research applica-
tions. However, vessels can look vastly different, depending
on the transient imaging conditions, and collecting data for
supervised training is laborious.

We present a novel deep learning method for unsuper-
vised segmentation of blood vessels. The method is inspired
by the field of active contours and we introduce a new loss
term, which is based on the morphological Active Contours
Without Edges (ACWE) optimization method. The role of
the morphological operators is played by novel pooling lay-
ers that are incorporated to the network’s architecture.

We demonstrate the challenges that are faced by previ-
ous supervised learning solutions, when the imaging con-
ditions shift. Our unsupervised method is able to outper-
form such previous methods in both the labeled dataset, and
when applied to similar but different datasets. Our code, as
well as efficient pytorch reimplementations of the baseline
methods VesseINN and DeepVess is available on GitHub
https://github.com/shirgur/UMIS

1. Introduction

The field of microscopic imaging of blood vessels is
evolving rapidly. For example, several emerging techniques
allow rapid volumetric imaging of vascular dynamics in op-
tically clear [5] and turbid [20, 12] living brains. Such
technologies can lead to breakthroughs, both in understand-
ing neuro-vascular interactions in the neocortex and in fine-
grained medical diagnosis. However, this potential can only
materialize when automatic segmentation algorithms capa-
ble of fast and accurate estimation of vascular dynamics
from large volumetric movies become available.

In this work, we propose a novel unsupervised algorithm
for blood vessel segmentation. The need for an unsuper-

vised technique arises from the limitations of the currently
available training data. These limitations include: (i) the
datasets size, due to the amount of expert labor required,
(i1) the datasets do not represent the very high variability
that exists in imaging conditions between microscopes, im-
aged samples, and along the same experiment. (iii) High-
throughput imaging modalities[5, 12, 20] necessitate faster
segmentation algorithms that do not rely on human curation.

Since blood vessels and microvessels have a well-
defined tree shape, and are typically brighter than their
surroundings (due to the contrast agent), classical (non-
learning) algorithms can be used to tackle the problem. One
relatively successful method is the Active Contours Without
Edges (ACWE) method. However, the method is not accu-
rate enough to outperform learning-based techniques.

We build an unsupervised deep learning technique that
is inspired by the morphological ACWE method. The main
loss that we employ is motivated by the energy function of
ACWE. In addition, we introduce layers that implement the
morphological operators that ACWE employs. The result
is an unsupervised method that outperforms the supervised
methods that were applied in this field.

As an unsupervised method, our models are less likely
than the supervised methods to overfit the specific training
dataset. We are able to present evidence that applied across
datasets (trained on one dataset, applied to another), the new
method has an even larger performance gap from the super-
vised deep learning methods in the literature.

2. Related Work

Microvasscular segmentation  Multi-photon laser scan-
ning microscopy (MPLSM) allows minimally-invasive in-
vestigation of turbid samples, such as living brains, with
sub-cellular resolutions [7, 35, 14, 32]. Rapid volumet-
ric movies can be reconstructed by steering the laser beam
across the volume and attributing the collected photons to
the illuminated voxels [12, 20], thereby utilizing photons
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that underwent multiple scatterings through the brain, from
the focal volume to the detector [14].

Blood vessel segmentation has been researched in sev-
eral domains, such as 3D CT and MRI [21, 8, 1], or 2D
retinal blood vessels, see [28, 22, 9] to name but a few.
More relevant to this paper, are the works of Tsai ef al. [31]
for neurons and microvascular segmentation and Mille et
al. [26] for 2D and 3D branching structures extraction.

Neural network models for vessel segmentation are
faster and more accurate than classical methods. Tech-
niques for retinal blood vessel segmentation, such as [33,

, 23] use CNNs and RNNs to perform supervised patch
based segmentation of 2D images. In the images domain of
two-photons microscopy, Cicek et al. [6] proposed a 3D-
Unet for vascular segmentation, Teikari et al. [30] intro-
duced VesseINN, which is a 2D-3D network architecture
for 3D segmentation. Haft-Javaherian et al. [11] recently
proposed DeepVess, which stands as the current SOTA.

