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Abstract

We present ClothFlow, an appearance-flow-based gen-
erative model to synthesize clothed persons for posed-
guided person image generation and virtual try-on. By esti-
mating a dense flow between source and target clothing re-
gions, ClothFlow effectively models the geometric changes
and naturally transfers the appearance to synthesize novel
images as shown in Figure 1. We achieve this with a three-
stage framework: 1) Conditioned on a target pose, we first
estimate a person semantic layout to provide richer guid-
ance to the generation process. 2) Built on two feature pyra-
mid networks, a cascaded flow estimation network then ac-
curately estimates the appearance matching between corre-
sponding clothing regions. The resulting dense flow warps
the source image to flexibly account for deformations. 3)
Finally, a generative network takes the warped clothing re-
gions as inputs and renders the target view. We conduct
extensive experiments on the DeepFashion dataset for pose-
guided person image generation and on the VITON dataset
for the virtual try-on task. Strong qualitative and quantita-
tive results validate the effectiveness of our method.

1. Introduction

Pose-guided person generation [28] is of great impor-
tance in a plethora of real-world applications, especially for
fashion industry where customers or stylists wish to trans-
fer clothing from one person to another. Recent advances
in generative networks for image-to-image translation in-
spired researchers to tackle this problem by feeding a source
image and a target pose as input, and then synthesizing
the target image [28, 31, 29]. Yet, the non-rigid nature of
clothes might cause drastic deformations and severe occlu-
sions which cannot be properly handled [18], thus limiting
their performance on rendering clothing details (e.g., pat-
terns, graphics, logos) in the target view.

To overcome this issue, methods of two different

*Weilin Huang is the corresponding author.

paradigms are used to take the geometric deformation
into consideration for better appearance transfer, namely
deformation-based methods and DensePose-based meth-
ods. Deformation-based methods [14, 39, 36, 4] estimate
a transformation, either affine or thin plate spine (TPS),
to deform the source image pixels or CNN feature maps
to deal with the misalignment introduced by pose differ-
ences. However, despite great improvements have been
achieved by these two geometric modeling techniques, they
only have limited degrees of freedom (e.g., 6 for affine and
2 x 5 x b for TPS as in [39]), which leads to inaccurate and
unnatural transformation estimations when large geometric
changes occur.

Recently, a few approaches [30, 12, 42] take DensePose
[1] descriptor as inputs instead of tradition 2D keypoints for
pose-guided person generation. DensePose is able to map
human pixels of a 2D image to the 3D human body sur-
face, allowing it to convey 3D geometry information of the
body. This makes it much easier to obtain the texture cor-
respondence between source and target images even with
large spatial deformation. However, warping 2D image tex-
tures to the predefined surface-based coordinate system fur-
ther introduces artifacts. For example, holes can be pro-
duced in positions that are invisible in the source image,
which need to be addressed by complicated texture inpaint-
ing algorithms. At the same time, as estimating DensePose
is highly challenging, the synthesized results are usually af-
fected by the performance of a DensePose estimator. Thus
the DensePose transferred results might look less photore-
alistic than the deformation-based methods [30] .

To address the problems in existing methods, we propose
ClothFlow, a flow-based generative model to accurately es-
timate the clothing deformation between source and target
images for better synthesizing clothed person. Specifically,
ClothFlow consists of 3 stages as shown in Figure 2:

(1) A conditional layout generator first predicts the tar-
get human body segmentation layout conditioned on the
target pose. This disentangles the generation of shape and
appearance, allowing ClothFlow to generate more spatially
coherent results.
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Figure 1: Results of ClothFlow. Left: pose-guided person image generation. Right: virtual try-on. ClothFlow warps
the source clothing regions conditioned on the desired pose. The warped clothing accurately accounts for the geometric
changes between the source and target image, and also addresses the occlusion (e.g., when arm and hair occlude the clothes)
and partial observability (e.g., stretching pants region in the first example and dress in the second example). As a result,
photorealistic images with detailed clothing patterns can be generated with the warped clothes as input.

