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Figure 1: The proposed method estimates a persistent, temporally-aware scene model Mi from a series of scene observations

Si, captured at sparse time intervals. Mi−1 is used to estimate an arrangement of objects in each novel observation Si. The

estimated arrangement is used to estimate the instance segmentation of Si, which is then used to update the model Mi.

Abstract

In depth-sensing applications ranging from home

robotics to AR/VR, it will be common to acquire 3D scans

of interior spaces repeatedly at sparse time intervals (e.g.,

as part of regular daily use). We propose an algorithm that

analyzes these “rescans” to infer a temporal model of a

scene with semantic instance information. Our algorithm

operates inductively by using the temporal model resulting

from past observations to infer an instance segmentation

of a new scan, which is then used to update the tempo-

ral model. The model contains object instance associations

across time and thus can be used to track individual objects,

even though there are only sparse observations. During ex-

periments with a new benchmark for the new task, our al-

gorithm outperforms alternate approaches based on state-

of-the-art networks for semantic instance segmentation.

1. Introduction

With the proliferation of RGBD cameras, 3D data is now

more widely available than ever before [10, 25, 8]. As depth

capturing devices become smaller and more affordable, and

as they operate in everyday applications (AR/VR, home

robotics, autonomous navigation, etc.), it is plausible to

expect that 3D scans of most environments will be acquired

on a daily basis. We can expect that 3D reconstructions of

many spaces, visited at different times and captured from

different viewpoints, will be available in the future, just like

photographs are today.

In this paper, we investigate how repeated, infrequent

scans captured with handheld RGBD cameras can be used

to build a spatio-temporal model of an interior environment,

complete with object instance semantics and associations

across time. The challenges are that: 1) each RGBD scan

captures the environment from different viewpoints, possi-

bly with noisy data; and 2) scans separated by long time

intervals (once per day, every Tuesday, etc.) can have large

differences due to object motion, entry, or removal. Thus

simple algorithms that perform object detection individu-

ally for each scan and/or simply cluster object detections

and poses in space-time will not solve the problem. More-

over, since large training sets are not available for this task,

it is not practical to train a neural network to solve it.

We propose an inductive algorithm that infers informa-

tion about new RGBD capture of a scene Si from a temporal

model Mi−1 obtained from previous observations of S (fig.

1). The input to the algorithm is the model Mi−1, represent-

ing all previous scans and a novel scene scan Si. The output

is an updated model Mi that describes the set of objects O
appearing in the scene and an arrangement A of those ob-

jects at each time step, including the most recent. At every

iteration, our algorithm optimizes for the arrangement Ai

of objects in Si, and then uses Ai to infer the semantic in-

stance segmentation of Si. Segmentation of Si is then used

to update object set O (see fig. 2).
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Figure 2: A single inductive step of the proposed method. Given a novel scene observation Si and a model from the past

Mi−1, our goal is to create an updated model Mi. We first perform Pose Proposal, where we search for a set of potential

locations for each object in Mi−1 . Then, we perform Arrangement Optimization, where we search for the selection and

arrangement of objects to minimize an objective function. Then, we perform Segmentation Transfer, in which Si is annotated

with semantic instance labels from Mi−1. Finally, geometry from segments in Si is fused with Mi−1 to create an updated

model Mi.

To evaluate our algorithm we present a novel benchmark

dataset that contains temporally consistent ground-truth se-

mantic instance labels, describing object associations across

time within each scene. Experiments with this benchmark

suggest that our proposed optimization strategy is superior

to alternative approaches based on deep learning for seman-

tic and instance segmentation tasks.

Overall, the contributions of the paper are three-fold:

• A system for building a spatio-temporal model for

an indoor environment from infrequent scans acquired

with hand-held RGBD cameras,
• An inductive algorithm that jointly infers the shapes,

placements, and associations of objects from infre-

quent RGBD scans by utilizing data from past scans,
• A benchmark dataset with rescans of 13 scenes ac-

quired at 45 time-steps in total, along with ground-

truth annotations for object instances and associations

across time.

