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Abstract

In this paper we present a deep generative model for

lossy video compression. We employ a model that con-

sists of a 3D autoencoder with a discrete latent space and

an autoregressive prior used for entropy coding. Both au-

toencoder and prior are trained jointly to minimize a rate-

distortion loss, which is closely related to the ELBO used

in variational autoencoders. Despite its simplicity, we find

that our method outperforms the state-of-the-art learned

video compression networks based on motion compensation

or interpolation. We systematically evaluate various design

choices, such as the use of frame-based or spatio-temporal

autoencoders, and the type of autoregressive prior.

In addition, we present three extensions of the basic

method that demonstrate the benefits over classical ap-

proaches to compression. First, we introduce semantic

compression, where the model is trained to allocate more

bits to objects of interest. Second, we study adaptive com-

pression, where the model is adapted to a domain with lim-

ited variability, e.g. videos taken from an autonomous car,

to achieve superior compression on that domain. Finally,

we introduce multimodal compression, where we demon-

strate the effectiveness of our model in joint compression of

multiple modalities captured by non-standard imaging sen-

sors, such as quad cameras. We believe that this opens up

novel video compression applications, which have not been

feasible with classical codecs.

1. Introduction

In recent years, tremendous progress has been made in

generative modelling. Although much of this work has been

motivated by potential future applications such as model

based reinforcement learning, data compression is a very

natural application that has received comparatively little at-

tention. Deep learning-based video compression in particu-

lar has only recently started to be explored [11, 33, 40]. This

is remarkable because improved video compression would
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Figure 1: Overview of the proposed compression inference

pipeline. The encoder encodes a sequence of frames x into

a sequence of quantized latent variables z. A code model

p(zt|z<t) is used to transform z into a bitstream b using

adaptive arithmetic coding (AAC). On the receiver side, the

bitstream is used to reconstruct z which is then lossily de-

coded into x̂.

have a large economic impact: it is estimated that very soon,

80% of internet traffic will be in the form of video [12].

In this paper, we present a simple yet effective and the-

oretically grounded method for video compression that can

serve as the basis for future work in this nascent area. Our

model consists of off-the-shelf components from the deep

generative modelling literature, namely autoencoders (AE)

and autoregressive models (ARM). Despite its simplicity,

the model outperforms all methods to which a direct com-

parison is possible, including substantially more compli-

cated approaches.

On the theoretical side, we show that our method, as well

as state-of-the-art image compression methods [28] can be

interpreted as VAEs [25, 31] with a discrete latent space

and a deterministic encoder. The VAE framework is an es-

pecially good fit for the problem of lossy compression, be-

cause it provides a natural mechanism for trading off rate

and distortion, as measured by the two VAE loss terms [3].

However, as we will argue in this paper, it is not beneficial

for the purpose of compression to use a stochastic encoder
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(approximate posterior) as usually done in VAEs, because

any noise added to the encodings results in increased bitrate

without resulting in an improvement in distortion [18].

On the experimental side, we perform an extensive eval-

uation of several architectural choices, such as the use of 2D

or 3D autencoders, and the type of autoregressive prior. Our

best model uses a ResNet [17] autoencoder with 3D convo-

lutions, and a temporally-conditioned gated PixelCNN [37]

as prior. We benchmark our method against existing learned

video compression methods, and show that it achieves bet-

ter rate/distortion. We also find that our method outper-

forms the state-of-the-art traditional codecs when these are

used with restricted settings, as it is done in previous work,

but more work remains to be done before it can be claimed

that these learned video compression methods suppress tra-

ditional codecs under optimal settings.

Additionally, we introduce several extensions of our

method that highlight the benefits of using learned video

codecs. In semantic compression, we bridge the gap be-

tween semantic video understanding and compression by

learning to allocate more bits to objects from categories of

interest, i.e., people. During training, we weight the rate and

distortion losses to ensure a high quality reconstruction for

regions of interest extracted by off-the-shelf object detec-

tion or segmentation networks, such as Mask R-CNN[16].