(2) The generated layout serves as an input to our cloth-
ing flow estimation stage, which predicts the appearance
flow [45] (i.e., 2D coordinate vectors indicating which pix-
els in the source image can be used to synthesize the target)
from the source clothes to those of the target. Source cloth-
ing regions are then warped according to this estimated flow
to account for geometric deformation. The predicted ap-
pearance flow offers accurate estimation of the visual corre-
spondences and helps seamlessly transfer the source cloth-
ing regions to synthesize the target image.

(3) Finally, a clothing preserving rendering stage syn-
thesizes the target image with a generative network [34]
while trying to preserve details from the warped source
clothing regions.

Our method can be regarded as a deformation-based
method. However, in contrast to most deformation-based
methods utilizing a geometric transformation with few de-
grees of freedom, ClothFlow estimates a dense flow field
(e.g., 2 x 256 x 256) allowing for high flexibility and ac-
curacy when capturing the spatial deformations. Differing
from DensePose-based methods that explicitly utilize 3D

body surface to transfer textures, we implicitly capture the
geometric transformation through approximating the target
clothing regions by warping that of the source image.

ClothFlow makes the following main contributions:

e We precisely predict an appearance flow field that
aligns the source and target clothing regions in a cascaded
manner. In each cascaded stage, a feature warping module
progressively improves the estimation from previous stages
and better approximates the desired spatial deformation.

e Evaluated on DeepFashion [27] dataset, ClothFlow
synthesizes more realistic pose-guided images by better
preserving detailed clothing textures compared to state-of-
the-art methods. We further demonstrate the effectiveness
of ClothFlow with promising results achieved on VITON
dataset [14] for virtual try-on task.

2. Related Work

Warping-based Image Matching and Synthesis. Spatial
transformer networks [19], allowing CNNs to predict a spa-
tial transformation, have inspired many recent works to se-
mantically warp one object to another [23, 33] or warp an
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Figure 2: Framework of ClothFlow for pose-guided person image generation. ClothFlow has three stages: Stage 1:
A conditional layout generator hallucinates the target segmentation map. Stage 2: ' Two feature pyramid networks encode
geometric information and progressively refine the estimation of clothing flow (the color of arrowed lines indicates its clothing
category) between the source and the target in a cascaded warping manner. The resulting flow is then used to warp the source
clothes to eliminate the misalignment. Stage 3: The warped source clothing together with other guidances synthesize the
final result. Note that in Stage 2 and 3 we use the target segmentation map s; for training, while during inference, we use the

synthesized target segmentation §; since s, is not available.

image to synthesize novel views [45, 46]. In this paper, we
also aim to learn an appearance flow [45] to warp a source
clothing to the corresponding regions in a target view. It
is worth noting that existing methods [21, 46, 45] are usu-
ally applied to rigid objects where dense correspondences
and visibilities are easy to estimate, while the problem we
are addressing is more challenging: clothing regions are of-
ten highly non-rigid, and there is no clear correspondence
between source and target.

Pose-guided Person Generation. Originally introduced
by [28], pose-guided person image generation has spurred
a growing interest. Ma et al. utilized a two-stage image-
to-image translation network [18] to generate target image
with the guidance of the source appearance and the tar-
get pose in a coarse-to-fine fashion. The authors further
improved the results by separating the process of generat-
ing pose, foreground and background [29]. Recently, Esser
et al. [8] disentangled the pose and appearance generation
with a variational U-NET. However, these methods are un-
aware of the spatial deformation between the source and the
target, and thus fail to generate perceptually convincing re-
sults with large pose discrepancies.

