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Abstract

Visual compatibility is critical for fashion analysis, yet
is missing in existing fashion image synthesis systems. In
this paper, we propose to explicitly model visual compati-
bility through fashion image inpainting. We present Fashion
Inpainting Networks (FiNet), a two-stage image-to-image
generation framework that is able to perform compatible
and diverse inpainting. Disentangling the generation of
shape and appearance to ensure photorealistic results, our
framework consists of a shape generation network and an
appearance generation network. More importantly, for
each generation network, we introduce two encoders inter-
acting with one another to learn latent codes in a shared
compatibility space. The latent representations are jointly
optimized with the corresponding generation network to
condition the synthesis process, encouraging a diverse set of
generated results that are visually compatible with existing
fashion garments. In addition, our framework is readily ex-
tended to clothing reconstruction and fashion transfer. Ex-
tensive experiments on fashion synthesis quantitatively and
qualitatively demonstrate the effectiveness of our method.

*Weilin Huang is the corresponding author.
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1. Introduction

Recent breakthroughs in deep generative models, es-
pecially Variational Autoencoders (VAEs) [30], Genera-
tive Adversarial Networks (GANSs) [16], and their variants
[25, 44, 10, 31], open a new door to a myriad of fashion
applications in computer vision, including fashion design
[28, 52], language-guided fashion synthesis [78, 51, 17],
virtual try-on systems [19, 63, 5, 8, 66, 7], clothing-based
appearance transfer [48, 74], etc. Unlike generating images
of rigid objects, fashion synthesis is more complicated as
it involves multiple clothing items that form a compatible
outfit. Items in the same outfit might have drastically dif-
ferent appearances like texture and color (e.g., cotton shirts,
denim pants, leather shoes, etc.), yet they are complemen-
tary to one another when assembled together, constituting
a stylish ensemble for a person. Therefore, exploring com-
patibility among different garments, an integral collection
rather than isolated elements, to synthesize a diverse set of
fashion images is critical for producing satisfying virtual
try-on experiences and stunning fashion design portfolios.
However, modeling visual compatibility in computer vision
tasks is difficult as there is no ground-truth annotation spec-
ifying whether fashion items are compatible. Hence, re-
searchers mitigate this issue by leveraging contextual rela-
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tionships (or co-occurrence) as a weak compatibility signal
[18, 62,57, 22]. For example, two fashion items in the same
outfit are considered as compatible, while those not usually
worn together are incompatible.

Similarly, we consider explicitly exploring visual com-
patibility relationships as contextual clues for the task of
fashion image synthesis. In particular, we formulate this
problem as image inpainting, which aims to fill in a missing
region in an image based on its surrounding pixels. Note
that generating an entire outfit while modeling visual com-
patibility among different garments at the same time is ex-
tremely challenging, as it requires to render clothing items
varying in both shape and appearance onto a person. In-
stead, we take the first step to model visual compatibility by
narrowing it down to image inpainting, using images with
people in clothing. The goal is to render a diverse set of re-
alistic clothing items to fill in the region of a missing item in
an image, while matching the style of existing garments as
shown in Figure 1. This can be used for various fashion ap-
plications like fashion recommendation, fashion design, and
garment transfer. For example, the inpainted item can serve
as an intermediate result (e.g., query on Google/Pinterest,
picture shown to fashion stylers) to retrieve similar items
from a catalogue for recommendation.

Unlike inpainting a missing region surrounded by rigid
objects [47, 70, 73], synthesizing a clothing item that is
matched with its surrounding garments is more challeng-
ing since (1) we need to generate a diverse set of results,
yet the diversity is constrained by visual compatibility; (2)
more importantly, the generalization process is essentially
a multi-modal problem—given a fashion image with one
missing garment, various items, different in both shape and
appearance, can be generated to be compatible with the ex-
isting set. For instance, in the second example in Figure 1,
one can have different types of bottoms in shape (e.g., shorts
or pants), and each bottom type may have various colors in
visual appearance (e.g., blue, gray or black). Thus, the syn-
thesis of a missing fashion item requires modeling of both
shape and appearance. However, coupling shape and ap-
pearance generation simultaneously usually fails to handle
clothing shapes and boundaries, thus creating unsatisfactory
results as discussed in [32, 78, 59].