Active contours First introduced by Kass et al. [16],
active contours or snakes, are energy-minimizing methods
guided by external constraint forces that pull the snake or
contour towards features, such as lines and edges. These
methods typically require a user-specified initial contour to
start with. Variants of this method have increased the ro-
bustness and extended the applicability to new domains.
A geometric model for active contours was introduced by
Caselles et al. [2] and Yezzi et al. [34] with application to
CT and MRI images. Kichenassamy ez al. [| 7] incorporated
gradients flows into the method. Geodesic Active Contour
(GAC) by Caselles et al. [3] deform according to an intrin-
sic geometric measures of the image.

In the field of optimization based active contours, the
ACWE work of Chan and Vese [4] and the work of
Marquez-Neila et al. on morphological active contours [25]
are the most relevant to our work. In ACWE, the borders do
not have to be well-defined by gradients, and the minimiza-
tion of the energy functional can be seen as a minimal par-
tition problem. In morphological active contours, the curve
evolution over time is calculated by computationally effi-
cient morphological operators. We give a brief review of
morphological ACWE in Sec. 3.

In the learning-based field, active contours did not fully
integrate as a learning concept, but as a method that can be
better optimized by a neural network. Rupprecht et al. [29]
for example, trained a class-specific CNN, which predicts a
vector pointing from the evolving contour towards the clos-
est point on the boundary of the object of interest. Similarly,
Marcos et al. [24] learn an active contour model parameter-
izations per instance, using a CNN. Other level-sets meth-
ods, such as [15, 18], use an additional loss that minimizes
the level-set functional, while we use the Euler-Lagrange in
Eq. 7 and a loss inspired by the ACWE algorithm. In all
methods, supervised learning is used.

Figure 1: Illustration of the nine 3D structuring elements of
B. Also used as masks in the morphological pooling layer.

We introduce the first full integration between an active
contour model and a learning-based model, where we use
the image attachment term of the ACWE as a loss, and the
morphological curvature operators as a new type of network
layer. Together, we obtain an unsupervised learning algo-
rithm for performing vascular segmentation.

3. Active Contours Without Edges

In the following section, we present a brief review of the
morphological ACWE method, since it motivates our learn-
ing based method. For a detailed explanation, we kindly
refer the reader to [25].

LetC : RT x [0,1] — R3 be the parametrized 3D curve
over time. We start by describing the contour evolution by
a partial differential equation (PDE). A differential operator
L defines the curve evolution over time with the PDE C; =
L(C), and L can be rewritten as L(C) = F - N, which is the
product between the normal A to the curve, and the scalar
field F, which determines the velocity of evolution for each
point in the curve.

We consider a level-set representation of C, defined as u :
R+t xR3 — RsuchthatC(t) = {(z,y,2) : u(t, (z,y,2)) =

0}, to express the evolution of the curve as in [27, 19]:
ou
o = IVl M

where F can be defined as the normal to the curve, i.e. F €

{1, —1}, or as the intrinsic heat equation [10], i.e. F = K,
where K is the Euclidean curvature of C.
3D Curvature morphological operator =~ Monotone

contrast-invariant and translation-invariant operators are
called morphological operators, such as dilation and ero-
sion. Let BB be a set of structuring elements that uniquely
defines a morphological operator, and h is the size of that
operator, we now define two morphological operators:

STu(z) = sup L u(y) 2
ISu(z) = inf sup u 3
(@) = juf, sup uly) 3)

where B contains all hyper-disks of radius 1 centered at the
origin, and in our three-dimensional discrete case, the nine
rectangular surfaces centered at the origin of a 3 X 3 X 3
cube (see Fig. 1).