We also demonstrate adaptive compression, where the

model is trained on a specific domain, either before or after

deployment, to fine-tune it to the distribution of videos it

is actually used for. We show that adaptive compression of

footage from autonomous cars can result in large improve-

ment in terms of rate and distortion. With classical codecs,

finetuning for a given domain is often not feasible.

Finally, we show that our method is very effective in joint

compression of multiple modalities, which exist in videos

from depth, stereo, or multi view cameras. By utilizing the

siginifcant redundancy, which exist in multimodal videos,

our model outperforms HEVC/H.265 and AVC/H.264 by a

factor of 4.

The main contributions of this paper are: i) We present

a simple yet effective and theoretically grounded method

for video compression that can serve as the basis for future

work. ii) We clarify theoretically the relation between rate-

distortion autoencoders and VAEs. iii) We introduce seman-

tic compression to bridge the gap between semantic video

understanding and compression. iv) We introduce adaptive

compression to adapt a compression model to the domain of

interest. v) We introduce multimodal compression to jointly

compress multiple modalities, which exist in a video using

a deep video compression network.

The rest of the paper is organized as follows. In the

next section, we discuss related work on learned image

and video compression. Then, in section 3, we discuss the

theoretical framework of learned compression using rate-

distortion autoencoders, as well as the relation to varia-

tional autoencoders. In section 4 we discuss our methodol-

ogy in detail, including data preprocessing and autoencoder

and prior architecture. We present experimental results in

section 5, comparing our method to classical and learned

video codecs, evaluating semantic compression, adaptive

compression, and multimodal compression. Section 6 con-

cludes the paper.

2. Related Work

Learned Image Compression Deep neural networks

are the state-of-the-art in image compression outperform-

ing all traditional compression algorithms such as BPG and

JPEG2000. They often embed an input image into a low

dimensional representation using fully convolutional [28]

or recurrent networks [4, 22, 36]. The image representa-

tion is quantized by soft scalar quantization [2], stochastic

binarization [36], or by adding uniform noise [5] to approx-

imate the non-differentiable quantization operation. The

discrete image representation can be further compressed

by minimizing the entropy during [10, 28] or after train-

ing [5, 6, 26]. The models are typically trained to minimize

the mean squared error between original and decompressed

images or by using more perceptual metrics such as MS-

SSIM [32] or adversarial loss [34].

The closest to us is the rate-distortion autoencoder pro-

posed in [28] for image compression. We extend this work

to video compression by: i) proposing a gated conditional

autoregressive prior using 2D convolutions [37] with, op-

tionally, a recurrent neural net for better entropy estimation

over time, ii) encoding/decoding multiple frames by using

3D convolutions, iii) simplifying the model and training by

removing the spatial importance map [26] and disjoint en-

tropy estimation, without any loss on compression perfor-

mance.

Learned Video Compression Video compression

shares many similarities with image compression, but the

large size of video data, and the very high degree of re-

dundancy create new challenges [15, 30, 33, 40]. One of

the first deep learning-based approaches proposes to model

video autoregressively with a RNN-conditioned PixelCNN

[23]. While being powerful and flexible, this model scales

rather poorly to larger videos, and can only be used for loss-

less compression. Hence, we employ this method for loss-

less compression of latent codes, which are much smaller

than the video itself. An extension of this method was pro-

posed in [11] where blocks of pixels are modeled in an au-

toregressive fashion and the latent space is binarized like

in [36]. The applicability of this approach is rather limited

since it is still not very scalable, and introduces artifacts in

the boundary between blocks, especially for low bit rates.

The method described in [40] compresses videos by first

encoding key frames, and then interpolating them in a hi-

7034



erarchical manner. The results are on par with AVC/H.264

when inter-frame compression is limited to only few (up to

12) frames. However, this method requires additional com-

ponents to handle a context of the predicted frame. In our

approach, we aim at learning these interactions through 3D

convolutions instead. In [15] a stochastic variational com-

pression method for video was presented. The model con-

tains a separate latent variable for each frame, and for the

inter-frame dependencies, and uses the prior proposed in

[6]. By contrast, we use a simpler model with a single latent

space, and use a deterministic instead of stochastic encoder.