2. Related Work

Most work in computer vision on RGBD scanning of dy-

namic scenes has focused on tracking [43] and reconstruc-

tion [36]. For example, Newcombe et al. [36] showcases

a system where multiple observations of a deforming ob-

ject are fused into a single consistent reconstruction. Yan

et al. [48] scan moving articulated shapes by tracking parts

as they are deformed over time. These methods differ from

ours as they require observation of motions as they occur.

For sparse temporal observations, early work in robotics

focuses on the analysis of 2D maps created from 1D laser

range sensors [3, 5, 19]. For example, Biswas [5] used 1D

laser data to detect objects within a scene and associate

them across time. However, their method relies upon

2D algorithms and assumes that object instances cannot

overlap across time, which makes it inapplicable in our

setting. More recently, image based techniques for sparse

observations were proposed — Shin [42] extends SfM to

also predict poses of moving objects.

Other work has aimed at life-long scene understanding

using data captured with actively controlled sensors [15,

29, 39, 49]. For example, several algorithms proposed in

the STRANDS project [23] process the scenes observed

from a repeated set of views [2, 6, 41]. Others focus on

controlling camera trajectories to acquire the best views

for object modeling [13, 15] and/or change detection [1].

These problems are different than ours, as we focus on

analyzing previously acquired RGBD data captured without

a specifically tailored robotic platform and active control.

Some work in computer vision has focused on change

detection and segmentation of dynamic objects in RGBD

scans [16, 31, 47]. For example, Fehr et al. [16] showcases

a system for using multiple scene observations to classify

surface elements as dynamic or static. Wang et al.[46]

detect moving objects so that they can be removed from a

SLAM optimization. Lee et al. [31] propose a probabilistic

model to isolate temporally varying surface patches to

improve camera localization. While operating on RGBD

captures from handheld devices, these methods do not

produce instance-level semantic segmentations, nor do they

generate associations between objects across time.

More recent work has focused on automatic clustering of

3D points into clusters across space and time [17, 24]. For

example, Herbst et al. [24] jointly segments multiple RGBD

scans with a joint MRF formulation. Finman et al. [17]

detects clusters of points from pairwise scene differencing

and associates new detections with previous observations.

Although similar in spirit to our formulation, these methods
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operate only on clusters of points, without semantics, and

thus are not suited for applications that require semantic

understanding of how objects move across space-time.

Finally, many projects have considered temporal model-

ing of environments in specific application domains. For

example, several systems in civil engineering track changes

to a Building Information Model (BIM) by alignment to 3D

scans acquired at sparse temporal intervals [20, 26, 37, 45].

They generally start with a specific building design model

[22], construction schedule [44], and/or object-level CAD

models [7], and thus are not as general as our approach. The

Scene Chronology project [35] and others [34, 40] build

temporal models of cities from image collections – how-

ever, they do not recover a full 3D model with temporal

associations of object instances as we do.

3. Algorithm

3.1. Scene Representation

Our system represents a scene at time ti with a tem-

poral model Mi comprising a tuple {O,A}, where O =
{o0, . . . , on} is a list of n object instances that have ap-

peared within this or any prior observation Sj for j ∈ [0, i],
and A = {A0, . . . , Ai} is a list of object arrangements es-

timated for each observation Sj . Each object instance ok
is represented by {uk, Gk, ck}, where uk is unique instance

id, Gk is the object’s geometry, and ck is the semantic class.

Each arrangement Ai is a list of poses {a0i , . . . , a
m
i }, where

a
j
i = {uj ,Tj , sj}. uj is the unique id of j-th object and

function Ω(uj) returns index k to O. Tj is a transforma-

tion that moves geometry Gk into correct location within

the scene Si. Lastly sj is a matching score quantifying how

well TjGk matches the geometry of Si.

3.2. Overview

Our algorithm updates the temporal model in an induc-

tive fashion. Given the previous model Mi−1 and a new

scan Si, we predict a new model Mi (see fig. 2) by exe-

cuting four consecutive steps. The first proposes potential

poses for objects in O (sec. 3.3). The second performs a

combinatorial optimization to find the arrangement Ai that

maximizes a new objective function jointly accounting for

geometric fit and temporal coherence (sec. 3.4). The third

step uses O and Ai to infer an instance-level semantic seg-

mentation of Si. The fourth step updates the geometry Gk

of each object ∈ Ai by aggregating its respective segment

from Si. The following four subsections offer the details on

how each of these steps is implemented.