In their study, [25] showed that C can be expressed by a
curvature morphological operator defined as ST o IS.
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Morphological ACWE  Let C be the parametrized curve
evolution and I be an image, the Morphological ACWE
functional to be minimized as defined in the work of [25, 4]
is as follows:

F(ey,c2,C) =p - length(C) 4 v - area(inside(C))

+a/ I(z) — c1||dzx
inside(C)H (=) ~ell 4

+5 () = czl|dz
outside(C)

where ¢ and c; are the mean of the values inside and out-
side C, and defined as follows:

insi I(l‘)dl‘
c1(C) = f‘de(c)d (5)
finside(C) z
. I(z)dx
CQ(C) _ foutsuie(C) (d) (6)
foutside(C) z

The parameters ;. and v control the length (or curvature) and
area of C, as defined in [4]. The Euler-Lagrange equation
for the functional F' (see [25] for details) is as follows:

% = |Vu| (udiv(iz) —U—a([-cl)Q_,_/g(I—cQ)?) @)

where in the experiments of [25], v is set to 0, and the pa-
rameters v and [ are set to 1 and 2, respectively. Vu is
computed using central differences along the three axis x,y,
and z. The resulting ACWE algorithm is written as follows:

' =|Vu|(a(l — 01)2 - B - 02)2) 8)

1 ifI' <0

i) =40 ifT >0 ©)
u™ otherwise

utt(z) = ((STo IS) u"*3)(x) (10)

where I' is the image attachment term, as defined by [25].
The superscript is the iteration number.

4. Method

In order to implement the ACWE principle as a network,
we turn the iterative energy minimization that occurs in
Eq. 9 into a loss, and the morphological operations in Eq. 10
into novel morphological layers.

The segmentation network receives an input I &
[0, 1]1¥kxmxn wwhich is a 3D intensity-response input vol-
ume, where k£ X m X n are the volume dimensions of a sin-
gle intensity channel. The network outputs a segmentation
map, S € [0,1]*F*mxn_and thresholding is performed
to obtain the final result. To lower the ambiguity of S, and
the sensitivity to thresholding, we employ a compound loss,
which encourages output results to have 0 or 1 values.

4.1. Network Architecture

The network’s architecture is illustrated in Fig. 2 and
consists of a main Encoder-Decoder branch with skip con-
nections, denoted as ¥ and D4 (for segmentation), respec-
tively, followed by successive operations of Morphological
Pooling Layer (Eq. 14-15) for smoothing. It is trained in
an unsupervised manner, using an auxiliary reconstruction
loss, provided by an additional decoder D,..., which is used
only during training, and outputs an estimated input I.

The network components are then rewritten as follows:

S(I) == Dseg(E(I)) (11)

S(I):= SI(IS(...(SI(IS(S(I)))))) (12)
SIolS p times

I:= D,c.(E(I)) (13)

where S is the segmentation before smoothing, and S is the
segmentation mask obtained after applying the morpholog-
ical pooling layers SI and I.S in Eq. 12 p times (the two
layers are defined below).

Our Encoder architecture is based on ResNet34 [13]
with 3D convolutions. In addition to the ResNet’s output
E(I), there are two intermediate layers that are fed directly
into the subsequent decoder: C2 (C3) is the output of the
ResNet’s 2nd (3rd) block. Each of the two decoders Dy,
and D,.. consists of three Upsampling blocks with skip
connections, as detailed in the appendix.

Morphological Pooling Layer Illustrated in Fig. 3 for
the 2D case, the layer implements the /.S and ST operations
as differentiable layers, which are not learned, but play a
role in the backpropagation. These layers employ the set of
nine structuring elements 3, as explained in Sec. 3, where
each element B € B is a binary mask of size 3 x 3 x 3 as
illustrated in Fig. 1. The layers first perform masked max
pooling VB € B, and then take the maximum or minimum
across all results, according to the desired operation (S or
IS respectively). Formally:

SI(z) = mal)g(—MaskPool(—a:,B) (14)

Be
IS(z) = iy MaskPool(z, B) (15)
MaskPool(z, B) := max{x ® B} (16)

The M askPool function first applies an element-wise mul-
tiplication between the mask and the input, denoted by ®,
and then takes the maximum over all locations. Fig. 3 illus-
trates the 2D case.