Very recently the video compression problem was at-

tacked by considering flow compression and residual com-

pression [27, 33]. The additional components for flow and

residual modeling allow to improve distortion in general,

however, for low bit rates the proposed method is still out-

performed by HEVC/H.265 on benchmark datasets. Never-

theless, we believe that these ideas are promising and may

be able to further improve the result presented in this paper.

3. Rate-Distortion Autoencoders & VAEs

Our general approach to lossy compression is to learn

a latent variable model in which the latent variables cap-

ture the important information that is to be transmitted, and

from which the original input can be approximately recon-

structed. We begin by defining a joint model of data x and

discrete latent variables z,

pθ(x, z) = pθ(z)pθ(x|z) (1)

In the next section we will discuss the specific form of pθ(z)
(the prior / code model) and pθ(x|z) (the likelihood / de-

coder), both of which will be defined in terms of deep net-

works, but for now we will consider them as general param-

eterized distributions.

Since the likelihood log pθ(x) = log
R
pθ(z)pθ(x|z)dz

is intractable, one optimizes the variational bound [8, 38],

� log p(x)  Eq[� log p(x|z)] + KL[q(z|x)|p(z)], (2)

where q(z|x) is a newly introduced approximate posterior.

In the VAE [25, 31], one uses neural networks to parame-

terize both q(z|x) and p(x|z), which can thus be thought of

as the encoder and decoder part of an autoencoder.

The VAE is commonly interpreted as a regularized auto-

encoder, where the first term of the loss measures the re-

construction error and the KL term acts as a regularizer

[25]. But the variational bound also has an interesting in-

terpretation in terms of compression / minimum description

length [10, 14, 18, 19, 20]. Under this interpretation, the

first term of the rhs of Eq. 2 measures the expected number

of bits required to encode x given that we know a sample

z ⇠ q(z|x). More specifically, one can derive a code for x

from the decoder distribution p(x|z), which assigns roughly

� log p(x|z) bits to x [13]. Averaged over q, one obtains the

first term of the VAE loss (Eq. 2).

We note that in lossy compression, we do not actually

encode x using p(x|z), which would allow lossless recon-

struction. Instead, we only send z and hence refer to the

first loss term as the distortion.

The second term of the bound (the KL) is related to the

cost of coding the latents z coming from the encoder q(z|x)
using an optimal code derived from the prior p(z). Such a

code will use about � log p(z) bits to encode z. Averaging

over the encoder q(z|x), we find that the average coding

cost is equal to the cross-entropy between q and p:

Eq(z|x)[� log p(z)] = CE[q(z|x)|p(z)]. (3)

The cross-entropy is related to the KL via the relation

KL[q|p] = CE[q|p] � H[q], where H[q] is the entropy of

the encoder q. So the KL measures the coding cost, except

that there is a discount worth H[q] bits: randomness coming

from the encoder is free. It turns out that there is indeed

a scheme, known as bits-back coding, that makes it possi-

ble to transmit z ⇠ q(z|x) and get H[q] bits back, but this

scheme is difficult to implement in practice, and can only

be used in lossless compression [18].

Since we cannot use bits-back coding for lossy compres-

sion, the cross-entropy provides a more suitable loss than

the KL. Moreover, when using discrete latents, the entropy

H[q] is always non-negative, so we can add it to the rhs of

Eq. 2 and obtain a valid bound. We thus obtain the rate-

distortion loss

L(x) = Eq(z|x)[� log p(x|z)� β log p(z)], (4)

where β is a rate-distortion tradeoff parameter.

Since the cross-entropy loss does not include a discount

for the encoder entropy, there is a pressure to make the

encoder more deterministic. Indeed, for a fixed p(z) and

p(x|z), the optimal solution for q(z|x) is a deterministic

(“one hot”) distribution that puts all its mass on the state z

that minimizes � log p(x|z)� β log p(z).