To address these issues, we propose FiNet, a two-stage
framework illustrated in Figure 2, which fills in a missing
fashion item in an image at the pixel-level through generat-
ing a set of realistic and compatible fashion items with di-
versity. In particular, we utilize a shape generation network
(Figure 3) and an appearance generation network (Figure 4)
to generate shape and appearance sequentially. Each gen-
eration network contains a generator that synthesizes new
images through reconstruction, and two encoder networks
interacting with each other to encourage diversity while pre-
serving visual compatibility. With one encoder learning

a latent representation of the missing item, we regularize
the latent representation with the latent code from the sec-
ond encoder, whose inputs are from neighboring garments
(compatible context) of the missing item. These latent rep-
resentations are jointly learned with the corresponding gen-
erator to condition the generation process. This allows both
generation networks to learn high-level compatibility corre-
lations among different garments, enabling our framework
to produce synthesized fashion items with meaningful di-
versity (multi-modal outputs) and strong compatibility, as
shown in Figure 1. We provide extensive experimental
results on DeepFashion [39] dataset, with comparisons to
state-of-the-art approaches on fashion synthesis, where the
results confirm the effectiveness of our method.

2. Related Work

Visual Compatibility Modeling. Visual compatibility
plays an essential role in fashion recommendation and re-
trieval [38, 55, 57, 58]. Metric learning based methods have
been adopted to solve this problem by projecting two com-
patible fashion items close to each other in a style space
[42, 62, 61]. Recently, beyond modeling pairwise compat-
ibility, sequence models [18, 35] and subset selection algo-
rithms [21] capable of capturing the compatibility among a
collection of garments have also been introduced. Unlike
these approaches which attempt to predict fashion compati-
bility, we incorporate compatibility information into an im-
age inpainting framework that generates a fashion image
containing complementary garments. Furthermore, most
existing systems rely heavily on manually labeling compat-
ibility relations using supervised learning. In contrast, we
train our networks in a self-supervised manner without ex-
plicit compatibility annotations. We assume that multiple
fashion items in an outfit presented in the original catalog
image are compatible with each other, since such catalogs
are usually designed carefully by fashion experts. Thus,
minimizing a reconstruction loss can learn to generate com-
patible fashion items.

Image Synthesis. There has been a growing interest in
image synthesis with GANs [16] and VAEs [30]. To con-
trol the quality of generated images or videos with desired
properties, various supervised knowledge or conditions like
class labels [46, 2], attributes [53, 69], text [49, 75, 68], im-
ages [25, 64, 33, 6, 11], etc., are used. In the context of
generating fashion images, existing fashion synthesis meth-
ods often focus on rendering clothing conditioned on poses
[40, 45, 32, 54], textual descriptions [78, 51], textures [67],
a clothing product image [19, 63, 72, 26], clothing on a dif-
ferent person [74, 48], or multiple disentangled conditions
[10, 41, 71]. In contrast, we make our generative model
aware of fashion compatibility, which has not been fully
explored. To make our method more applicable to real-
world applications, we formulate the modeling of fashion
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Figure 2: FiNet framework. The shape generation network
(Sec. 3.1) aims to fill a missing segmentation map given
shape compatibility information, and the appearance gen-
eration network (Sec. 3.2) uses the inpainted segmentation
map and appearance compatibility information for generat-
ing the color and texture of missing clothing regions. Both
shape and appearance compatibility modules carry uncer-
tainty, allowing diverse and compatible generation.

compatibility as a compatible inpainting problem that cap-
tures high-level dependencies among various fashion items
or fashion concepts.