3.3. Object Pose Proposal

The first step of our pipeline is to find a set of potential

placements for each object ok ∈ O, creating a search

space for the Arrangement Optimization stage (sec. 3.4).

Formally, the input to this stage is a set of objects O and

a scan Si. The output is a set P of scored pose lists

Pk = {p0k, . . . , p
x
k} for each object ok. A scored pose

plk is a tuple {Tl
k, s

l
k}, where T

l
k is the proposed rigid-

body transformation and slk is a geometric matching score

describing how well pose T
l
k aligns Gk to the geometry of

Si.

Finding transformations that align surfaces A and B is a

longstanding problem in computer graphics and vision [38].

In our setting, we wish to find a set of poses for the sur-

face A with good alignment with surface B, where A = ok
and B = Si. Prior work usually attempts to solve similar

problems by employing feature-based methods. Such meth-

ods sub-sample the two surfaces to obtain a set of meaning-

ful keypoints and then match them to produce a plausible

pose (e.g., using Point-Pair Feature matching[12]). How-

ever, as it has been noted in other domains, keypoints may

limit the amount of information a method considers, with

dense matching methods leading to less failures [14].

Following this intuition, we propose a dense matching

procedure, where we slide each of the objects ok across

the scene, perform an ICP optimization at each of the

discrete locations and compute a matching score based on

the traditional point-to-plane distance metric [32].

This approach might seem counter-intuitive, as a naive

implementation of such grid-search would lead to a pro-

hibitive run-time performance. We find however that such

an approach can be made acceptably fast while leading to

much better recovery of correct poses. To speed-up the

run-time performance of our method we make use of the

multi-resolution approach. We compute a four-level hier-

archy for the input point cloud (the geometries Gk), with

minimum distance between any two points at a level equal

to {0.01m, 0.02m, 0.04m, 0.08m} respectively. To com-

pute this representation we follow an algorithm described

in [9]. Multi-resolution representation allows us to perform

the dense search only on the coarsest level of the hierarchy,

and return a subset of poses with sufficiently high scores

to be verified at higher levels, leading to significant perfor-

mance gains. Additionally, we make a simplifying, but rea-

sonable assumption that objects in our scenes move on the

ground plane and rotate around the gravity direction.

With this approach we are able to produce a set P of

pose lists Pk for each object ok in O. The advantage of this

dense grid-search method is that it produces sets of poses

that contain most of the true candidate locations, even if

the local geometry of Si might be different from Gk due

to reconstruction errors. We showcase the comparison to

keypoint based methods [12, 4] in figure 3.

3.4. Arrangement Optimization

In the second step our algorithm selects a subset of

poses from the previous step to form an object arrange-
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Figure 3: Comparison of the precision/recall scores ob-

tained for all scenes in our database, comparing PPF match-

ing [4] to our method. In our experiments a pose of an ob-

ject ok is considered a true positive if the distance between

object centers is less than 0.2m and object’s classes agree.

ment. The input is a set of objects O, a set of pose lists

P = {P0, . . . , Pk} for each object ok, and the scan Si. The

output is an arrangement Ai that describes a global config-

uration of objects which maximizes the objective.

This problem statement leads to a discrete, combinatorial

optimization. First reason for choosing this approach is that

the number of objects within the scene Si is not known

a priori. A combinatorial approach allows us to propose

arrangements Ai of variable lengths, that will adapt to the

contents of Si. A second reason is that finding the optimum

requires global optimization – the placement of one object

can greatly affect the placement of another. Additionally,

deep learning is hard to apply in this instance due to the

lack of the training data, as well as the non-linearity of the

proposed objective function.

3.4.1 Objective Function

To quantify the quality of the candidate arrangement A′
i we

use the objective function that is a linear combination of the

following four terms:

O(Si, A
′
i,A) = wcOc(Si, A

′
i) Coverage Term

+ wgOg(Si, A
′
i) Geometry Term

+ wiOr(A
′
i) Intersection Term

+ whOh(A
′
i,A) Hysteresis Term

Each term Ox produces a scalar value ∈ [0, 1] that describes

the quality of A′
i w.r.t. that specific term. We use grid search

to find good values for the weights w = {2.0, 0.3, 1.0, 1.8},

which express the relative importance of each term.