For this reason, we only consider deterministic encoders

in this work. When using deterministic encoders, the rate-

distortion loss (Eq. 4) is equivalent to the variational bound

(Eq. 2), because (assuming discrete z), we have H[q] = 0
and hence KL[q|p] = CE[q|p].

Finally, we note that limiting ourselves to determinis-

tic encoders does not lower the best achievable likelihood,

assuming a sufficiently flexible class of prior and likeli-

hood. Indeed, given any fixed deterministic encoder q,

we can still achieve the maximum likelihood by setting

p(z) =
P

x
p(x)q(z|x) and p(x|z) / p(x)q(z|x), where

p(x) is the true data distribution.
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Figure 2: Training Rate-Distortion autoencoders. The rate

loss is a measure for the expected coding cost, under the au-

toregressive code model, while the distortion loss expresses

the reconstruction error.

4. Methodology

In the previous section, we have outlined the gen-

eral compression framework using rate-distortion autoen-

coders.Here we will describe the specific models we use for

encoder, code model, and decoder, as well as the data for-

mat, preprocessing, and loss functions.

4.1. Preprocessing

Our model processes chunks of video x of shape T ⇥
C⇥H⇥W , where T = 8 denotes the number of frames, C
denotes the number of channels (typically C = 3 for RGB),

and H,W are the height and width of a crop, which we fix

to 160 pixels in all of our experiments. The RGB values are

not scaled, i.e., they always lie in {0, 1, . . . , 255}.

4.2. Autoencoder

The encoder takes as input a chunk of video x and pro-

duces a discrete latent code z. If the input has shape T⇥C⇥
H⇥W , the latent code will have shape T⇥K⇥H/s⇥W/s,

where K = 32 is the number of channels in the latent space,

and s = 8 is the total spatial stride of the encoder (so the

latent space has spatial size H/s = W/s = 160/8 = 20).

We do not use stride in the time dimension.

The encoder and decoder are based on the architecture

presented by [28], which in turn is based on the architecture

presented in [35]. The encoder and decoder are both fully

convolutional models with residual connections [17], batch-

norm [21], and ReLU nonlinearities. In the first two convo-

lution layers of the encoder, this model uses filter size 5 and

stride 2. The remaining layers are 5 residual blocks with

two convolution layers per block, filter size 3, 128 chan-

nels, batchnorm, and ReLU nonlinearities. The final layer

is a convolution with filter size 3, stride 2, and 32 output

channels. The decoder is the reverse of this, and uses trans-

posed convolutions instead of convolutions. More details on

the architecture can be found in the supplementary material.

We will evaluate two versions of this autoencoder: one

with 2D convolutions applied to each frame separately, and
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Figure 3: Proposals for temporal conditioning of prior.

one with 3D spatio-temporal convolutions. To apply the 2D

model to a video sequence, we simply fold the time axis

into the batch axis before running the 2D AE.

The encoder network first outputs continuous latent vari-

ables z̃, which are then quantized. The quantizer discretizes

the coordinates of z̃ using a learned codebook consisting of

L centers, C = {c1, . . . , cL}, where cl 2 R. In the for-

ward pass, we compute zj = argmini |z̃j � ci| (where

j = (t, c, h, w) is a four dimensional multi-index). As

a probability distribution, this corresponds to a one-hot

q(zj |x) that puts all mass on the computed value zj . Be-

cause the argmin is not differentiable, we use the gradient

of a softmax in the backward pass, as in [7, 28]. We found

this approach to be stable and effective during training.

On the decoder side, we replace zj 2 {1, . . . , L} by the

corresponding codebook value czj , to obtain an approxima-

tion of the original continuous representation z̃. The result-

ing vector is then processed by the decoder to produce a

reconstruction x̂. In a standard VAE, one might use x̂ as the

mean of a Gaussian likelihood p(x|z), which corresponds to

an L2 loss: � log p(x|z) / kx� x̂k2 + const. Instead, we

use the MS-SSIM loss (discussed in Sec. 4.4), which cor-

responds to the unnormalized likelihood of the Boltzmann

distribution, ln p(x|z) = ms-ssim(x, x̂)� lnC, where lnC
is the log-partition function treated as a constant, because it

better reflects human subjective judgments of similarity.