Furthermore, fashion compatibility is a many-to-many

mapping problem, since one fashion item can match with
multiple items of various shapes and appearances. There-
fore, our method is related to multi-modal generative mod-
els [77, 34, 13, 23, 64, 10]. In this work, we propose to learn
a compatibility latent space, where the compatible fashion
items are encouraged to have similar distributions.
Image Inpainting. Our method is also closely related
to image inpainting [47, 70, 24, 73], which synthesizes
missing regions in an image, given contextual information.
Compared with traditional image inpainting, our task is
more challenging—we need to synthesize realistic fashion
items with diversity in shape and appearance, and at the
same time, ensure that the inpainted clothing items are com-
patible in fashion style to existing garments. This requires
to explicitly encoding the compatibility by learning fashion
relationships between various garments, rather than simply
modeling the context itself. Another significant difference
is that people expect multi-modal outputs in fashion image
synthesis, whereas traditional image inpainting approaches
are mainly uni-modal.

3. FiNet: Fashion Inpainting Networks

Given an image with a missing fashion item (e.g., by
deleting the pixels in the corresponding area), our task is
to explore visual compatibility among neighboring fashion
garments to fill in the region, synthesizing a diverse set of
photorealistic clothing items varying in both shape (e.g.,
maxi, midi, mini dresses) and appearance (e.g., solid color,
floral, dotted, efc.). Each synthesized result is expected
not only to blend seamlessly with the existing image but
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Figure 3: Our shape generation network.

also to be compatible with the style of the other garments
(see Figure 1). As a result, these generated images can be
used for tasks like fashion recommendation. Furthermore,
in contrast to rigid objects, clothing items are usually sub-
ject to severe deformations, making it difficult to simulta-
neously synthesize both shape and appearance without in-
troducing unwanted artifacts. To this end, we propose a
two-stage framework named Fashion Inpainting Networks
(FiNet) that contains a shape generation network (Sec 3.1)
and an appearance generation network (Sec 3.2), to encour-
age diversity while preserving visual compatibility in fash-
ion inpainting. Figure 2 illustrates an overview of the pro-
posed framework. In the following, we present each com-
ponents of FiNet in detail.

3.1. Shape Generation Network

Figure 3 shows an overview of our shape generation net-
work. It contains an encoder-decoder based generator G
to synthesize a new image through reconstruction, and two
encoders, working collaboratively to condition the genera-
tion process, producing compatible synthesized results with
diversity. More formally, the goal of the shape generation
network is to learn a mapping with G that projects a shape
context with a missing region S as well as a person repre-
sentation p, to a complete shape map S, conditioned on the
shape information captured by a shape encoder E;.

To obtain the shape maps for training the generator, we
leverage an off-the-shelf human parser [14] pre-trained on
the Look Into Person dataset [15]. In particular, given an
input image I € R >*W>3 e first obtain its segmentation
maps with the parser, and then re-organize the parsing re-
sults into 8 categories: face and hair, upper body skin (torso
+ arms), lower body skin (legs), hat, top clothes (upper-
clothes + coat), bottom clothes (pants + skirt + dress), shoes
!, and background (others). The 8-category parsing re-

'We only consider 4 types of garments: hat, top, bottom, shoes in this
paper, but our method is generic and can be extended to more fine-grained
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sults are then transformed into an 8-channel binary map
S € {0, 1}HxWx8 'which is used as the ground truth of the
reconstructed segmentation maps for the input. The input
shape map S with a missing region is generated by mask-
ing out the area of a specific fashion item in the ground
truth maps. For example, in Figure 3, when synthesizing
top clothes, the shape context S is produced by masking
out the possible top region, represented by a bounding box
covering the regions of the top and upper body skin.

In addition, to preserve the pose and identity informa-
tion in shape reconstruction, we employ similar clothing-
agnostic features p; as described in [19, 63], which includes
a pose representation, and the hair and face layout. More
specifically, the pose representation contains an 18-channel
heatmap extracted by an off-the-shelf pose estimator [4]
trained on the COCO keypoints detection dataset [36], and
the face and hair layout is computed from the same human
parser [14] represented by a binary mask whose pixels in
the face and hair regions are set to 1. Both representa-
tions are then concatenated to form p, € RH*W*Cs where
Cs = 18 + 1 = 19 is the number of channels.