The Coverage term measures the

percentage of the scene that is cov-

ered by objects in A′
i. The intu-

ition behind this term is that ev-

ery part of the scene should ideally

be explained by some object in A′
i.

Oc(Si, A
′
i) takes as input a scene Si and the candidate ar-

rangement A′
i. To compute Oc(Si, A

′
i) we voxelize both

the scene Si and the objects in A′
i, resulting in two 3D grids

VS and VA. The Oc(Si, A
′
i) is calculated as the number of

cells that are equal in both grids, over the number of cells

in VS - Oc(Si, A
′
i) =

|Vs(j)∧VA(j)|
|Vs(j)|

. For this formula to be

accurate we need to ensure however that we only voxelize

the dynamic parts of the scene Si. As such we deactivate

any cells in VS that belong to the static parts of the scene,

like walls and floor, which can easily be detected with a

method like RANSAC [18]. The inset figure above show-

cases a visualization of both grids VS (blue cells) and VA

(white cells). As seen there, the VS covers the non-static

parts of the scene only, leading to Oc being a good estimate

of the coverage.

The Geometry term is a measure of the geometrical agree-

ment between the scene Si and objects in the candidate ar-

rangement A′
i. We include this term to guide the objective

function to select objects that best match the geometry of

the scene at a specific location. This value is simply com-

puted as an average of scores slk from the procedure de-

scribed in section 3.3. Og(Si, A
′
i) =

∑
k g(aj

i )

|A′

i|
, where g(aji )

returns the geometrical score fit for placement of object oj .

The Intersection term aims to

estimate how much a pair of ob-

jects in the arrangement A′
i inter-

penetrate. Intuitively, such inter-

penetration would mean that two

objects occupy the same physi-

cal location, which implies an impossible configuration.

In our approach, we compute a coarse approximation of

this term. First, we compute a covariance matrix Σk of

each Gk. Covariances for each object allow us to com-

pute a symmetric Mahalanobis distance SDM between

objects to approximately quantify how close they are to

each other. SDM (Or, oj) = 0.5(DM (mij ,Tici,Σi) +
DM (mij ,Tjcj ,Σj)), where Tici,Tjcj are transformed

centroids of Gi, Gk, the midpoint between them is mij ,

and function DM is the Mahalanobis distance. With SDM

computed for all pairs of objects ok, the value Or(A
′
i)

is 1−||{exp(
−SD2

M (o0,o1)
2σ2 ), . . . , exp(

−SD2

M (on−1,on)
2σ2 )}||∞.

The rationale behind the use of the infinity norm is to gen-

erate a high penalty if just a single pair of objects exhibits

a low score interpenetration. The inset figure above show-

cases a visualization of SDM for two intersecting objects.

The point at which we evaluate the SDM is marked with

red, showcasing high values in regions where either or both

objects are present, and low values in the free space. It is

also clear that the value of SDM would be higher if the

objects interpenetrated even more.
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The Hysteresis term informs how well

the current arrangement estimate A′
i re-

sembles a previously observed arrange-

ments from the set A. In addition it

expresses our preference for a minimal

relative motion. Each object in A′
i is

assigned a score, with the value based

on whether uk is a novel instance, or

has been observed in the past. In the

former case, we assign a novel object

constant score h = 0.4 (found manu-

ally). In the latter, the score is h+ (1−

h)exp(−||T (ck,i)−T (ck,j)||2
2σ2 ). T (cl, j)

is a function that applies the appropriate

transformation to centroid cl at time tj .

As a result, novel objects will be always

preferred, unless they have undergone

a significant transformation. In such a

case, we would like Oh to express that

novel object appearances have similar

probability. The value of Oh(Ai,A) is

computed as an average of the above

scores. The inset figure above illustrates an arrangement

at ti−1 and two possible arrangement estimates at ti. The

form of Oh(A
′
i,A) encourages the selection of middle ar-

rangement as it does not contain significant motion the sofa

and chairs.