The two types of Morphological Pooling Layers are then
used to smooth the intermediate segmentation S and obtain
the final segmentation mask S, according to Eq. 12, where
the two morphological operations are applied ¢ = 3 times.
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Figure 2: 3D segmentation network architecture. C'2 and C3 are intermediate convolution blocks from ResNet, serving as

skip-inputs for both Dcq and D,.cc.

max

Figure 3: Illustration of 2D Masked Pooling Layer activa-
tion on a single window.

4.2. Training loss

We employ a compound loss:

L :AlﬁAC + /\2£rank + >\3£tight+

(17)
MLrec + AsLarv + X6 LmE

where Aq, .., A\g are weights. The various terms of the loss
function are defined below.

Active contour loss Our main loss term, £ 4, is derived
from the ACWE algorithm, specifically Eq. 8 which deter-
mine the segmentation value in Eq. 9. We first rewrite Eq. 8
to fit our network terminology:

L =|VSli(al —c1)? = B —c2)?)  (18)

where VS is the intermediate segmentation derivatives
in x, y, and 2z, computed using the central differences
method. We define ¢; and co similarly to Eq 5- 6 as:

2, 10)S(k) o = 211 = Sp)
S Y (19) 2= =gy (20)

Following [25], we set & = 1 and 8 = 2 for all experiments.

As can be seen from Eq. 9, when I' < 0, we need to en-
courage the segmentation to output 1, and conversely, out-
put 0, if I' > 0. Therefore, we penalize elements of S for
which this is not the case. This is done by the following

loss, which is computed for each point p in the volume:

Lac(p) = exp(T'(p)S(p)) if I'(p) <=0
exp(~=T'(p)(1 - S(p))) ifT(p) >0

The volume loss is Lac = E,L 4¢(p). The loss is high,
if the exponent is applied to a value that is close to zero.
This happens if the term I'(p) is negative and S(p) is close
to zero, or if I'(p) is positive and S(p) is close to one.

@D

Ranking loss L, plays two roles in the learning pro-
cess. Firstly, it enforces c; to represent the higher values in
the input image, segmenting the reflective substance. Sec-
ondly, it encourages a larger gap between ¢y and co.

Lrank = exp(ca — c1) (22)

Reconstruction loss  Since learning is performed without
supervision, we further constrain the encoder to preserve the
information of the input data by adding the L. reconstruc-
tion loss:

Lrce =Ep[(I(p) = I1(p))* + IVI(p)I]  (23)
where V1 is a regularization (smoothing) term.
Minimal segmentation loss To avoid the case where the
segmentation mask contains the entire image, which seems
to be a stable solution when the training data is noisy, we

encourage the network to output a tight (or minimal) seg-
mentation:

Liignt = A(S) =>_ S(p) (24)
P

where A(S) is the area of segmentation .S.

Disjunctive loss We add two additional loss terms to
push the segmentation output away from the intermediate
values and towards O or 1. The Maximal Variance loss:

Ly = exp(E,[S(p)?] — E[S(p)]*) (25)
and the the Maximal Entropy loss:
Lyp =Ey[=5(p) - log(S(p))] (26)
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4.3. Training the network

The same settings are used in all experiments and the
hyperparameters are fixed to the following values: \; =
1, = 10_2, A3 = M\ = 10_3, A5 = 10~3 and e =
1075, An Adam optimizer, with a learning rate of 0.0001,
is used. Training is done on a single NVIDIA Titan-X 12G
Pascal GPU, and takes about 20 minutes to train.

The 3D input volume of our network has a size of
32 x 128 x 128, where 32 is for the z dimension. At train
time, we crop the training samples to fit the network’s in-
put shape. At test time, a sliding window is applied, with a
stride of 8 x 16 x 16. The resulting outputs of the network
are then averaged at every 3D location. Reflection padding
is applied to the test images before slicing, to support a uni-
form sampling pattern across the entire volume.

4.4. Unsupervised fine tuning

An unsupervised method has the advantage that it can
be applied to the test data without seeing the labels, i.e.,
one can naturally apply transductive learning and update the
network based on the test data. This is especially helpful in
the cross-domain scenario.