Directly using S and ps to reconstruct S, i.e., G (S ,Ds)s
using standard image-to-image translation networks [25,
40, 19], although feasible, will lead to a unique output with-
out diversity. We draw inspiration from variational autoen-
coders, and further condition the generation process with
a latent vector z; € RZ, that encourages diversity through
sampling during inference. As our goal is to produce vari-
ous shapes of a clothing item to fill in a missing region, we
train zs to encode the shape information with E. Given an
input shape =4 (z is the ground truth binary segmentation
map of the missing fashion item obtained from 5), the shape
encoder E; outputs zg, by leveraging a re-parameterization
trick to enable a differentiable loss function [77, 9], i.e.,
zs ~ Fg(xs). zs is usually forced to follow a Gaussian dis-
tribution A/(0, 1) during training, which enables stochastic
sampling at test time when x4 is unknown:

Lk1, = Dk (Es(zs) || N(0,1)), (D

where Dk (pllg) = [p(z)log 28 dz is the KL diver-
gence. The learned latent code zs, together with the shape
context S and person representation p, are input to the gen-
erator G to produce a complete shape map with missing
regions filled: S = G(S, ps, z,). Further, the shape gener-
ator is optimized by minimizing the cross entropy segmen-
tation loss between S and S:

1 HW C B
Lseg - *ﬁ Z Z Smc log(smc)7 (2)

m=1 c=1

where C' = 8 is the number of channels of the segmentation
map. The shape encoder E and the generator G, can be

categories if segmentation masks are accurately provided.

optimized jointly by minimizing:
L:Lseg+)\KLLKL; (3)

where A\ is a weight balancing two loss terms. At test
time, one can directly sample from N'(0, 1) to generate z,
enabling the reconstruction of a diverse set of results with
S = Gs(Svpsvzs)~

Although the shape generator now is able to synthesize
different garment shapes, it fails to consider visual compat-
ibility relationships. Consequently, many generated results
are visually unappealing (as will be shown in experiments).
To mitigate this problem, we constrain the sampling pro-
cess via modeling the visual compatibility relationships us-
ing existing fashion garments presented in the current im-
age, which we refer to as contextual garments, denoted as
z.. To this end, we introduce a shape compatibility encoder
E.,, with the goal of learning the fashion correlations be-
tween the shapes of synthesized garments and contextual
garments.

This intuition is based on the same assumption in com-
patibility modeling approaches that fashion items usually
worn together are compatible [18, 62, 57], and hence the
contextual garments (co-occurred garments) contain rich
compatibility information about the missing item. As a re-
sult, if a fashion garment is compatible with those con-
textual garments, its shape can be determined by looking
at the context. For instance, given a man’s tank top in the
contextual garments, the synthesized shape of the missing
garment is more likely to be a pair of men’s shorts than a
skirt. The idea is conceptually similar to two well-known
models in the text domain, i.e., continuous bag-of-words
(CBOW) [43] and skip-gram models [43]; learning to pre-
dict the representation of a word given the representations
of contextual words around it and vice versa.

As shown in Figure 3, we first extract image segments
of contextual garments using .S (by cropping S ® I). Then,
we form the visual representations of the contextual gar-
ments z. by concatenating these image segments from hat
to shoes. The compatibility encoder G then projects x.
into a compatibility latent vector ys, i.e., ys ~ Eqs(x.). In
order to use y, as a prior for generating S, we posit that
a target garment x4 and its contextual garments x. should
share the same latent space. This is similar to the shared la-
tent space assumption applied in unpaired image-to-image
translation [37, 23, 34]). Thus, the KL divergence in Eqn. 1
can be modified as,

[A/KL - DKL(Es(xé) || Ecs(xc))v (4)

which penalizes the distribution of z; encoded by E(xy)
for being too far from its compatibility latent vector ys en-
coded by E.s(z.). The shared latent space of z, and y;
can be also considered as a compatibility space, which is
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Figure 4: Our appearance generation network.