Recent work [36, 4, 2, 12, 44] transformed the pixels
or feature maps of the source image to align with the tar-
get view, which, to some extent, eliminates the appearance
discrepancy and enhances the synthesizing quality. Simi-
larly, our method also warps the source clothing pixels, but
by predicting a highly refined appearance flow for clothing
regions and thus is capable of accurately modeling large ge-
ometric changes as well as occlusions. On the other hand,
DensePose [1] descriptor contains much richer information
than 2D keypoints, and can mitigate the challenge of mod-
eling such spatial deformation [30, 12, 42]. In the experi-
ments, we show that our method achieves better qualitative
transfer results, which can be further improved when com-
bined with DensePose.

Virtual Try-On. Utilizing deep generative models for vir-
tual try-on or garment transfer [14, 20, 39, 31, 5] also re-
quires modeling the deformation between the clothing re-
gion in the source image (e.g., a product image) and the
corresponding region in the target person. However, most
existing methods like [14, 39] assume this deformation can
be modeled by a thin plate spine (TPS) transformation.
But TPS transformation can only models limited geometric
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changes and might unnaturally deform the source clothing;
instead, we show that our method can be easily modified to
take the clothing product image as input and warp it more
naturally and seamlessly onto the target person.

Optical Flow Estimation. Our clothing flow estima-
tion is also related to optical flow estimation for videos
[17, 16, 32, 38, 7], where they usually learn a Siamese net-
work, by taking two consecutive video frames as inputs,
and then warp the raw pixels or features of the first frame
to the second one. We draw inspirations from optical flow
estimation to predict the clothing flow between the source
and target images. There are two main differences between
ClothFlow and optical flow estimation. First, we use two
separate feature pyramid networks—one for modeling the
source clothing appearance and the other one to capture the
target information that guides the prediction of appearance
flow. Further, we propose a different loss that uses the con-
ditional parsing generated in the first stage to ensure struc-
tural and visual coherence of the synthesized image.

3. ClothFlow

Given a source person image I, and a target pose p;, the
goal of ClothFlow is to synthesize an image of target per-
son I;, whose pose is p; with the same appearance as ;.
One key desideratum of a pose-guided image synthesis sys-
tem is to preserve the texture details in the source image. A
straightforward approach is to feed I and p; in an image-
to-image translation network like pix2pix [18] or PG? [28]
to reconstruct I;. Such approach, although can synthesize
realistic skin regions, fails to preserve clothing details due
to the lack of considering the spatial deformation induced
by pose changes. Driven by this observation, we aim to ex-
plicitly estimate an appearance flow [45] for all clothing re-
gions, which we term as clothing flow. The clothing flow is
a 2D dense flow field specifying which pixels in the source
image could be redirected to reconstruct the target image.

Figure 2 summarizes our framework. First, in the con-
ditional layout generation stage (Sec 3.1), we generate the
target semantic layout conditioned on the source image, the
source semantic map and the target pose. The target seman-
tic layout is then used to guide the warping of the source
clothing region in a cascaded network for clothing flow esti-
mation (Sec 3.2). Finally, in the rendering stage, we use the
warped source clothes together with other conditions (i.e.,
source image, target poses and target semantic layout) to
synthesize the image of target person (Sec 3.3).

3.1. Conditional Layout Generation

To synthesize a person image, a good practice is to first
predict a semantic layout that poses structural constraints
for the generation of appearance [4, 47, 13, 25]. We follow
this line of work to synthesize the target layout, followed by
the generation of clothing details.

To obtain the person pose and layout representations
used for training our target layout generator, we utilize
an off-the-shelf pose estimator [3] and human parser [11].
More specifically, the pose estimator predicts a set of 2D
coordinates of person keypoints, which are then converted
to a heatmap where each channel captures the spatial infor-
mation of a keypoint [29]. For the person layout representa-
tions, we follow [47, 6, 13] and encode the layout informa-
tion as a multi-channel binary map, such that each channel
indicates a semantic segmentation of a specific human part.
We denote the segmentation map of the source image and
the target image as s and sy, respectively.