When we follow this protocol (we mark it explicitly as
FT), the network, which was previously pre-trained on the
training data, continues to train on the test data. In all of our
transductive learning experiments, we use the same learning
rate for both training and fine-tuning. For a fair comparison
with supervised methods, we perform the additional train-
ing for the same length of time, as it takes to evaluate the
test set with the relatively fast DeepVess method [11].

5. Experiments

We present three types of experiments. First, we com-
pare our method with supervised literature neural network
methods such as DeepVess [| 1] by Haft-Javaherian et al.
and VesselNN [30] by Teikari et al., and classic optimiza-
tion methods, such as the morphological ACWE method
presented above. This is done in the supervised setting,
where one trains on the training split and tests on the test
split of the same dataset. Second, we test the generaliza-
tion capability of each method in a cross-datasets evalu-
ation, where each method is first trained on the training
set of dataset A and then tested on the test set of dataset
B. Finally, we present qualitative results on a new 4D mi-
crovascular intravital dataset of neuronal activity and vas-
cular cross-section volumetric movie. This dataset suffers
from a relatively low Signal to Noise Ratio (SNR), and from
sparse images at every time frame.

In our experiments we use two re-implementations of
state-of-the-art supervised methods for vessels segmenta-
tion, verifying that we are able to obtain the same level
of results for these baselines as the original, less efficient,

implementations. For both datasets, we compare the re-
sults of our algorithm to those of two previous unsupervised
segmentation algorithms - morphological ACWE [25] and
VIDA [31], in order to add unsupervised baseline methods.

5.1. Datasets

The three datasets employed consist of microvascular
images produced by two-photon microscopy methods for
in-vivo (turbid living brains) and in-vitro (optically cleared
fixated brain slices) imaging. Due to the sensitivity of such
a process in terms of noise, magnification and the sub-
ject being monitored, the data can vary in scale, resolu-
tion and SNR. This strengthens the significance of cross-
domain generalization capabilities in this field, and supports
our cross-dataset evaluation.

All datasets are normalized by their mean and standard
deviation, followed by a range stretching, such that the min-
imal value is 0 and the maximal is 1.

The DeepVess dataset consists of one 200 x 256 x 256
(z X x X y) in-vivo vascular image volume with expert an-
notations, divided into train and test. 24 additional vascular
images are provided without annotation. For a fair compar-
ison, we did not use the latter in our experiments.

The VesselNN dataset consists of 12 20 x 256 x 256 mouse
cortex and tumor vascular image volume with ground truth
annotations, divided into 10 train and 2 test volumes.

4D-NVIV (Neurovascular Intravital Volumetric) dataset
tracks neuronal activity and vascular cross-section across
an entire volume of a living mouse brain. It consists of a
4D movie spanning 110 x 512 x 108 x 67527 voxels. As
done in previous work, we segment the 3D data obtained
after integrating over time.

Evaluation metrics We evaluate our results using the
following common segmentation metrics. Average Pre-
cision (AP) is the average precision extracted from the
precision-recall graph. Fl score = 2 - (precision -
recall) /(precision + recall). Sensitivity = TP/(TP +
FN), Specificity =TN/(T'N + F'P), TN and FP being the
true positive rate and the false positive rate, respectively.
Jaccard index (JI) = TP/(TP + FP + FN). DICE =
(2-TP)/(2-TP + FP + FN). Mean Intersection Over
Union (mloU) is the mean of all JI calculated for a sequence
of thresholds between 0-1.

5.2. Results

In Tab. 1 and 2 we show results for the two annotated
datasets, evaluated using common segmentation metrics.
As can be seen, our method outperforms all methods in the
majority of metrics, where due to the tradeoff between sen-
sitivity and specificity, the F1 score and the Average Preci-
sion are the more informative metrics.
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Figure 4: Qualitative segmentation results on the DeepVess dataset (left) and the VesseINN dataset (right). All images are a
z slice from either dataset. Green - Expert annotations, Blue - Our segmentation, Red - DeepVess segmentation. (a) Input
image (b) Expert annotations. (c)-(f) Results generated by training and testing on the same dataset, (¢) Our output (d) Our +
annotations, (e) Deep Vess output, (f) DeepVess + annotations. (g)-(j) Cross-datasets results where training is preformed on
the opposite dataset, (g) Our output (h) Our + annotations, (i) DeepVess output, (j) DeepVess + annotations.