similar in spirit to modeling pairwise compatibility using
metric learning [62, 61]. Instead of reducing the distance
between two compatible samples, we minimize the differ-
ence between two distributions as we need randomness for
generating diverse multi-modal results. Through optimiz-
ing Eqn. 4, the generation of § = G,(S, ps, zs) not only
is aware of the inherent compatibility information embed-
ded in contextual garments, but also enables compatibility-
aware sampling during inference when x, is not available—
we can simply sample y; from E.s(x.), and compute the
final synthesized shape map using S = G(S, ps, ys). Con-
sequently, the generated clothing layouts should be visually
compatible to existing contextual garments. The final ob-
jective function of our shape generation network is

Ls = Lseg + AKLIA/KL~ (5)
3.2. Appearance Generation Network

As illustrated in Figure 2, the generated compatible
shapes of the missing item are input into the appearance
generation network to generate compatible appearances.
The network has an almost identical structure as our shape
generation network, consisting of an encoder-decoder gen-
erator GG, for reconstruction, an appearance encoder F, that
encodes the desired appearance into a latent vector z,, and
an appearance compatibility encoder E., that projects the
appearances of contextual garments into a latent appearance
compatibility vector y,. Nevertheless, the appearance gen-
eration differs from the one modeling shapes in the follow-
ing aspects. First, as shown in Figure 4, the appearance
encoder F, takes the appearance of a missing clothing item
as input instead of its shape, to produce a latent appearance
code z, as input to G, for appearance reconstruction.

In addition, unlike G that reconstructs a segmentation
map by minimizing a cross entropy loss, the appearance
generator G, focuses on reconstructing the original image
I in RGB space, given the appearance context I, in which
the fashion item of interest is missing. Further, the per-

son representation p, € RHY*WXL input to G, consists
of the ground truth segmentation map S € RHXWx8 (3t
test time, we use the segmentation map S generated by our
first stage as S is not available), as well as a face and hair
RGB segment. The segmentation map contains richer in-
formation than the keypoints description about the person’s
configuration and body shape. And the face and hair im-
age constrains the network to preserve the person’s identity
in the reconstructed image I = Ga(f ,Pa; 2a). To recon-
struct I from I, we adopt the losses widely used in style
transfer [27, 65, 67], which contains a perceptual loss that
minimizes the distance between the corresponding feature
maps of I and I in a perceptual neural network, and a style
loss that matches their style information:

5 5
Lyee = lZAzllcm(I) — (D]l +lZ%||Qz(I) =Gl
=0 =1

(6)
where ¢;(I) is the {-th feature map of image I in a VGG-19
[56] network pre-trained on ImageNet. When ! > 1, we use
convl_2, conv2_2, conv3_2, conv4_2, and conv5_2
layers in the network, while ¢g(I) = I. In the second term,
G; € RO *Ct ig the Gram matrix [12], which calculates the
inner product between vectorized feature maps:

H W

G0 = > ouDindi(D)jn , (7
k=1

where ¢;(I) € REXHiWi jg the same as in the perceptual
loss term, and Cj is its channel dimension. \; and ~; in
Eqn. 6 are hyper-parameters balancing the contributions of
different layers, and are set automatically following [19, 3].
By minimizing Eqn. 6, we encourage the reconstructed im-
age to have similar high-level contents as well as detailed
textures and patterns as the original image.

In addition, to encourage diversity in synthesized appear-
ance (i.e., different textures, colors, efc.), we leverage an ap-
pearance compatibility encoder E.,, taking the contextual
garments x. as inputs to condition the generation by a KL
divergence term Lyxr = Dir(Eq(xq) || Eca(z)). The
objective function of our appearance generation network is:

Lo = Lyee + AxrLir. (8)

Similar to the shape generation network, our appearance
generation network, by modeling appearance compatibil-
ity, can render a diverse set of visually compatible ap-
pearances conditioned on the generated clothing segmen-
tation map and the latent appearance code during inference:
I= Ga(I»paa ya)v where Ya ~ Eca(xc)~