As shown in Figure 2, the target layout generation net-
work Giayout has an encoder-decoder architecture, which
takes the source image I, the source semantic layout sg,
and the target pose p, as input, and estimates the target
semantic layout §; = Giayout(Is, Ss,p¢) by minimizing
the pixel-wise cross entropy loss between s; and s;. Note
that directly generating texture details, which often requires
one to explicitly model geometric transformation, is more
challenging than estimation of the target layout. We solve
the problem of person image generation in a coarse-to-fine
manner by first predicting the target layout, which severs
as an intermediate guidance that is helpful in obtaining a
more accurate appearance flow, and also enforces structural
constraints during the generation of clothing textures.

3.2. Cascaded Clothing Flow Estimation

The predicted target layout provides important clues on
understanding the spatial transform of each clothing item in
the target domain. Thus we explore this information to es-
timate a dense appearance flow (with size of 2 x H x W
where H and W denote the image size) between the cloth-
ing regions in the source and target images. Directly esti-
mating this appearance flow is difficult due to the fact that
clothes are highly deformable with large misalignment ex-
isting between the source and target images. Inspired by
recent approaches that employ pyramidal architectures for
gradually refining the estimation of optical flow for videos
[16, 17,32], we propose a cascaded warping network whose
framework is summarized at the bottom of Figure 2. Note
that in this work, we only focus on modeling the flow
of clothing regions (e.g., hats, pants, tops, dresses), while
modeling the skin regions is more straightforward and has
already been handled by a vanilla generative model.

Dual Feature Pyramid Networks. The cascaded clothing
flow estimation model contains two feature pyramid net-
works (FPN) [26]—a source FPN and a target FPN. More
specifically, taking the source clothing regions c; and the
source clothing segmentation map s, ' as inputs, the source
FPN consists of N encoding layers where each layer has

!In stage 2, we redefine the notation s and s; to represent the clothing
semantic map instead of the whole image.

10474



a downsample convolution with a stride of 2 followed by
one residual block [15]. The features output by these en-
coding layers are used to build the source feature pyramid
in the same fashion as in [26], resulting a set of features
{51, 52,...,Sn}. We set N = 5 in our experiments but
illustrate the case when N = 4 in Figure 2 for simplicity.
Similarly, the target FPN has the same network architecture
except that the input is the target semantic layout s;, and
yields pyramidal features {7}, 75, ..., T }. Note that two
FPNs do not share weights because they encode features
from different modalities, which is different from the way
to estimate optical flow [38] or object matching [23]. Then
the extracted pyramidal features will be used to estimate the
clothing flow from source clothes c; to target clothes c; in a
cascaded manner.

Clothing Flow Estimation. The estimation of clothing
flow starts from the pyramidal features with the lowest reso-
lution. We feed the concatenated S and Ty into a convolu-
tional layer (denoted as Ey ), to produce the initial clothing
flow Fy. Then, for the features in a higher-level pyramid,
we warp the source features conditioned on Fy and refine
Fn by predicting the residual flow with a subsequent con-
volutional layer F'y_1. Formally,

Fy = Ex([Sn,TnN]), (1)
anl = Z/{(Fn) + Enfl([W(Snfla U(Fn)); Tn71]>7 (2)

where n = N, N — 1,...,2. U(-) is a x2 nearest-neighbor
upsampling and W(S, F) denotes warping feature map S
according to flow F' using bilinear interpolation, which en-
ables optimization with back-propagation during training
[19]. Finally, the last clothing flow F7 is used to generate
a warped source clothing image ¢, = W(cs,U(F})). In-
tuitively, the network first learns a rough clothing flow be-
tween the source and target with high-level CNN features.
Then, warping the source features at each pyramid level
eases the process of directly modeling large misalignment
and significant deformation that usually occur in clothing
transfer. The warped source features are used to estimate
a residual flow for refinement of the rough flow in the pre-
vious level. This process continues until the network gen-
erates the finest flow that helps align small displacements
(e.g., logos or graphics) between source and target clothes.