3.4.2 Optimization

To find arrangement Ai = argmaxA′

i
O(Si, A

′
i,A), we

employ a combination of greedy initialization and simulated

annealing. We begin by greedily selecting an object ok
at a pose plk which improves objective the most. This

process of addition is continued until the objective function

starts decreasing. After this stage, we perform simulated

annealing optimization. We run the simulated annealing

for 25k iterations, using a linear cooling schedule with

a random restarts (0.5% probability to return to the best

scoring state). To explore the search space we use the

following actions with a randomly selected object ok:

• Add Object - We add ok at a random pose plk to A′
i.

• Remove Object - We remove ok from A′
i.

• Move Object - We select ok from A′
i and assign it new

pose pmk .

• Swap Objects - We swap the location of ok and ol,

another randomly selected object of the same semantic

class.

3.5. Segmentation Transfer

The third step of the algorithm transfers the semantic

and instance labels from Ai to scan Si. The estimated

arrangement from the previous step can be used to perform

segmentation transfer, as we have semantic class ck and

instance id uk associated with each object in O. Using

the estimated pose plk for each of the objects ok in Ai,

we transform its geometry Gk to align with Si. We

then perform a nearest neighbor lookup (with a maximum

threshold d = 5cm to account for outliers) and use the

associations to copy both the instance and semantic labels

from objects in Ai to Si. Since there is no guarantee that

all points in Si will have a neighbor within the threshold

d, we follow-up the lookup with label smoothing based on

multi-label graph-cut [11].

3.6. Geometry Fusion

The final step of the algorithm is to update the object

geometries Gk for objects in O. To do so for each object

ok ∈ Ai, we extract the sub point clouds from Si that

were assigned instance label uk in the previous step, and

then we concatenate them with Gk to generate new point

cloud G′
k. In the idealized case, the two surfaces would be

identical, as they represent the same object. However, due

to partial observation, reconstruction, and alignment errors,

we cannot expect that in practice. As such, we solve for a

mean surface G̃k that minimizes the distance to all points in

the G′
k, using Poisson Surface Reconstruction [27]. After

this process, we uniformly sample points on the resulting

surface G̃k to get a new estimate of Gk that will be used for

matching when a new scene Si+1 needs to be processed.

4. Evaluation

Evaluation of the proposed algorithm is not straightfor-

ward, as there is little to no prior work directly addressing

instance segmentation transfer between 3D scans.

Dataset: To evaluate the proposed approach, we have cre-

ated a dataset of temporally varying scenes. Our dataset

contains 13 distinct scenes, with total of 45 separate re-

constructions. Each scene contains between 3 to 5 scans,

where objects within each catpure were moved to simulate

changes occuring across long time periods. Along with the

captured data, we also provide manually-curated semantic

category and instance labels for every object in every scene.

The instance labels are stable across time, providing associ-

ations between object instances in different scans, which we

can use to evaluate our algorithms. Additionally, we pro-

vide permutations of instance assignments for each scene

to account for cases where objects’ motion is ambiguous

and multiple arrangements can be considered correct. More

details about the dataset are included in the supplemental

material.

Metrics: We evaluate our approach using three metrics.

The first is the Semantic Label metric that measures the

correctness of class labels – it is implemented in the same

way as the semantic segmentation task in the ScanNet
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Figure 4: Inductive instance segmentation results. Given a segmentation at time t0, our method is able to iteratively transfer

instance labels to future times, even when the number of the objects in the scene changes.

Benchmark [10] and is reported as mean class IoU. The

second is the Semantic Instance metric that measures the

correctness of the object instance separations – it again

comes from the ScanNet Benchmark [10] and is reported

as mean Average Precision (IoU=0.5). Third, we propose a

novel Instance Transfer metric, which specifically requires

an agreement of instance indices across time. This metric is

reported as mean IoU, where we count the number of points

in both ground truth and prediction that share equivalent

instance id. The Instance Transfer metric is much more

challenging, as it requires associating objects with specific

instance ids in different scans.