4.3. Autoregressive Prior

Instead of naively storing / transmitting the latent vari-

ables z using D log2 L bits (for a D-dimensional latent

space with L states per variable), we encode the latents us-

ing the prior p(z) in combination with adaptive arithmetic

coding. For p(z), we use a gated PixelCNN [37] over in-

dividual latent frames, optionally conditioned on past latent

frames as in video pixel networks [23]. In Figure 3, we

illustrate the three priors considered in this paper.

In the simplest case, we model each frame indepen-

dently, i.e. p(z) =
Q

t p(zt), where a latent frame zt is

modelled autoregressively as p(zt) =
Q

i p(zt,i|zt,<i) by

the PixelCNN. Here i = (c, h, w) denotes a 3D multi-index

over channels and spatial axes, and zt,<i denotes the ele-
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(a) AVC/H.264 (0.037 BPP) (b) HEVC/H.265 (0.036 BPP) (c) Our model (0.037 BPP)

Figure 4: Compression results for the state-of-the-art traditional codecs, AVC/H.264 and HEVC/H.265, and our proposed

model. On a similar bitrate, our model approachs these codecs while generatinng less artifacts.

ments that come before i in the autoregressive ordering.

A better prior is obtained by including temporal de-

pendencies (Figure 3b). In this model, the prior is fac-

torized as p(z) =
Q

t p(zt|zt−1), where p(zt|zt−1) =Q
i p(zt,i|zt,<i, zt−1). Thus, the prediction for pixel i =

(c, h, w) in latent frame t is based on previous pixels in the

same frame, as well as the whole previous frame zt−1. The

dependence on zt,<i is mediated by the masked convolu-

tions of the PixelCNN architecture, whereas the dependence

on the previous frame zt−1 is mediated by additional con-

ditioning connections added to each layer, as in the original

Conditional PixelCNN [37].

Conditioning on the previous frame may be limiting if

long-range temporal dependencies are necessary. Hence,

we also consider a model where a recurrent neural network

(Gated Recurrent Units, GRU) summarizes all relevant in-

formation from past frames. The prior factorizes as p(z) =Q
t p(zt|z<t) with p(zt|z<t) =

Q
i p(zt,i|ht−1, zt,<i),

where ht−1 is the hidden state of a GRU that has processed

latent frames z<t. As in the frame-conditional prior, in the

GRU-conditional prior, the dependency on zt,<i is medi-

ated by the causal convolutions of the PixelCNN, and the

dependency on ht is mediated by conditioning connections

in each layer of the PixelCNN.

4.4. Loss functions, encoding, and decoding

To measure distortion, we use the Multi-Scale Structural

Similarity (MS-SSIM) loss [39]. This loss gives a better in-

dication of the subjective similarity of x̂ and x than a simple

L2 loss, and has been popular in (learned) image compres-

sion. To measure rate, we simply use the log-likelihood

� log p(z) where z is produced by the encoder determinis-

tically. The losses are visualized in Figure 2.

To encode a chunk of video x, we map it through the en-

ncoder to obtain latents z. Then, we go through the latent

variables one by one, and make a prediction for the next la-

tent variable using the autoregressive prior p(zj |z<j). We

then use an arithmetic coding algorithm to obtain a bit-

stream bj = ENC(zj , p(zj |z<j)) for the j-th variable. The

expected length of bj is � log p(zj |z<j)).

To decode, we take the bitstream bj and com-

bine it with the prediction p(zj |z<j) to obtain zj =
DEC(bj , p(zj |z<j). Once we have decoded all latents, we

pass them through the decoder of the AE to obtain x̂.

5. Experiments

5.1. Dataset

Kinetics [9] We use videos with a width and height

greater than 720px, which results in 98, 944 videos as our

training set. We only use the first 16 frames for training.