Since we encourage the visual appearance of warped
clothing ¢/ to be the same as the target one c;, a percep-
tual loss [22] between ¢, and ¢; can be minimized as:

5
Lperc(clsact) = Z)\lHd)l(C/s) - ¢l(ct)||17 (3)
1=0

where ¢;(I) is the {-th feature map of image I in a VGG-
19 [37] network pre-trained on ImageNet with ¢o(z) = =
denoting pixel L; loss.

However, only minimizing Lye,.(cs, c;) may produce
inaccurate warping when different clothing items have sim-
ilar visual patterns, making it hard for the network to deter-
mine their boundaries and introducing undesired misalign-
ment. To address this issue, we further design a structure
loss to enforce structural constraints of the warped clothing
regions. More specifically, the source semantic segmenta-
tion map is also warped according to the estimated clothing
flow: s, = W(ss,U(F1)) and we minimize:

Latruct(shr50) = Y L(se.i)L(sea)llsh; — seall, @)
where the subscript 7 denotes the channel index of a seg-
mentation map (i.e., a specific clothing category). 1 is an
indicator function, and 1(s,;)1(s:,;) specifies if a cloth-
ing category ¢ exists both in the source and target images.
We modify the perceptual loss to be aware of each clothing
region-of-interest (ROI):

/ !
Lroi,perc(csa Ct, Sg, St) =

5
SN L(se ) L(se)llou(sh; © €h) — dilsei @ er)lla,
=0 i
5

which guides our model to focus on warping the texture spe-
cific for each ROI. Consequently, each warped clothing will
not be affected by other regions or background, yielding a
more coherent warping result.

Flow Regularization. Since appearance flow is dense and
has a high dimension of freedom, our clothing flow esti-
mation network allows pixel-to-pixel matching between the
source and target clothing regions, leading to a better es-
timation of geometric changes, which is the key to gener-
ate photorealistic results. However, using dense flows usu-
ally presents unappealing artifacts without proper regular-
ization, thus we further introduce a total variation loss that
regularizes the estimated flow field to enforce smoothness:

N
Lant = Y_ [V Full1, 6)
n=1

which is similar in spirit to the regularization term in TV-
L1 method [43, 9] for estimating optical flow. Finally, the
whole objective function of our cascaded warping network
is presented as:

Lflow = Lroi,perc + )\structhtTuct + Asthsmt (7)

with X\ balancing different losses. On the left of Figure
1, we illustrate some examples of the warped clothing re-
gions. The results demonstrate strong robustness to occlu-
sions, partial observability and large deformations.
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Discussion. Our flow estimation network predicts more ac-
curate deformations than existing methods [39, 4, 33] which
compute a thin plane spline (TPS) transformation. On one
hand, the TPS transformation has much fewer transforma-
tion parameters and fails to model highly non-rigid transfor-
mations. On the other hand, they estimate the transforma-
tion in a late stage of a feature encoder (e.g., 4 x 4 feature
map in the 6tk conv. layer), and hence discard the low-level
information in the early stages which is essential to align
clothing fine details. Besides, several recent works estimate
the transformations in a non-learnable fashion [2, 14, 36]—
they use keypoints or clothing masks to compute the param-
eters of a transformation, which is unaware of the appear-
ance correspondence and can only roughly align textures.

Moreover, unlike most optical flow estimation methods
[17, 16, 7, 38] that need to search matching features in a
local range, ClothFlow estimates the clothing flow with the
feature extracted on the whole image and does not struggle
to model long-range correspondence or partial observabil-
ity. Also, they usually require to obtain a computationally
expensive cost volume, but ClothFlow achieves satisfactory
performance with one conv layer E; to predict the flow at
each pyramid level.