3.3. Discussion

While sharing the exact same network architecture and
inputs, the shape compatibility encoder E. ¢ and the appear-
ance compatibility encoder F., model different aspects of
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compatibility; therefore, their weights are not shared. Dur-
ing training, we use ground truth segmentation maps as in-
puts to the appearance generator to reconstruct the original
image. During inference, we first generate a set of diverse
segmentations using the shape generation network. Then,
conditioned on these generated semantic layouts, the ap-
pearance generation network renders textures onto them, re-
sulting in compatible synthesized fashion images with rich
diversity in both shape and appearance. Some examples are
presented in Figure 1. In addition to compatibly inpaint-
ing missing regions with meaningful diversity trained with
multiple reconstruction losses, our framework also has the
ability to render garments onto people with different poses
and body shapes as will be demonstrated in Sec 4.5.

Note that our framework does not involve adversar-
ial training [25, 37, 40, 78] (hard to stabilize the train-
ing process) or bidirectional reconstruction loss [34, 23]
(requires carefully-designed loss functions with selected
hyper-parameters), thus making the training easier and
faster. We expect more realistic results if adversarial train-
ing is involved, as well as more diverse synthesis if the out-
put and the latent code are invertible.

4. Experiments
4.1. Experimental Settings

Dataset. We conduct experiments on the DeepFashion
(In-shop Clothes Retrieval Benchmark) dataset [39], which
consists of 52,712 person images with fashion clothes.
In contrast to previous pose-guided generation approaches
which use image pairs that contain people in the same
clothes with two different poses for training and testing,
we do not need paired data but rather images with multi-
ple fashion items in order to model the compatibility among
them. As a result, we filter the data and select 13,821 im-
ages that contain more than 3 fashion items to conduct our
experiments. We randomly select 12,615 images as our
training data and the remained 1,206 for testing, while en-
suring that there is no overlap in fashion items between the
two splits.

Network Structure. Our shape generator and appearance
generator share similar network structures. G5 and G, have
an input size of 256 x 256, and are built upon a U-Net [50]
structure with 2 residual blocks [20] in each encoding and
decoding layer. We use convolutions with a stride of 2 to
downsample the feature maps in encoding layers, and uti-
lize nearest neighborhood interpolation to upscale the fea-
ture map resolution in the decoding layers. Symmetric skip
connections [50] are added between encoder and decoder
to enforce spatial correspondence between input and out-
put. Based on the observations in [77], we set the length
of all latent vectors to 8, and concatenate the latent vector
to each intermediate layer in the U-Net after spatially repli-

cating it to have the same spatial resolution. Eg, E.s, E,
and E., all have similar structure as the U-Net encoder; ex-
cept that their input is 128 x 128 and a fully-connected layer
is employed at the end to output p and o for sampling the
Gaussian latent vectors. All convolutional layers have 3 x 3
kernels, and the number of channels in each layer is identi-
cal to [25]. The detailed network structure is visualized in
the supplementary material.

Training Setup. Similar to recent encoder-decoder based
generative networks, we use the Adam [29] optimizer with
f1 = 0.5 and B2 = 0.999 and a fixed learning rate of
0.0001. We train the compatible shape generator for 20K
steps and the appearance generation network for 60K steps,
both with a batch size of 16. We set A = 0.1 for both
shape and appearance generators.

