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Abstract

ConvNets achieve good results when training from clean

data, but learning from noisy labels significantly degrades

performances and remains challenging. Unlike previous

works constrained by many conditions, making them infea-

sible to real noisy cases, this work presents a novel deep

self-learning framework to train a robust network on the

real noisy datasets without extra supervision. The proposed

approach has several appealing benefits. (1) Different from

most existing work, it does not rely on any assumption on

the distribution of the noisy labels, making it robust to real

noises. (2) It does not need extra clean supervision or

accessorial network to help training. (3) A self-learning

framework is proposed to train the network in an iterative

end-to-end manner, which is effective and efficient. Exten-

sive experiments in challenging benchmarks such as Cloth-

ing1M and Food101-N show that our approach outperforms

its counterparts in all empirical settings.

1. Introduction

Deep Neural Networks (DNNs) achieve impressive re-

sults on many computer vision tasks such as image recog-

nition [13, 33, 34], semantic segmentation [22, 40, 24], ob-

ject detection [5, 30, 27, 18] and cross modality tasks [20,

21, 41]. However, many of these tasks require large-scale

datasets with reliable and clean annotations to train DNNs

such as ImageNet [2] and MS-COCO [19]. But collect-

ing large-scale datasets with precise annotations is expen-

sive and time-consuming, preventing DNNs from being em-

ployed in real-world noisy scenarios. Moreover, most of the

“ground truth annotations” are from human labelers, who

also make mistakes and increase biases of the data.

An alternative solution is to collect data from the Inter-

net by using different image-level tags as queries. These

tags can be regarded as labels of the collected images. This

solution is cheaper and more time-efficient than human an-

notations, but the collected labels may contain noises. A

lot of previous work has shown that noisy labels lead to

an obvious decrease in performance of DNNs [38, 23, 26].

Therefore, attentions have been concentrated on how to im-
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Figure 1. An example of solving two classes classification problem

using different number of prototypes. Left: Original data distribu-

tion. Data points with the same color belong to the same class.

Upper Right: The decision boundary obtained by using a single

prototype for each class. Lower Right: The decision boundary

obtained by two prototypes for each class. Two prototypes for

each class leads to a better decision boundary.

prove the robustness of DNNs against noisy labels.

Previous approaches tried to correct the noisy labels

by introducing a transition matrix [25, 9] into their loss

functions, or by adding additional layers to estimate the

noises [6, 32]. Most of these methods followed a simple

assumption to simplify the problem: There is a single tran-

sition probability between the noisy label and ground-truth

label, and this probability is independent of individual sam-

ples. But in real cases, the appearance of each sample has

much influence on whether it can be misclassified. Due

to this assumption, although these methods worked well

on hand-crafted noisy datasets such as CIFAR10 [12] with

manually flipped noisy labels, their performances were lim-

ited on real noisy datasets such as Clothing1M [38] and

Food101-N [15].

Also, noisy tolerance loss functions [35, 39] have been

developed to fight against label noises, but they had a simi-

lar assumption as the above noise correction approaches. So

they were also infeasible for real-world noisy datasets. Fur-

thermore, many approaches [15, 17, 37] solved this prob-
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lem by using additional supervision. For instance, some of

them manually selected a part of samples and asked human

labelers to clean these noisy labels. By using extra super-

vision, these methods could improve the robustness of deep

networks against noises. The main drawback of these ap-

proaches was that they required extra clean samples, mak-

ing them expensive to apply in large-scale real-world sce-

narios.

Among all the above work, CleanNet [15] achieved the

existing state-of-the-art performance on real-world dataset

such as Clothing1M [38]. CleanNet used “class prototype”

(i.e. a representative sample) to represent each class cate-

gory and decided whether the label for a sample is correct

or not by comparing with the prototype. However, CleanNet

also needed additional information or supervision to train.

To address the above issues, we propose a novel frame-

work of Self-Learning with Multi-Prototypes (SMP), which

aims to train a robust network on the real noisy dataset with-

out extra supervision. By observing the characteristics of

samples in the same noisy category, we conjecture that these

samples have widely spread distribution. A single class pro-

totype is hard to represent all characteristics of a category.