The resulting dataset has about 1.6m frames, which is suf-

ficient for training our model, though larger models and

datasets will likely result in better rate/distortion (at the cost

of increased computational cost during training and testing).

Ultra Video Group [1] UVG contains 7 videos with

3, 900 frames in full HD resolution (1920⇥ 1080). We use

this dataset to compare with state-of-the-art.

Standard Definition Videos SDV contains 20 videos

with ⇠ 40K frames of resolution 352 ⇥ 288. We use this

dataset for ablation studies.

Human Activity contains 1257 real-world videos of

people in various everyday scenes, and is mostly used for

human pose estimation and tracking in video. Following the

standard partitions of the data, we use 1087 and 170 videos

as train and test set for semantic compression experiments.

Dynamics is an internal dataset containing ego-view

video from a car driving on different highways at differ-

ent times of day. The full dataset consists of 5 clips taken

at different dates, times, and locations. We use 4 clips of

20 minutes each (120k frames) as train set, and use the fifth

clip of 14 minutes (25k frames) as test sequence.

Berkeley MHAD [29] contains videos of human actions,

recorded by four multi-view cameras. We use this dataset
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Figure 5: Ablation experiments. The both autoencoder

and prior exploit temporal dependencies, in pixel and latent

space respectively, to improve video compression.

for multi-modal compression experiments. We use all four

video streams from the first quad-camera, each of which

records the same scene from a slightly shifted vantage point.

The MHAD dataset contains 11 actions each performed by

12 participants, with 5 repetitions per participant. We use

the first 4 repetitions for training, and the last one for testing.

Kinetics, Dynamics and Human Activity are only avail-

able in compressed form, and hence contain compression

artifacts. In order to remove these artifacts, we downscale

videos from these datasets so that the smallest side has

length 256, before taking crops. For uncompressed datasets

(UVG, SDV, and MHAD), we do not perform downscaling.

5.2. Training

We train all of our models with batchsize 32, using the

Adam optimizer [24] with learning rate 10−4 (decaying

with γ = 0.1 every 40 epochs) for a total of N = 100
epochs. Only for the Kinetics dataset, which is much larger,

we use 10 epochs and learning rate decay every 4 epochs.

We use MS-SSIM (multi-scale structural similarity) as a

distortion loss, and the cross-entropy as a rate loss. In order

to obtain rate-distortion curves, we train separate models

for beta values β 2 {0.1, 0.3, 0.5, 0.7} (unless stated other-

wise), and report their rate/distortion score.

5.3. Ablation studies

We evaluate several AE and prior design choices as dis-

cussed in Section 4. Specifically, we compare the use of

2D and 3D convolutions in the autoencoder, Frame AE and

Video AE respectively, as well as three kinds of priors: a 2D

frame-based ARM that does not exploit temporal dependen-

cies (Frame ARM), an ARM conditioned on the previous

frame (Video ARM-last frame), and one conditioned on the

output of a Conv-GRU (Video ARM-Conv-GRU). We train

each model on Kinetics and evaluate on SDV.

The results are presented in Figure 5. The results show

that conditioning the ARM on the previous frame yields a

Figure 6: Comparison to the state-of-the-art traditional and

learned codecs. Our proposal outperforms the learned coun-

terparts and approaches AVC/H.264 and HEVC/H.265 eval-

uated in their default setting.

substantial boost over frame-based encoding, particularly

when using a frame AE. Introducing a Conv-GRU only

marginally improves results compared to conditioning on

the last frame only.

We also note that using the 3D autoencoder is substan-

tially better than using a 2D autoencoder, even when a video

prior is not being used. This suggests that the 3D AE is

able to produce latents that are temporally decorrelated to a

large extent, so that they can be modelled fairly effectively

by a frame AE. The difference between 2D and 3D AEs is

substantially bigger than the difference between 2D and 3D

priors, so in applications where a few frames of latency is

not an issue, the 3D AE is to be preferred, and can reduce

the burden on the prior.