Cross-Datasets evaluation In this setup, each method is
trained on dataset A and evaluated on dataset B. As can
be seen from Tab. 3, our method significantly outperforms
supervised methods. We also provide results for the fine-
tuning technique, which seem to contribute most in the case
of transitioning from the DeepVess to VesseINN dataset.
Since VesseINN is more diverse and relatively larger, unsu-
pervised fine-tuning is less effective in the other direction.

Qualitative results from both the within dataset and cross
dataset experiments are shown in Fig. 4. Both our method
and the supervised DeepVess method present a good overlap
with the ground truth data on the within dataset evaluation
of the DeepVess data. On the second dataset, our results are
markedly better for this protocol. On the cross dataset ex-
periment, the gap in performance in support of our method
is sizable in both datasets.
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Algorithm ‘ Supervised AP F1 Sensitivity Specificity J DICE mloU
Cicek et al. [6] v - - 0.700 0.982 0.594 0.726 -

VesselNN [30]f v 0.867 0.732 0.868 0.989 0.777 0.732 0.765
DeepVess [1 1] v 0.889 0.820 0.951 0.984 0.807 0.820 0.828
VIDA [31] 0.179 0.304 0.998 0.564 0.179 0.304 0.372
Morph-ACWE [25] 0.483 0.676 0.743 0.957 0.511 0.676 0.722
Ours 0.909 0.829 0.992 0.986 0.811 0.829 0.838

Table 1: Training and testing on the DeepVess dataset. frepresents an improved re-implementation of the method.

Algorithm ‘ Supervised AP F1 Sensitivity Specificity JI DICE mloU
VesseINN [30] v 0.786 0.739 0.898 0.934 0.705 0.739 0.503
DeepVess [11] v 0.804 0.757 0.901 0.986 0.713 0.757 0.629
VIDA [31] 0.591 0.589 0.452 0.984 0.418 0.589 0.624
Morph-ACWE [25] 0.505 0.528 0.367 0.998 0.364 0.505 0.599
Ours 0.834 0.776 0.923 0.929 0.721 0.776 0.760

Table 2: Training and testing on the VesseINN dataset.'represents an improved re-implementation of the method.

Algorithm ‘ Transition AP F1 Sensitivity ~ Specificity I DICE  mloU
VesselNN [30]f 0.528  0.188 0.110 0.991 0.108 0.188 0.469
DeepVess [ 1t DeepVess dataset — 0.664 0.562 0.469 0.960 0.395 0.562 0.604
Ours VesselNN dataset 0.684  0.662 0.833 0.915 0.501 0.662 0.681
Ours - FT 0.752  0.715 0.901 0.940 0.563  0.715 0.727
VesselNN [30]f 0.164  0.175 0.142 0.948 0.096  0.175 0.482
DeepVess [1 1] VesseIlNN dataset —  0.701 0.506 0.351 0.996 0.505 0.506 0.637
Ours DeepVess dataset 0.895  0.803 0.988 0.917 0.671 0.803 0.821
Ours - FT 0.902  0.808 0.979 0.970 0.678  0.808 0.815

Table 3: Training on A and testing on B data (A — B). FT - Unsupervised fine-tune on A data for ¢ seconds, where ¢ is the
time taken for DeepVess to perform evaluation. Trepresents an improved re-implementation of the method.

4D datasets segmentation The 4D-NVIV dataset differs
from previous datasets in its larger field-of-view and low
SNR, due to the high acquisition rate. We ran both our
method, and the DeepVess method, after training on the
larger and more diverse dataset of VesselNN.