More prototypes should be used to get a better represen-

tation of characteristics. Figure 1 illustrated the case and

further exploration has been conducted in the experiment.

Furthermore, extra information (supervision) is not neces-

sarily available in practice.

The proposed SMP trains in an iterative manner which

contains two phases: the first phase is to train a network

with the original noisy label and corrected label generated

in the second phase. The second phase uses the network

trained in the first stage to select several prototypes. These

prototypes are used to generate the corrected label for the

first stage. This framework does not rely on any assump-

tion on the distribution of noises, which makes it feasible

to real-world noises. It also does not use accessorial neural

networks nor require additional supervision, providing an

effective and efficient training scheme.

The contributions of this work are summarized as fol-

lows. (1) We propose an iterative learning framework SMP

to relabel the noisy samples and train ConvNet on the real

noisy dataset, without using extra clean supervision. Both

the relabeling and training phases contain only one single

ConvNet that can be shared across different stages, mak-

ing SMP effective and efficient to train. (2) SMP results in

interesting findings for learning from noisy data. For exam-

ple, unlike previous work [15], we show that a single pro-

totype may not be sufficient to represent a noisy class. By

extracting multiple prototypes for a category, we demon-

strate that more prototypes would get a better representa-

tion of a class and obtain better label-correction results. (3)

Extensive experiments validate the effectiveness of SMP on

different real-world noisy datasets. We demonstrate new

state-of-the-art performance on all these datasets.

2. Related Work

Learning on noisy data. ConvNets achieved great suc-

cesses when training with clean data. However, the per-

formances of ConvNets degraded inevitably when training

on the data with noisy labels [23, 26]. The annotations

provided by human labelers on websites such as Amazon

Mechanical Turk [10] would also introduce biases and in-

correct labels. As annotating large-scale clean and unbias

dataset is expensive and time-consuming, many efforts have

been made to improve the robustness of ConvNets trained

on noisy datasets. They can be generally summarized as

three parts mentioned below.

First, the transition matrix was widely used to capture

the transition probability between the noisy label and true

label, i.e. the sample with a true label y has a certain prob-

ability to be mislabeled as a noisy label ỹ. Sukhbaatar et

al. in [32] added an extra linear layer to model the transi-

tion relationships between true and corrupted labels. Patrini

et al. in [25] provided a loss correction method to estimate

the transition matrix by using a deep network trained on the

noisy dataset. The transition matrix was estimated by using

a subset of cleanly labeled data in [9]. The above meth-

ods followed an assumption that the transition probability

is identical between classes and is irrelevant to individual

images. Therefore, these methods worked well on the noisy

dataset that is created intentionally by human with label flip-

ping such as the noisy version of CIFAR10 [12]. However,

when applying these approaches to real-world datasets such

as Clothing1M [38], their performances were limited since

the assumption above is no longer valid.

Second, another scenario was to explore the robust loss

function against label noises. [4] explored the tolerance of

different loss functions under uniform label noises. Zhang

and Sabuncu [39] found that the mean absolute loss func-

tion is more robust than the cross-entropy loss function, but

it has other drawbacks. Then they proposed a new loss func-

tion that benefits both of them. However, these robust loss

functions had certain constraints so that they did not per-

form well on real-world noisy datasets.

Third, CleanNet [15] designed an additional network to

decide whether a label is noisy or not. The weight of each

sample during network training is produced by the Clean-

Net to reduce the influence of noisy labels in optimization.

Ren et al. [29] and Li et al. [16] tried to solve noisy label

training by meta-learning. Some methods [7, 11] based on

curriculum learning were also developed to train against la-

bel noises. CNN-CRF model was proposed by Vahdat [36]

to represent the relationship between noisy and clean la-

bels. However, most of these approaches either required

extra clean samples as additional information or adopted

a complicated training procedure. In contrast, SMP not
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only corrects noisy labels without using additional clean

supervision but also trains the network in an efficient end-

to-end manner, achieving state-of-the-art performances on

both Clothing1M [38] and Food101-N [15] benchmarks.

When equipped with a few additional information, SMP

further boosts the accuracies on these datasets.