For the rest of the experiments, we will use the best per-

forming model: the Video AE + Video ARM (last frame).

5.4. Comparison to state of the art

We benchmark our method against the state-of-the-art

traditional and learned compression methods on UVG stan-

dard test sequences. We compare against classical codecs

AVC/H.264 and HEVC/H.265, as well as the recent learned

compression methods presented by [27] and [40]. For the

classical codecs, we use the default FFmpeg settings, with-

out imposing any restriction, and only vary the CRF set-

ting to obtain rate/distortion curves. For the other learned

compression methods, we use the results as reported in the

respective papers. For our method, we use 6 different β

values, namely, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7.

Figure 6 shows that our method consistently outper-

forms other learned compression methods, and is approach-

ing the performance of classical codecs, particularly in the

0.10 � 0.25 bpp range. We note that in some previous

works, learned compression was shown to outperform clas-

sical codecs, when the latter are evaluated under restricted

settings by limiting the inter-frame compression to only few
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frames, i.e. by setting GOP flag to 12. The results under re-

stricted setting are reported in supplementary materials.

5.5. Semantic Compression

The perceived quality of a compressed video depends

more on how well salient objects are reconstructed, and less

on how well non-salient objects are reconstructed. For in-

stance, in video conferencing, it is more important to pre-

serve details of faces than background regions. It follows

that better subjective quality can be achieved by allocating

more bits to salient / foreground objects than to non-salient

/ background objects.

Developing such a task-tuned video codec requires a se-

mantic understanding of videos. This is difficult to do with

classical codecs as it would require distinguishing fore-

ground and background objects. For learned compression

methods, the asymmetry is easily incorporated by using dif-

ferent weights for the rate/distortion losses for foreground

(FG) and background (BG) objects, assuming that ground-

truth FG/BG annotations are available during training.

In this experiment, we study the semantic compression

of the person category. The groundtruth person regions are

extracted using a Mask R-CNN [16] trained on COCO im-

ages. We use bounding boxes around the objects, but the

approach is applicable to segmentation masks without any

modification required. The detected person regions are con-

verted to a binary mask and used for training.

The MS-SSIM loss is a sum over scales of the SSIM loss.

The SSIM loss computes an intermediate quantity called the

similarity map, which is usually aggregated over the whole

image. Instead, we aggregate these maps separately for

foreground and background, where the FG and BG mask

at a given scale is obtained from the high-resolution mask

by average pooling. We then sum the FG and BG compo-

nents over each scale, and multiply the resulting FG and BG

losses by separate weights α and 1�α, respectively. We set

the α to 0.95 in our experiments.

The rate loss is a sum of � log p(zi|z<i), so we can mul-

tiply each term with a foreground/background weight. Each

latent covers an 8⇥ 8 region of pixels, thus, we need to ag-

gregate the pixel-wise labels to obtain a label for each la-

tent. We do this by average pooling the FG/BG mask over

8 ⇥ 8 regions to obtain a weight per latent position which

we multiply with the rate loss at that position.

The results are shown in Figure 7a. We observe that in

the non-semantic model, BG is reconstructed more accu-

rately than FG at a fixed average bitrate. The same behavior

is observed for classical codecs as reported in supplemen-

tary materials. The worse reconstruction of FG is not sur-

prising because person regions usually contain more details

compared to the more homogeneous background regions.

However, when using semantic loss weighting, the relation

is reversed. Semantic loss weighting leads to an improve-

ment in MS-SSIM score for FG at the expense of MS-SSIM

score for BG. It demonstrates the effectiveness of learned

video compression in incorporating semantic understand-

ing of video content into compression. We believe that it

opens up novel video compression applications which have

not been feasible with classical codecs.

5.6. Adaptive Compression

Classical codecs are optimized for good performance

across a wide range of videos. However, in some appli-

cations, the codec is used on a distribution of lower entropy

videos, i.e. scenes with predictable types of activities. For

example, a security camera placed at a fixed location and

viewpoint will produce a very predictable video. In this ex-

periment we show that learned compression models can uti-

lize the lower entropy videos by simply being finetuned on

them, which is difficult to do with classical codecs.