The data is completely unannotated, and evaluation was
done by experts who examined the output and preferred, in
all cases, our output over that obtained by DeepVess. To il-
lustrate the preference, the experts have tracked penetrating
vessels across the 3D stack. This was done for four blood
vessels, marked by red, green, blue and yellow squares in
Fig. 5. It is evident that our method is able to produce a
more reliable segmentation, where the vessel topology can
be observed across cortical layers. For example, the red
vessel is a penetrating artery, from which a smaller arteri-
ole branches off at a depth of z = 100um below cortical
surface. The ability to segment vessels in 4D data enables
the highly sought after analysis of cerebral blood flow in
dynamic, large field of view, imaging.

Speed Performance As can be seen from the results in
Tab. 1- 3, and Fig. 5- 4, our method outperforms previous
methods. We further look at the computational time that
each method needs to process results. Because each method
outputs a different output shape, we report the computation
time in units of seconds per voxel.

The Fl-score results on the DeepVess dataset is used
as the other axis, and are shown for both within and cross
dataset experiments. As can be seen in Fig. 7, our method
outperforms the previous work along both axes.

Ablation Study We examined the significance of the dif-
ferent loss terms used in our method, by removing these
terms one by one. Specifically, the following variants were
tests: (i) without L, 4, in which case the disjunctive loss
can collapse the output of all zero or all one. (ii) without
L Ac, in which case the optimization becomes a variant of
adaptive thresholding. (iii) replacing S with S in Eq. 21, ex-
amining the effect of the morphological pooling layer. (iv)
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Ours Input

DeepVess

Figure 5: Qualitative results from a 4D movie. Columns -
depth from brain surface. The SNR decreases with imaging
depth. Rows - Input, Our output, DeepVess output. Col-
ored boxes - expert markers of penetrating vessels.

(b)

Figure 6: Illustration of the effect caused by replacing S
with S in Eq. 21. (a) the input image. (b) the output of our
method. (c) the output of our method when not employing
the morphological layers.

using only £ 4¢, which is the new loss term we introduce.
(v) using only £ 4¢ + L-qnk, Which are the two main losses.

As can be seen in Tab. 4, the role of both £ and
Lank 18 very significant. One can note that the use of £ 4¢
(Eq. 21) as a single loss already produces favorable results,
supporting this novel loss term. The importance of the mor-
phological layers can be observed by the drop in perfor-
mance, when replacing S by S in Eq. 21. Visually, as can
be seen in Fig. 6, this results in a stripped output. We hy-
pothesize that this pattern emerges as a way to increase the
local gradient in Eq. 18.

6. Conclusion

The quantitative analysis of blood vessel microscopy im-
ages requires accurate segmentation capabilities. While the
task can be solved in a supervised way, the lack of carefully
curated training data and the large domain shift between ex-

1.0

0.8 ACWE VesselNN

0.6

F1 - Score

0.4

0.2

0.0
1077 107 1073 107! 10! 103

Second to Voxel Rate (s/v)
Figure 7: Computation rate vs. Fl-score on DeepVess

dataset. Vector lines represent the drop in performance,
when performing cross-dataset evaluation.

Losses AP F1 JI DICE mloU
LwloL,qnr 0100 0.159 0.086 0.159 0.459
L wlo ﬁAC_ 0.617 0437 0280 0.437 0.608
Eq.21w/S 0.831 0.707 0.618 0.707 0.779
Lac 0.866 0.798 0.665 0.798 0.805
Lac+Llyanr 0.889 0.817 0.689 0.817 0.821
Ours L 0909 0.829 0.708 0.829 0.838

Table 4: Ablation study showing results for various losses.

perimental settings, create the need for alternative methods.

The morphological ACWE method is a relatively recent
active contour algorithm that is well-motivated and robust.
In our work, it is reincarnated as a deep learning method
that is able to benefit from employing a training set, as well
as from the accumulated experience in our community of
effectively employing CNNs. Our work, therefore, provides
not just a state of the art solution that is based on novel
losses and new types of layers, but also a case study for
turning classical and powerful computer vision techniques
into deep learning methods.
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