Self-learning by pseudo-labels. Pseudo-labeling [3, 35,

14] belongs to the self-learning scenario, and it is often used

in semi-supervised learning where the dataset has a few la-

beled data and most of the data are unlabeled. In this case,

the pseudo-labels are given to the unlabeled data by using

the predictions from the model pretrained on labeled data.

In contrast, when learning from noisy datasets, all data have

labels, but they may be incorrect. Reed et al. [28] pro-

posed to jointly train noisy and pseudo-labels. However, the

method proposed in [28] over-simplifies the assumption of

the noisy distribution, leading to a sub-optimal result. Joint

Optimization [35] completely replaced all labels by using

pseudo-labels. However, [35] discarded the useful informa-

tion in the original noisy labels. In this work, we predict

the pseudo-labels by using SMP and train deep network by

using both the original labels and pseudo-labels in a self-

learning scheme.

3. Our Approach

Overview. Let D be a noisily-labeled dataset, D =
{X, Y } = {(x1, y1), ..., (xN , yN )}, which contains N

samples, and yi ∈ {1, 2, ...,K} is the noisy label corre-

sponding to the image xi. K is the number of classes in

the dataset. Since the labels are noisy, they would be incor-

rect, impeding model training. To this end, a neural network

F(θ) with parameter θ is defined to transform the image x

to the label probability distribution F(θ,x). When train-

ing on a cleanly-labeled dataset, an optimization problem is

defined as

θ∗ = argminθ L(Y,F(θ,X)) (1)

where L represents the empirical risk. However, when Y

contains noises, the solution of the above equation would

be sub-optimal. When label noises are presented, all previ-

ous work that improved the model robustness can be treated

as adjusting the term in Eqn.(1). In this work, we propose to

attain the corrected label Ŷ (X,Xs) in a self-training man-

ner, where Xs indicates a set of class prototypes to repre-

sent the distribution of classes. Our optimization objective

is formulated as

θ∗ = argminθ L(Y, Ŷ (X,Xs),F(θ,X)) (2)

Although the corrected label Ŷ (X,Xs) is more precise than

the original label Y , we believe that it is still likely to mis-

classify the hard samples as noises. So we keep the original

noisy label Y as a part of supervision in the above objective

function.

The corrected label ŷi(xi,Xs) ∈ Ŷ (X,Xs) of image xi

is given by a similarity metric between the image xi and

the set of prototypes Xs. Since the data distribution of each

category is complicated, a single prototype is hard to repre-

sent the distribution of the entire class. We claim that using

multi-prototypes can get a better representation of the dis-

tribution, leading to better label correction.

In the following sections, we introduce the iterative self-

learning framework in details, where a deep network learns

from the original noisy dataset, and then it is trained to cor-

rect the noisy labels of images. The corrected labels will

supervise the training process iteratively.

3.1. Iterative Self­Learning

Pipeline. The overall framework is illustrated in Fig-

ure 2. It contains two phases, the training phase, and

the label-correction phase. In the training phase, a neu-

ral network F with parameters θ is trained, taking image

x as input and producing the corresponding label predic-

tion F(θ,x). The supervision signal is composed by two

branches, (1) the original noisy label y corresponding to the

image x and (2) the corrected label ŷ generated by the sec-

ond phase of label correction.

In the label correction phase, we extract the deep fea-

tures of the images in the training set by using the network

G trained in the first stage. Then we explore a selection

scheme to select several class prototypes for each class. Af-

terward, we correct the label for each sample according to

the similarity of the deep features of the prototypes. The

corrected labels are then used as a part of supervision in the

first training phase. The first and the second phases proceed

iteratively until the training converged.