In this experiment, we show that by finetuning a learned

compression model on the Dynamics dataset, substantial

improvements in compression can be achieved. Figure 7b

compares the classical codecs with our generic model as

well as the adapted model. The generic model is trained

on a generic training set from Kinetics. The adapted model

takes a pretrained generic model and finetunes it on videos

of a similar domain. The results show that our generic

method outperforms the classical codecs on this dataset, and

the adapted method shows even better performance.

This experiment indicates a great practical potential of

learned compression models. Finetuning a compression

model allows to maintain high reconstruction quality with

substantially lower compression rate, while the model could

be transferred from a generic compression model.

5.7. Multimodal Compression

Classical codecs are designed for typical videos captured

by monocluar color cameras. When other modalities are

included, such as depth, stereo, audio, or spectral imaging

sensors, classical codecs are often not applicable or not able

to exploit dependencies which exist between various modal-

ities. Developing a codec for every new modality is possi-

ble, but very expensive considering the amount of engineer-

ing work involved in designing classical codecs. Using our

learned compression method, however, adding new modali-

ties is as easy as retraining the model on a new dataset with

minimal modifications required.

In this experiment, we adapt our learned compression

method to compress videos of human actions recorded by

quad (four view) cameras from MHAD dataset. We com-

pare four methods: AVC/H.264 and HEVC/H.265, as well

as a learned unimodal model and a learned multimodal

model. The unimodal model is trained on the individual

video streams, and the multimodal model is trained on the

channel-wise concatenation of the four streams. The net-
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(a) Semantic Compression (b) Adaptive Compression (c) Multimodal Compression

Figure 7: Three extensions of our model that demonstrate the benefits of learned over classical approaches to compression.

Figure 8: Multimodal compression results for HEVC/H.265 (top) and our proposal (bottom). By utilizing the redundancies

between different views of a quad camera (columns), our model achieves a significantly better reconstruction while using 5⇥
less bits (0.007 vs 0.035 BPP).

work architecture for the unimodal model and the multi-

modal model is the same as the one described in Section 4,

the only difference being that the multimodal model has

more input channels (4⇥ 3 vs 3).

Interestingly, our approach retains more details than the

classical codec (e.g., see the face of a person in Figure 8)

while obtaining 5 times smaller BPP. The quantitative re-

sults, shown in Figure 7c, show that the multimodal com-

pression model substantially outperforms all three baselines

by utilizing the great amount of redundancy which exist be-

tween multiple data modalities. This shows that without

further tuning of the architecture or training procedure, our

method can be applied to compress spatio-temporal signals

from non-standard imaging sensors.

6. Conclusion

We have presented a video compression method based

on variational autoencoders with a deterministic encoder.

Our theoretical analysis shows that in lossy compression,

where bits-back coding cannot be used, deterministic en-

coders are preferred. Concretely, our model consists of an

autoencoder and an autoregressive prior. We found that 3D

spatio-temporal autoencoders are very effective, and greatly

reduce the need for temporal conditioning in the prior. Our

best model outperforms recent learned video compression

methods without incorporating video-specific techniques

like flow estimation or interpolation, and performs on par

with the latest non-learned codec H.265 / HEVC.

In addition, we have explicitly demonstrated the poten-

tial advantages of learned over non-learned compression,

beyond mere compression performance. In semantic com-

pression, the rate and distortion losses are weighted by the

semantics of the video content, giving priority to important

regions, resulting in better visual quality at lower bitrates in

those regions. In adaptive compression, a pretrained video

compressor is finetuned on a specific dataset. With minimal

engineering effort, this yields a highly effective method for

compressing domain specific videos. Finally, in our multi-

modal compression experiments, we have demonstrated a

dramatic improvement in compression performance, ob-

tained simply by training the same model on a multi-modal

dataset consisting of quad-cam footage.
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