4.2. Compared Methods

To validate the effectiveness of our FiNet, we compare it
with the following methods:
FiNet w/o two-stage. We use a one-step generator to di-
rectly reconstruct image I without the proposed two-stage
framework. The one-step generator has the same network
structure and loss function as our compatible appearance
generator; the only difference is that it takes the pose
heatmap, face and hair segment, Sand [ as input (i.e., merg-
ing the input of two stages into one).
FiNet w/o comp. Our method without compatibility en-
coder, i.e., minimizing L g, instead of L I, in both shape
and appearance generation networks.
FiNet w/o two-stage w/o comp. Our full method with-
out two-stage training and compatibility encoder, which re-
duces FiNet to a one-stage conditional VAE [30].
pix2pix + noise [25]. The original image-to-image trans-
lation frameworks are not designed for synthesizing miss-
ing clothing, thus we modify the input of this framework to
have the same input as FiNet w/o two-stage. We add a noise
vector for producing diverse results as in [77]. Due to the
inpainting nature of our problem, it can also be considered
as a variant of a conditional context encoder [47].
BicyleGAN [77]. Because pix2pix can only generate single
output, we also compare with BicyleGAN, which can be
trained on paired data and output multimodal results. Note
that we do not take multimodal unpaired image-to-image
translation methods [23, 34] into consideration since they
usually produce worse results.
VUNET [10]. A variational U-Net that models the interplay
of shape and appearance. We make the similar modification
to the network input such that it models shape based on the
same input as FiNet w/o two-stage and models the appear-
ance using the target clothing appearance .
ClothNet [32]. We replace the SMPL [1] condition in
ClothNet by our pose heatmap and reconstruct the original
image. Note that ClothNet can generate diverse segmenta-

4486



Ongmal image and mput FiNet

M 1l

p|x2p|x + noise Blcy\eGAN VUNET ClothNet

G g

FiNet w/o two-stage  FiNet w/o two-stage w/o comp ;

Original image and input FiNet

| Original image and input F\Net

1T

FiNet w/o two-stage FiNet w/o two-stage w/o comp

F|Net W/0 two- slage

LR

FiNet w/o two-: stage wlo comp

e e
¥

fRAR R

P

Figure 5: Left Inpainting comparison of dlfferent methods conditioned on the same input. nght More visual ablations.

tion maps, but only outputs a single reconstructed image per
segmentation map.

Compatibility Loss. Since most of the compared meth-
ods do not model the compatibility among fashion items,
we also inject x. into these frameworks and design a com-
patibility loss to ensure that the generated clothing matches
its contextual garments. It is similar to the loss of the
matching-aware discriminators in text-to-image synthesis
[49, 75], which learns to predict {real target clothing, its
contextual garments} as real, and predict both {fake target
clothing, its contextual garments} and {real target clothing,
incompatible (real but mismatched) contextual garments}
as fake. This loss can be easily plugged into a generative
model framework and trained end-to-end to inject compati-
bility information for fair comparison.

4.3. Qualitative Results

In Figure 5, we show 3 generated images of each method
conditioned on the same input. We can see that FiNet gener-
ates visually compatible bottoms with different shapes and
appearances. Without generating the semantic layout as in-
termediate guidance, FiNet w/o two-stage cannot properly
determine the clothing boundaries. FiNet w/o two-stage
w/o comp also produces boundary artifacts and the gen-
erated appearances do not match the contextual garments.
pix2pix [25] + noise only generates results with limited
diversity—it tends to learn the average shape and appear-
ance based on distributions of the training data. BicyleGAN
[77] improves diversity, but the synthesized images are in-
compatible and suffer from artifacts brought by adversarial
training. We found VUNET suffers from posterior collapse
and only generates similar shapes. ClothNet [32] can gen-
erate diverse shapes but with similar appearances because it
also uses a pix2pix-like structure for appearance generation.

We show more results of FiNet in Figure 1, which further
illustrates its effectiveness for generating different types of
garments with strong compatibility and rich diversity. Note
that FiNet can generate fashion items that do not exist in the
original image as shown in the last example in Figure 1.

4.4. Quantitative Comparisons

We now compare with alternative methods quantitatively
using different metrics including compatibility, diversity
and realism.

Compatibility. To evaluate the compatibility of generated
images, we trained a compatibility predictor adopted from
[62]. The training labels also come from the same weakly-
supervised compatibility assumption—if two fashion items
co-occur in a same catalog image, we regard them as a pos-
itive pair, otherwise, these two are considered as negative
[57, 18, 22]. We fine-tune an Inception-V3 [60] pre-trained
on ImageNet on the DeepFashion training data for 100K it-
erations, with an embedding dimension of 512 and default
hyper-parameters. We use the RGB clothing segments as in-
put to the network. Following [10, 48] that measure visual
similarity using feature distance in a pre-trained VGG-16
network, we measure the compatibility between a generated
clothing segment and the ground truth clothing segment by
their cosine similarity in the learned 512-D compatibility
embedding space.