3.2. Training Phase

The pipeline of the training phase is illustrated in Fig-

ure 2 (a). This phase aims to optimize the parameters θ of

the deep networkF . In general, the objective function is the

empirical risk of cross-entropy loss, which is formulated by

L(F(θ,x), y) = −
1

n

n
∑

i=1

log(F(θ,xi)yi
) (3)

where n is the mini-batch size and yi is the label corre-

sponding to the image xi. When learning on a noisy dataset,

the original label yi may be incorrect, so we introduce an-

other corrected label as a complementary supervision. The

corrected label is produced by a self-training scheme in the

label correction phase. With the corrected signal, the objec-

tive loss function is

Ltotal = (1− α)L(F(θ,x), y) + αL(F(θ,x), ŷ) (4)

where L is the cross entropy loss as shown in Eqn.(3), y

is the original noisy label, and ŷ is the corrected label pro-
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Figure 2. Illustration of the pipeline of iterative self-learning framework on the noisy dataset. (a) shows the training phase and (b) shows

the label correction phase, where these two phases proceed iteratively. The deep network G can be shared, such that only a single model

needs to be evaluated in testing.

duced by the second phase. The weight factor α ∈ [0, 1]
controls the important weight of the two terms.

Since the proposed approach does not require extra infor-

mation (typically produced by using another deep network

or additional clean supervision), at the very beginning of

training, we set α to 0 and train the network F by using

only the original noisy label y. After a preliminary network

was trained, we can step into the second phase and obtain

the corrected label ŷ. At this time, α is a positive value,

where the network is trained jointly by y and ŷ with the

objective shown in Eqn. (4).

3.3. Label Correction Phase

In the label correction phase, we aim to obtain a cor-

rected label for each image in the training set. These cor-

rected labels will be used to guide the training procedure for

the first phase in turn.

For label correction, the first step is to select several

class prototypes for each category. Inspired by the clus-

tering method [31], we propose the following method to

pick up these prototypes. (1) We use the preliminary net-

work trained in the first phase to extract deep features of

images in the training set. In experiments, we employ the

ResNet [8] architecture, where the output before the fully-

connected layer is regarded as the deep features, denoted

as G(x). Therefore, the relationship between F(θ,x) and

G(x) is F(θ,x) = f(G(x)), where f is the operation on

the fully-connected layer of ResNet. (2) In order to select

the class prototypes for the c-th class, we extract a set of

deep features, {G(xi)}
n
i=1, corresponding to a set of im-

ages {xi}
n
i=1 in the dataset with the same noisy label c.

Then, we calculate the cosine similarity between the deep

features and construct a similarity matrix S ∈ R
n×n, n is

the number of images with noisy label c and Sij ∈ S with

Sij =
G(xi)

TG(xj)

||G(xi)||2||G(xj)||2
(5)

Here Sij is a measurement of the similarity between two

images xi and xj . Larger Sij indicates the two images

with higher similarity. Both [31] and [7] used Euclidean

distance as the similarity measurement, but we find that co-

sine similarity is a better choice to correct the labels. The

comparisons between the Euclidean distance and the cosine

similarity are provided in experiment. An issue is that the

number of images n in a single category is huge e.g. n =70k

for Clothing1M, making the calculation of this cosine sim-

ilarity matrix S time-consuming. Furthermore, latter calcu-

lation using such a huge matrix is also expensive. So we

just randomly sample m images (m < n) in the same class

to calculate the similarity matrix S
m×m to reduce the com-

putational cost. To select prototypes, we define a density ρi
for each image xi,

ρi =

m
∑

j=1

sign(Sij − Sc) (6)
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where sign(x) is the sign function1. The value of Sc is a

constant number given by the value of an element ranked

top 40% in S where the values of elements in S are ranked

in an ascending order from small to large. We find that the

concrete choice of Sc does not have influence in the final

result, because we only need the relative density of images.

Discussions. From the above definition of density ρ,

the image with larger ρ has more similar images around it.

These images with correct labels should be close to each

other, while the images with noisy labels are usually iso-

lated from others. The probability density with ρ for images

with correct label and images with the wrong label is shown

in Figure 3 (a). We can find the images with correct labels

are more possible to have large ρ value while those images

with wrong labels appear in the region with low ρ. In other

words, the images with larger density ρ have a higher prob-

ability to have the correct label in the noisy dataset and can

be treated as prototypes to represent this class. If we need

p prototypes for a class, we can regard the images with the

top-p highest density values as the class prototypes.