3.3. Clothing Preserving Rendering

At the final stage of ClothFlow, we simply take the
warped clothes ¢, with other guidances, including source
image I, target semantic layout s;, and target pose p;, to
produce our final result I, using an encoder-decoder gen-
erative network [34], as shown in Figure 2. Two standard
losses are combined for generating a high-quality result I:

Lyender = Lperc + Lstyle' (8)
where L., is the perceptual loss between I; and ft as de-
fined in Eqn. 3. Lgtyie = Yoy nlGi(Le) — Gi(I)| |1, is
the style loss [10, 22] widely used in style transfer tasks
to match the style information between two images. G is
the Gram matrix [10] for the [-th layer in the pre-trained
VGG network. We do not use an adversarial loss because
we found that adding the style loss guides the rendering net-
work to directly learn texture details in the warped clothes,
which is good enough to generate reasonable results.

Note that during training, we use the ground truth target
semantic map s; to train the second and third stages of our
ClothFlow (i.e., input to target feature pyramid network and
rendering network). At test time, as s; is not accessible, the
synthesized conditional semantic map 35; will serve as input
to the two networks.

3.4. Virtual Try-on

Given a product clothing image and a person wearing
different garments, the goal of virtual try-on [14] is to syn-
thesize the product item onto the target person with his/her

pose and identity preserved as shown on the right of Figure
1. Note that the virtual try-on [14] task is essentially very
similar to pose-guide person image generation—they both
target to synthesize a novel image that has the appearance
of a source image with the pose of a target person. There-
fore, we demonstrate that ClothFlow, with a small modi-
fication, can tackle this problem. In specific, we treat the
product image as the source image and the person’s pose as
the target pose in ClothFlow, and obtain the clothing flow
between the product image and the corresponding region
on that person. Following CP-VTON [39], a composition
mask is applied with an L; loss encouraging the synthe-
sized virtual try-on image to preserve clothing details in the
warped product image, and the style loss in ClothFlow is
removed for fair comparison. We keep the original pants
regions as suggested in the supplementary material of VI-
TON [14]. Experiments illustrate that ClothFlow warps the
product image more seamlessly on the target person, and
renders try-on results with fewer artifacts.

4. Experiments
4.1. Data and Experiment Setup

Datasets. We evaluate ClothFlow on DeepFashion dataset
[27] for pose-guided person image generation and the VI-
TON [14] dataset for virtual try-on task. The DeepFashion
In-shop Clothes Retrieval Benchmark contains 52,712 fash-
ion images of resolution 256 x 256. Image pairs containing
the same person in the same outfit with different poses are
used for pose-guided person image generation. Following
the original protocol in [28, 36], we use 89,262 pairs for
training and 12,000 pairs for testing, making sure there is
no overlap between two sets. For VITON, we follow [40] to
remove duplicates and clean the train/test splits in the orig-
inal dataset. As in real-world scenarios, each testing pair
contains a product image and a person wearing a clothing
item different from the one in the product image.
Implementation Details. We use Adam [24] as optimizer
with 81 = 0.5, B2 = 0.999 and a fixed learning rate of
0.0002. We train our 3 stages for 50K, 200K, 200K iter-
ations, all with a batch size of 12. The conditional lay-
out generator and the rendering generator are U-Net [34]
type networks with skip connections. The backbones of two
FPNs have similar structure to the encoder of a U-Net. We
set the dimension of the pyramidal features to 256 as in [26].
The detailed network structures can be found in the supple-
mentary material. We set Azt = 10 and Agpooth = 2,
such that losses in Eqn. 7 are in similar scales.