Baseline: Given the success of the recent deep models

for the scene understanding (as shown on the leaderboard

of [10]), it is interesting to compare the results of our al-

gorithm to the best available method based on deep neu-

ral networks. One of the best available methods for 3D

instance segmentation is MASC [33], which is based on

semantic segmentation with SparseConvNet [21]. To test

these methods on our tasks, we pre-trained the SparseC-

onvNet and MASC models on ScanNet’s training set. We

performed fine-tuning of MASC with the ground-truth la-

bels of first observation (time t0) of each scene S0 in our

database. This fine-tuned model provides instance segmen-

tation, which can be combined with the Hungarian method

[30] to estimate instance associations across time. This se-

quence of steps provides a very strong baseline combining

state-of-the-art methods for instance segmentation with an

established algorithm for assignment.

4.1. Quantitative Results

Evaluation and comparison: Since we solve an inductive

task (predict the answer at ti, given an answer at ti−1), it

is not obvious how to initialize the system for our experi-

ments. As our aim is to evaluate the inductive step alone,

we chose to initialize time t0 with a correct instance seg-

Method
Semantic

Label

Semantic

Instance

Instance

Transfer

SparseConvNet 0.203 - -

MASC 0.310 0.291 0.175

MASC (fine-tuned) 0.737 0.562 0.345

Rescan 0.859 0.837 0.650

Table 1: Comparison of our method to SparseConvNet [21]

and MASC [33]. SparseConvNet does not produce instance

labels, hence we omit reporting on the Semantic Instance

and Instance Transfer task, and only fine-tune MASC.

mentation. That choice avoids confounding problems with

de novo instance segmentation at t0 with the main objective

of the experiment. We have each algorithm in the experi-

ment transfer the instance segmentation from t0 to t1, then

transfer the result to t2, and so on.

We ran this experiment for our method in direct compar-

ison to the baseline. Results for all three evaluation metrics

are shown in Table 1. They show that our algorithm signif-

icantly outperforms competing methods. As expected, we

see that the deep neural networks trained on the ScanNet

training set [10] do not perform very well on our data with-

out fine-tuning. After fine-tuning on the data in S0, they

do much better. Fine-tuning allows for a fair comparison,

as both their and our methods have access to the same in-

formation from S0 to predict labels for Si; i > 0. Despite

this, instance segmentation on later time steps still performs

worse than our algorithm, and instance associations across

time are poor. We attribute the difference to the fact that

our method is instance-centric, where the segmentation is

inferred from the estimated objects’ arrangement. This is

in stark opposition to methods like MASC, where the in-

stances are inferred from a semantic segmentation.

Ablation studies: Second, we present the results of abla-
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Figure 5: Qualitative comparison on the semantic segmentation task. Proposed method is able to provide high quality

semantic labels as a result of instance segmentation transfer. Compared to competing methods, ours is able to produce better

per object labels and does not confuse object classes.

tion studies that showcase the influence of various terms in

our objective function on the results in a specific task. As

seen in table 2, by far the most important term of our pro-

posed objective is the Coverage Term. Without it, the ob-

jective function is discouraged from adding more objects.

The optimization simply finishes with a single object added

to the scene - as adding any more would lead to a decrease

in other terms.

The second most important term, especially for the In-

stance Transfer task, is the Hysteresis Term. It is intuitive

that lacking this term, the objective function is not encour-

aged to find an arrangement that will be consistent with

previous object configurations. We note that when omit-

ting this term, the semantic segmentation task achieves a

slightly better result. The reason is that to prevent addition

of superfluous objects the novel objects are assigned rela-

tively low score (sec. 3.4.1). Without the Hysteresis Term,

the proposed objective is free to insert additional objects -

however their configuration is often not correct, leading to

lower scores for other two tasks. This result suggests that

there exists a better formulation of the hysteresis function -

an interesting direction for future research.

The presence of the Intersection Term is important for

the Semantic Instance and Instance Transfer tasks. Intu-

itively, the semantic segmentation score is unaffected as it

is often the case that intersecting objects share the semantic

class. The Geometry Term has the least influence on the re-

sults. This is not surprising, as the poses that survived the

pose proposal stage (see sec. 3.3) were high scoring ones.