Nevertheless, the above strategy to choose prototypes

has a weakness, that is, if the chosen p prototypes belonging

to the same class are very close to each other, the represen-

tative ability of these p prototypes is equivalent to using just

a single prototype. To avoid such case, we further define a

similarity measurement ηi for each image xi

ηi =

{

maxj, ρj>ρi
Sij , ρi < ρmax

minj Sij , ρi = ρmax

(7)

where ρmax = max{ρ1, ..., ρm}. From the definition of η,

we find that for the image xi with density value equaled to

ρmax (ρi = ρmax), its similarity measure ηi is the small-

est. Otherwise, for those images xi with ρi < ρmax, the

similarity ηi is defined as the maximum of the cosine simi-

larity between the image i with features G(xi) and the other

image j with features G(xj), whose density value is higher

than xi (ρj > ρi).

From the above definitions, smaller similarity value ηi
indicates that the features corresponding to the image i are

not too close the other images with density ρ larger than

it. So, the sample with high-density value ρ (probability a

clean label), and low similarity value η (a clean label but

moderately far away from other clean labels) can fulfill our

selection criterion as the class prototypes. In experiments,

we find that the samples with high density ρ ranked the top

often have relatively small similarity values η.

As shown in Figure 3 (b), red dots are samples with den-

sity ρ ranked in the top. Over 80% of the samples have

η > 0.9 and half of the samples have η > 0.95. So those

red dots have relative small η value and far away from each

1We have sign(x) = 1 if x > 0; sign(x) = 0 if x = 0; otherwise

sign(x) = −1.
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Figure 3. (a) The probability density with the density ρ for sample

with correct label (blue line) and sample with wrong label (green

line) for 1280 images sampled from the same noisy class in Cloth-

ing1M dataset. (b) The distribution between similarity η and den-

sity ρ. the samples are the same as (a). Red dots are samples with

top-8 highest ρ value.

other. It also proves our claim that the samples in the same

class tend to gather in several clusters, so a single proto-

type is hard to represent an entire class and therefore more

prototypes are necessary. In experiments, we select the pro-

totypes ranking in the top with η < 0.95.

After the selection of prototypes for each class, we have a

prototype set {G(X1), ...,G(Xc), ...,G(XK)} (represented

by deep features), where Xc = {xc1, ...,xcp} is the selected

images for the c-th class, p is the number of prototypes for

each class, and K is the number of classes in the dataset.

Given an image x, we calculate the cosine similarity be-

tween extracted features G(x) and different sets of proto-

types G(Xc). The similarity score σc for the c-th class is

calculated as

σc =
1

p

p
∑

l=1

cos(G(x),G(xcl)), c = 1...K (8)

where G(xcl) is the l-th prototype for the c-th class. Here

we use the average similarity over p prototypes, instead of

the maximum similarity, because we find that combination

(voting) from all the prototypes might prevent misclassify-

ing some hard samples with almost the same high similar-

ity to different classes. Then, we obtain the corrected label

ŷ ∈ {1, . . . ,K} by

ŷ = argmaxc σc, c = 1...K (9)

After getting the corrected label ŷ, we treat it as comple-

mentary supervision signal to train the neural network F in

the training phase.

3.4. Iterative Self­Learning

As shown in Algorithm 1, the training phase and the la-

bel correction phase proceed iteratively. The training phase

first trains an initial network by using image x with noisy

label y, as no corrected label ŷ provided. Then we proceed

to the label correction phase. Feature extractor in this phase

shares the same network parameters as the network F in
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Algorithm 1 Iterative Learning

1: Initialize network parameter θ

2: for M = 1 : num epochs do

3: if M < start epoch then

4: sample (X, Y ) from training set.

5: θ(t+1) ← θ(t) − ξ∇L(F(θ(t),X), Y )
6: else

7: Sample {xc1, . . . ,xcm} for each class label c.

8: Extract the feature and calculate the similarity S.

9: Calculate the density ρ and elect the class proto-

types G(Xc) for each class c.

10: Get the corrected ŷ for each sample xi

11: sample (X, Y, Ŷ ) from training set.