Evaluation Metrics. We adopt Structural Similarity
(SSIM) [41] to measure the patch-wise synthesis accuracy,
and Inception Score (IS) [35] to measure the realism. Fur-
ther, we perform a user study to evaluate the perceptual
quality of generated images. Resulted Images of the com-
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Methods Deform Dense SSIM IS

PG? [28] X X 0.762  3.09
DSC [36] v X 0.761 3.35
VUNET [8] X X 0.786 3.09
BodyROI7 [29] X X 0.614 3.23
DPT [30] X v 0.785 3.61
Soft-Gated [4] e X 0.793 3.31
CBI[12] v v 0.835 2.92
w/o Layout v X 0.758  3.63
w/o Flow X X 0.757 3.71
w/o Flow + TPS v X 0.758 3.74
w/o Cascade v X 0.759 3.74
w/o Style v X 0.756 3.56
ClothFlow v X 0.760 3.75
ClothFlowDense v v 0.771 3.88

Table 1: Comparisons in terms of SSIM and IS on Deep-
Fashion. Deform and Dense denote if the method models
deformation and uses DensePose descriptor, respectively.

DSC [36] VUNET [8] DPT [30] CBI[12] Soft-Gated [4]
80.9% 63.4% 90.2% 69.7% 57.9%

Table 2: Human preference of ClothFlow against other
methods on DeepFashion. Chance is 50%, higher is better.

pared methods are kindly provided by the original authors
or generated using publicly available codes.

4.2. Pose-guided Image Generation

Quantitative Results. We compare ClothFlow with state-
of-the-art pose-guided image generators by reporting SSIM
and IS in Table 1. We show results of ClothFlow by lever-
aging a DensePose descriptor [1] (ClothFlowDense). We
replace the 2D keypoint heatmap p; with the DensePose de-
scriptor encoded as a heatmap (UV + one-hot I [30]) in our
conditional layout generator and rendering network. We
find that ClothFlow achieves comparable quantitative per-
formance to other methods, while ClothFlowDense can fur-
ther improve the performance by injecting more accurate
clues about the target person.

User Study. Since SSIM and IS may not correlate well with
image visual quality, we conduct a perceptual study by fol-
lowing [12, 1]. Given two generated images, human raters
are asked to choose the one transferring source appearance
more realistically. Table 2 shows the percentage of trials
where our method is preferred over the others. The results
verify the ability of ClothFlow to generate realistic images.
Qualitative Results. Figure 3 demonstrates that Cloth-
Flow generates more perceptually convincing results com-
pared to state-of-the-art methods. In particular, we precisely
model the clothing deformation between different views,

Source Target DSC VUNET DPT CBI Soft- Galed Ours

A

i
Figure 3: Vlsual comparisons on pose-gulded person im-
age generation. Please zoom in for details.

Source Ours Fullwarp  w/o Layout warp TPS warp w/o Cascade warp wi/o Flow

q )

Target Ours Full render w/o Layout render ~ TPS render w/o Cascade render w/o Style

P00l

Figure 4: Visual results when removing different compo-
nent in ClothFlow. Please zoom in for details.

and transfers clothing details more naturally. ClothFlow is
free of the adversarial artifacts appeared in most of adver-
sarial methods [1, 12, 4, 36].

Ablation Study. To evaluate the contributions of key com-
ponents, we compare ClothFlow with the following abla-
tions: w/o Layout: removing the conditional layout genera-
tor and replacing target semantic layout in the input of the
other stages with the target keypoint heatmap; w/o Flow:
removing stage 2 in ClothFlow and the warped clothing re-
gion in the rendering stage; w/o Flow + TPS: predicting a
TPS transformation instead of clothing flow in stage 2 as
[4, 39, 6]; w/o Cascade: estimating clothing flow only with
Ty and S without cascades; w/o Style: removing style loss
in stage 3. From Table 1, we can find that, firstly, all these
baselines have similar SSIM which is also observed in re-
lated papers [4, 36, 12] as SSIM only roughly measures lo-
cal similarities. Secondly, adding layout as an intermediate
guidance and style loss slightly improve the realism.