Method
Semantic

Label

Semantic

Instance

Instance

Transfer

No Coverage Term 0.061 0.058 0.048

No Geometry Term 0.853 0.825 0.617

No Intersection Term 0.859 0.781 0.584

No Hysteresis Term 0.870 0.818 0.226

Full Method 0.859 0.837 0.650

Table 2: Ablation study showcasing the influence of objec-

tive function terms on each of the proposed tasks.

4.2. Qualitative Results

Inductive segmentation transfer: We showcase qualita-

tive results for the Instance Transfer task using our method

in figure 4. Again, in this task we use the ground-truth seg-

mentation provided by the user at t0 and transfer it to all

other observations sequentially. The results of such seg-

mentation transfer offer stable and well-localized instances.

Even over multiple time-steps, our method is able to keep

track of objects identities, providing us with information on

their location and motion. Additionally, thanks to the fact

that the objective function prefers minimal change, we are

able to deal with challenging configurations. For example

in 4a our method is able to correctly recover three coffee ta-

bles at time t3, despite their proximity and visual similarity.

Semantic segmentation: Figure 5 showcases qualitative

2547



Figure 6: Model completion results. The left column shows

two scans of a scene with moving objects. The right column

shows our reconstruction of the scene using objects and

locations from the temporal model M .

comparisons between our method and DNN-based methods

[33, 21]. Without fine-tuning, the segmentation issues

are obvious. Learned methods confuse labels like sofa

and chair, which explains low scores in table 1. Fine-

tuning helps reduce these effects - however we also see

some overfitting errors. Our method is able to recover

high quality semantic segmentation, where due to the fact

that our approach is instance-centric, a single instance

can not have more than a single semantic class. Our

method’s success is however dependent on the overlap

between current and previous observations of S. When

lots of novel objects appear, the Hysteresis Term might

discouraging addition of all of them, as it aims to produce

arrangement similar to previously observed ones (fig. 5a).

Model completion results: Our method for aggregating the

observations of moving objects from multiple time steps al-

lows it to produce more complete surface reconstructions

than would be possible otherwise. Many other systems ex-

plicitly remove moving objects before creating a surface

model (to avoid ghosting) [28]. Our approach uses the es-

timated object segmentations and transformations to aggre-

gate points associated with each object ok to form a Gk that

is generally more complete than could be obtained from any

one scan. Composing the aggregated Gk using transforma-

tions Tk in each object arrangement Ai provides a model

completion result (fig. 6).

Failures: We identify three main failure modes of our

approach (fig. 7). The first issue arises due to the geometry

focused nature of our approach. If the objects are only

partially scanned, the pose proposal stage will not be able

to recover highly scored poses. As such, these objects will

simply not be added to the space of possible configurations

that the optimization can choose from. The second is caused

by the limited contribution of small objects to the scene

Figure 7: Failure modes of the proposed method. (a) Partial

scanning prevents the pose proposal stage from generating

plausible poses. (b) Small objects contribute little to the

coverage term. If such objects undergo significant motion

our algorithm might miss them. (c) When similar, partially

scanned objects are considered, our method might not

produce the correct permutation.

coverage score. Combined with a small Hysteresis Term

value under significant motion, the objective function might

prefer not adding these objects. Lastly, in cases like the one

in figure 7c, an incorrect permutation of objects might have

a higher objective value than the ground truth one. This

effect is a combination of Geometry Term providing noisy

scores for partial scans of visually similar objects (like the

chairs around the table), and their relative spatial proximity,

which makes the Hysteresis Term a poor discriminator.

5. Conclusion

This paper presents an algorithm for estimating the se-

mantic instance segmentation for an RGBD scan of an in-

door environment. The proposed algorithms is inductive –

using a temporal scene model which subsumes previous ob-

servations, an instance segmentation of the novel observa-

tion is inferred and used to update the temporal model. Our

experiments show better performance on a novel bench-

mark dataset in comparison to a strong baseline. Interest-

ing directions for future work include inferring the segmen-

tation at t0, investigating RNN architectures (when larger

datasets become available), and replacing terms of the ob-

jective function with learned alternatives.
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