12: θ(t+1) ← θ(t) − ξ∇((1 − α)L(F(θ(t),X), Y ) +
αL(F(θ(t),X), Ŷ )

13: end if

14: end for

the training phase. We randomly sample m images from

the noisy dataset for each class and extract features by F ,

and then the prototype selection procedure selects p proto-

types for each class. Corrected label ŷ is assigned to every

image x by calculating the similarity between its features

G(x) and the prototypes. This corrected label ŷ is then used

to train the network F in the next epoch. The above proce-

dure proceeds iteratively until converged.

4. Experiments

Datasets. We employ two challenging real-world noisy

datasets to evaluate our approach, Clothing1M [38] and

Food101-N [15]. (1) Clothing1M [38] contains 1 million

images of clothes, which are classified into 14 categories.

The labels are generated by the surrounding text of the im-

ages on the Web, so they contain many noises. The accuracy

of the noisy label is 61.54%. Clothing1M is partitioned into

training, validation and testing sets, containing 50k, 14k and

10k images respectively. Human annotators are asked to

clean a set of 25k labels as a clean set. In our approach,

they are not required to use in training. (2) Food101-N [15]

is a dataset to classify food. It contains 101 classes with

310k images searched from the Web. The accuracy of the

noisy label is 80%. It also provides 55k verification labels

(clean by humans) in the training set.

Experimental Setup. For the Clothing1M dataset, we

use ResNet50 pretrained on the ImageNet. The data prepro-

cessing procedure includes resizing the image with a short

edge of 256 and randomly cropping a 224×224 patch from

the resized image. We use the SGD optimizer with a mo-

mentum of 0.9. The weight decay factor is 5 × 10−3, and

the batchsize is 128. The initial learning rate is 0.002 and

decreased by 10 every 5 epochs. The total training pro-

cesses contain 15 epochs. In the label correction phase, we

# Method Data Accuracy

1 Cross Entropy 1M noisy 69.54

2 Forward [25] 1M noisy 69.84

3 Joint Optim. [35] 1M noisy 72.23

4 MLNT-Teacher [16] 1M noisy 73.47

5 Ours 1M noisy 74.45

6 Forward [25] 1M noisy + 25k verify 73.11

7 CleanNet whard [15] 1M noisy + 25k verify 74.15

8 CleanNet wsoft [15] 1M noisy + 25k verify 74.69

9 Ours 1M noisy + 25k verify 76.44

10 Cross Entropy 1M noisy+ 50k clean 80.27

11 Forward [25] 1M noisy + 50k clean 80.38

12 CleanNet wsoft [15] 1M noisy + 50k clean 79.90

13 Ours 1M noisy + 50k clean 81.16

Table 1. The classification accuracy (%) on Clothing1M compare

with other methods.

randomly sample 1280 images for each class in the noisy

training set, and 8 class prototypes are picked out for each

class. For the Food-101N, the learning rate decreases by 10

every 10 epochs, and there are 30 epochs in total. The other

settings are the same as that of Clothing1M.

4.1. Clothing1M

We adopt the following three settings by following pre-

vious work. First, only noisy dataset is used for training

without using any extra clean supervision in the training

process. Second, verification labels are provided, but they

are not used to train the network directly. e.g. They are used

to train the accessorial network as [15] or to help select pro-

totypes in our method. Third, both noisy dataset and 50k

clean labels are available for training.

We compare the results in Table 1. We see that in the

first case, the proposed method outperforms the others by a

large margin, e.g. improving the accuracy from 69.54% to

74.45%, better than Joint Optimization [35] (#3) by 2.22%

and MLNT-Teacher [16] (#4) by 0.98%. Our result is even

better than #6 and #7 which uses extra verification labels.

For the second case, Traditional Cross-Entropy is not

suitable. [25] used the information to estimate the transition

matrix, while CleanNet [15] used the verification labels to

train an additional network to predict whether the label is

noisy or not. Our method uses this information to select the

class prototypes. In this case, we still achieve the best result

compared to all methods.