In Figure 4, we further illustrate the importance of these
components with a visual example with a large non-rigid
deformation. We observe that (1) compared to w/o Layout,
our method generates structurally realistic warping and ren-
dering results by predicting a conditional semantic layout;
(2) without our cascaded clothing flow estimation, predict-
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Methods Warp-SSIM  Mask-SSIM  Human
VITON [14] 0.779 0.786 87.3%
CP-VTON [39] 0.806 0.792 81.2%
w/o Cascade 0.833 0.802 69.6%
ClothFlow 0.841 0.803 -

Table 3: Quantitative comparisons in terms of Warp-
SSIM, Mask-SSIM and how often ClothFlow is preferred
in the user study (Human) on the VITON dataset.

ing a TPS transformation and directly estimating a dense
flow field both fail to warp textures on two legs; (3) detailed
textures are missing if we do not warp the clothing region
(w/o Flow) or remove the style loss (w/o Style), which is
consistent with their quantitative performance.

4.3. Virtual Try-on

We further evaluate ClothFlow on virtual try-on task.
In contrast to pose-guided image generation that mainly
focuses on transferring textures, finer details like logos,
graphics are desired in virtual try-on applications, making
it more important to obtain an accurate estimation of spatial
deformations. We present experimental results in Table 3
and Figure 5 by comparing with state-of-the-art virtual try-
on networks [14, 39], as well as our w/o Cascaded baseline.
The other baselines are not considered because 1) Layout
and Flow have been well studied in [14, 39] and are neces-
sary recipes to realistic synthesis; 2) w/o Flow + TPS is very
similar to CP-VTON and has almost identical performance;
3) we do not use style loss for virtual try-on.

As test image pairs are shuffled to ensure that the tar-
get person wears a different item from the source product
image, we do not have the ground truth to conduct quan-
titative comparisons. Instead, we take matched pairs (i.e.,
a product image and a person wearing the product) to ob-
tain evaluation metrics as in [6]. Moreover, inspired by
[29, 36] that only compute SSIM for human pixels to iso-
late the influence of generating various backgrounds, we
compute the SSIM between the warped product image and
the ground truth clothing region (Warp-SSIM), as well as
the SSIM between clothing regions in the real and gener-
ated images (Mask-SSIM), rather than computing SSIM for
the whole image since we focus on clothing regions. As
a result, Warp-SSIM measures how accurate the warping
is, while Mask-SSIM measures how well a method recon-
structs the clothing. However, for visual comparisons and
the user study, we stick to the original evaluation protocol.

Results presented in Table 3 indicate that ClothFlow
(1) significantly improves the warping accuracy, with 0.03
higher Warp-SSIM score than CP-VTON, and (2) is better
at synthesizing the desired clothing with the highest Mask-
SSIM score. Compared to its own variant, ClothFlow ob-

o
".

Figure 5: Virtual try-on comparisons. We compare Cloth-
Flow to VITON [14] and CP-VTON [39] by visualizing the
warping (overlaid on the target person) and try-on results.
ClothFlow estimates a more natural and accurate clothing
deformation. Interestingly, ClothFlow warps the occluded
regions (e.g., unwanted inner collars, regions behind hair
and arms) to avoid artifacts that usually occur in other meth-
ods. Please zoom in for details.

tains higher performance by gradually warping the pyrami-
dal features and predicting the residual flow in a cascaded
fashion. Figure 5 qualitatively compares these methods,
from which we can see that our method naturally deforms
the clothing image conditioned on the target person and ren-
ders try-on results with clothing details preserved.

5. Conclusion

We introduce ClothFlow to model the appearance flow
between source and target clothing regions for pose-guided
person image generation and virtual try-on. At the core of
ClothFlow is a cascaded appearance flow estimation net-
work with a two-stream architecture to progressively warp
the source image features and refine the flow prediction.
The estimated flow properly handles the geometric defor-
mation as well as occlusions/invisibility between the source
and target image, making ClothFlow favorable to other
state-of-the-art methods on two standard image synthesiz-
ing tasks. We believe the encouraging qualitative results
of ClothFlow will inspire computer vision researchers to
explore more effective means for capturing the geometric
changes in generative models.
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