Diversity. Besides compatibility, diversity is also a key per-
formance metric for our task. Thus, we utilize LPIPS [76] to
measure the diversity of generated images (only inpainted
regions) as in [77, 34, 23]. 2,000 image pairs generated
from 100 fashion images are used to calculate LPIPS.

Intuitively, there is a trade-off between compatibility and
diversity—when the diversity of a method increases, it of-
ten has a higher probability of generating less compatible
results. Thus, for better understanding the performance of
all methods, we control the diversity of the generation by
adjusting the sampling of latent vectors at test time (e.g., in-
creasing o of the latent code during inference yields higher
diversity). For each method, varying o plots a 2D curve
as shown in Figure 7. In this Figure, a larger Area Un-
der Curve (AUC) suggests that higher compatibility can be
achieved with more meaningful diversity. FiNet yields the
highest AUC. Especially, we can obtain high compatibil-
ity even with large diversity (> 0.5) compared to others.
Note that pix2pix [25] + noise learns to ignore the input
noise, and changing the input noise does not have a signif-
icant impact on the diversity—the diversity stays at around
0.06 with 0.63 compatibility achieved. We do not include it
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Random Real pix2pix [25] BicyleGAN [77] VUNET [10] ClothNet [32] FiNet w/o 2S w/o C FiNet w/o C FiNet w/o 2S  FiNet

50.0% 13.3% 16.4% 30.7%

15.9%

12.8% 12.3% 25.6% 36.6%

Table 1: Human fooling rate. Higher is better. w/o 2S and w/o C are short for w/o two-stage and w/o comp, respectively.

Reconstruct Reconstruct Reconstruct

Original

AIiaL

Input Input Input

Transfer

Transfer Transfer

Reference Input

Input Input

Figure 6: Conditioned on different inputs, FiNet can achieve clothing reconstruction (left), and clothing transfer (right).
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Figure 7: Diversity vs. compatibility for different methods.
FiNet achieves the highest AUC.

in the plot.

Realism. In addition to compatibility and diversity, we also
conduct a user study to evaluate the realism of generated im-
ages. Following [4, 40, 77], we perform time-limited (0.5s)
real or synthetic test with 10 human raters. The human fool-
ing rate (chance is 50%, higher is better) indicates realism
of a method. As shown in Table 1, FiNet achieves the high-
est human fooling rate by generating photorealistic images.
Additionally, images with low compatibility scores usually
have lower human fooling rates. This confirms that incom-
patible garments also looks unrealistic to human.

4.5. Clothing Reconstruction and Transfer

Trained with a reconstruction loss, FiNet can also be
adopted as a two-stage clothing transfer framework. More

specifically, for an arbitrary target garment ¢ with shape ¢,
and appearance t,, GS(S’ ,Ds, ts) can generate the shape of
¢ in the missing region of S, while G4 (I, pa,t,) can syn-
thesize an image with the appearance of ¢ filling in I. This
can produce promising results for clothing reconstruction
(when t = x, where z is the original missing garment) and
garment transfer (when ¢ # x) as shown in Figure 6. FiNet
inpaints the shape and appearance of the target garment nat-
ually onto a person, which further demonstrates its ability to
generate realistic fashion images.

5. Conclusion

We introduce FiNet, a two-stage generation network for
synthesizing compatible and diverse fashion images. By
decomposition of shape and appearance generation, FiNet
can inpaint garments in a target region with diverse shapes
and appearances. Moreover, we integrate a compatibility
module that encodes compatibility information into the net-
work, constraining the generated shapes and appearances
to be close to the existing clothing pieces in a learned la-
tent style space. The superior performance of FiNet sug-
gests that it can be potentially used for compatibility-aware
fashion design and new fashion item recommendation. One
interesting future research direction would be exploring a
fully unsupervised approach without relying on the off-the-
shelf human parsers.
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