For the third case, all data (both noisy and clean) can

be used for training. All the methods first train a model

on the noisy dataset and then the model is finetuned using

vanilla cross-entropy loss on the clean dataset. We see that

our method still outperforms the others. CurriculumNet [7]

provides a slightly better result (81.5%) in this case. But it

uses a different backbone compared with all others, so we

do not consider it. Among all of these cases, our approach

obtains state-of-the-art performances compared to previous
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Figure 4. (a) The label accuracy (%) of labels in the original dataset (Original), labels corrected by the label correction phase in the first

iterative cycle (Correct Initial) and labels corrected by the model at the end of training (Correct Final) for each class in Clothing1M. (b)

Testing accuracy (%) with the number of prototypes p ranging from 1 to 10 for each class. The solid line denotes the accuracy got by the

model at the end of training (Final). The dotted line denotes the correct accuracy by the model just step into the label correction phase for

the first time (Initial). Noisy is the result of the training from noisy dataset only, noisy+verify indicates additional verification information

is used. (c) Testing accuracy (%) with weight factor α ranging from 0.0 to 1.0. Noisy and noisy+verify have the same meaning as (b).

Original Correct Initial Correct Final

Accuracy 61.74 74.38 77.36

Table 2. Overall label accuracy (%) of the labels in original noisy

dataset (Original), accuracy of the corrected label generated by the

label correction phase in first iterative cycle (Correct Initial) and

accuracy of the corrected labels generated by the final model when

training ends (Correct Final).

methods, showing that our method is effective and suitable

for board situations.

4.2. Ablation Study

Label Correction Accuracy. We explore the classifica-

tion accuracy in the label-correction phase. Table 2 lists the

overall accuracy in the original noisy set: the accuracy of

the corrected label in the initial iterative cycle (i.e. the first

time we step into the label correction phase after training

the preliminary model), and accuracy of the corrected label

by the final model at the end of training (Final). We see that

the accuracy after the initial cycle already reaches 74.38%,

improving the original accuracy by 12.64% (61.74% vs.

74.38%). The accuracy is further improved to 77.36% at

the end of the training.

We further explore the classification accuracy for differ-

ent classes as shown in Figure 4 (a). We can find that for the

most classes with the original accuracies lower than 50%,

our method can improve the accuracy to higher than 60%.

Even for the 5th class (“Sweater”) with about 30% original

accuracy, our method still improves the accuracy by 10%.

Some of the noisy samples successfully corrected by our

approach are shown in Figure 5.

Number of Class Prototypes p. The number of class

prototypes is the key to the representation ability to a class.

When p = 1, the case is similar to CleanNet [15]. In our

method, we use p ≥ 1. Another difference is that CleanNet

attained the prototype by training an additional network.

But we just need to select images as prototypes by their

Hoodie Jacket Shirt T-Shirt Jacket Hoodie Jacket Suit

Apple pie Cup cakeEdamame  Dumpling Churros  Ice cream Sashimi Sushi

Figure 5. Samples corrected by our method. Left: The original

noisy label. Right: The right label corrected by our method. The

first row from Clothing1M and the second row from Food101-N.

density and similarity according to the data distribution.

Figure 4 (b) shows the effect of changing the number

of prototypes for each class. We select five p values and

evaluate the final test accuracy trained by either only using

1M noisy data or adding 25k verification information, as

shown by the solid lines. To have a better observation of the

influence caused by p value, we evaluate the label correction

rate by the model step into the first label correction phase,

which is similar to the correction accuracy discussed in the

last experiment. But this time we evaluate on the testing

set. This metric is easy to be evaluated, so we explore 10

p values from 1 to 10, as shown in the dotted line. When

comparing these two settings, they follow the same trend.

From the result, we find that when p = 1 i.e. one pro-

totype for each class, the accuracies are sub-optimal com-

pared to others. When using more prototypes, the perfor-

mance improves a lot, e.g. the accuracy using two proto-

types outperforms using a single one by 2.04% This also

proves our claim that a single prototype is not enough to

represent the distribution of a class. Multiple prototypes

provide more comprehensive representation to the class.

Weight factor α. Weight factor α plays an important

role in the training procedure, which decides the network

will concentrate on the original noisy labels Y or on the
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m 320 640 1280 2560

1M noisy (Final) 74.37 74.07 74.45 74.27

1M noisy (Initial) 72.04 72.03 72.09 72.05

1M noisy + 25k verify (Final) 76.43 76.49 76.44 76.55

1M noisy + 25k verify (Initial) 74.09 73.97 74.17 74.21

Table 3. The classification accuracy (%) on Clothing1M with dif-

ferent number of samples used to select prototypes for each class.

Final denotes the accuracy get by the model at the end of training.

Initial denotes the correct accuracy by the model just step into the

first label correction phase.

corrected labels Ŷ . If α = 0, the network is trained by us-

ing only noisy labels without correction. Another extreme

case is when α = 1, the training procedure discards the

original noisy labels and only depends on the corrected la-

bels. We study the influence of different α ranging from

0.0 to 1.0 and the test accuracy with different α is shown in

Figure 4 (c).

From the result, we find that training using only the noisy

label Y i.e. α = 0 leads to poor performance. Although the

corrected label is more precise, the model trained using only

corrected label Ŷ also performs sub-optimal. The model

jointly trained by using the original noisy label Y and the

corrected label Ŷ achieves the best performance when α =
0.5. The accuracy curve also proves our claim that label

correction may misrecognize some hard samples as noises.

Directly replacing all noisy labels with the corrected ones

would make the network focused on simple features and

thus degrade the generalization ability.

Number of Samples m. To avoid massive calculation

related to the similarity matrix S, we randomly select m

images rather than using all of the images in the same class

to compute the similarity matrix. We examine how many

samples are enough to select the class prototypes to repre-

sent the class distribution well. We explore the influence of

the images number m for each class.

The results are listed in Table 3. Experiment setting

is similar to the experiments above to study the number

of class prototypes. The models are trained on the noisy

dataset as well as the noisy dataset plus extra verification la-

bels respectively. The results are the accuracy of the trained

model on the test set. Besides evaluating the classification

accuracy got by the final model, we also examine the cor-

rection accuracy of the model just step into the first label

correction phase, which is denoted by “Initial” in the ta-

ble. By analyzing the results in different cases, we see that

the performance is not sensitive to the number of images m.

Compared with 70k training images in Clothing1M for each

class, we merely sample 2% of them and obtain the class

prototypes to represent the distribution of the class well.

Prototype Selection. To explore the influence of the

method used to select prototypes, we also use two other

clustering methods to get the prototypes. One is the den-

sity peak by Euclidean distance [31], while the other is the

Method Data Accuracy

K-means++ [1] 1M noisy 74.08

Density peak Euc. [31] 1M noisy 74.11

Ours 1M noisy 74.45

K-means++ [1] 1M noisy + 25k verify 76.22

Density peak Euc. [31] 1M noisy + 25k verify 76.05

Ours 1M noisy + 25k verify 76.44

Table 4. The classification accuracy (%) on Clothing1M with dif-

ferent cluster methods used to select the prototypes.

# Method Accuracy

1 Cross Entropy 84.51

2 CleanNet whard [15] 83.47

3 CleanNet wsoft [15] 83.95

4 Ours 85.11

Table 5. The classification accuracy (%) on Food-101N compare

with other methods.

widely used K-means algorithm, that is, K-means++ [1].

The prototypes attained by all the methods are used to pro-

duce the corrected labels for training. Results are listed in

Table 4. We see that the method used to generate proto-

types does not largely impact the accuracy, implying that

our framework is not sensitive to the clustering method. But

the selection method proposed in this work still performs

better than others.

4.3. Food­101N

We also evaluate our method on the Food-101N [15]

dataset. The results are shown in Table 5. We find that our

method also achieves state-of-the-art performance on Food-

101N, outperforming CleanNet [15] by 1.16%.

5. Conclusion

In this paper, we propose an iterative self-learning frame-

work for learning on the real noisy dataset. We prove that

a single prototype is insufficient to represent the distribu-

tion of a class and multi-prototypes are necessary. We also

verify our claim that original noisy labels are helpful in the

training procedure although the corrected labels are more

precise. By correcting the label using several class proto-

types and training the network jointly using the corrected

and original noisy iteratively, this work provides an effec-

tive end-to-end training framework without using an acces-

sorial network or adding extra supervision on a real noisy

dataset. We evaluate the methods on different real noisy

datasets and obtain state-of-the-art performance.
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