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Abstract

Few-shot learning aims to learn latent patterns from

few training examples and has shown promises in prac-

tice. However, directly calculating the distances between

the query image and support image in existing methods

may cause ambiguity because dominant objects can locate

anywhere on images. To address this issue, this paper

proposes a Semantic Alignment Metric Learning (SAML)

method for few-shot learning that aligns the semantically

relevant dominant objects through a “collect-and-select”

strategy. Specifically, we first calculate a relation matrix

(RM) to “collect” the distances of each local region pairs

of the 3D tensor extracted from a query image and the mean

tensor of the support images. Then, the attention technique

is adapted to “select” the semantically relevant pairs and

put more weights on them. Afterwards, a multi-layer per-

ceptron (MLP) is utilized to map the reweighted RMs to

their corresponding similarity scores. Theoretical analysis

demonstrates the generalization ability of SAML and gives

a theoretical guarantee. Empirical results demonstrate that

semantic alignment is achieved. Extensive experiments on

benchmark datasets validate the strengths of the proposed

approach and demonstrate that SAML significantly outper-

forms the current state-of-the-art methods. The source code

is available at https://github.com/haofusheng/SAML.

1. Introduction

Few-shot learning aims to learn knowledge from few

training examples [21], in contrast to conventional meth-

ods which usually need large-scale datasets (such as Ima-
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Figure 1. The two images shown belong to the same category,

while the key objects (dogs) appear in different locations. Directly

calculating the distance between the two images according to the

spatial indices introduces ambiguity that pairs between the dog’s

head (red boxes) and the dog’s tail (blue boxes). The proposed

method SAML aligns the local regions with the same semantic

information (see the comparison between red and yellow boxes).

geNet [7]). It addresses the problem that collecting such

large amounts of data is extremely time-consuming and

sometimes unrealistic in practice [37].

Recently, the features extracted from images by neural

networks have demonstrated profound representation abil-

ity in many computer vision tasks [42, 20, 23, 14]. Based

on the 3D tensors extracted from the images, metric learn-

ing methods have significantly prompted the frontier of few-

shot learning. Specifically, metric learning first calculates

the distance between the 3D tensors respectively extracted

from the query and support images and then learn a classi-

fier based on the distances.

However, most existing methods [48, 37, 16] calculate

the distance metric between each tensor pair directly ac-
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Support Query

Figure 2. Illustrations of semantically relevant local regions. They demonstrate that the semantic alignment is realized by SAML.

cording to the element index. This direct compare may

introduce severe ambiguity because dominant objects can

locate anywhere on images. Therefore, the dominant object

in one image is probably compared with the semantically

irrelevant local region of the other image (please see the

comparisons of red and blue boxes in Figure 1).

To address this issue, this paper proposes a Semantic

Alignment Metric Learning (SAML) method to align the

semantically relevant local regions on images through a

“collect-and-select” strategy. Specifically, SAML first “col-

lects” the distances of all local region pairs from query and

support images in a relation matrix (RM). Each local region

is represented by a vector in the 3D tensor extracted from

the corresponding image by a convolutional neural network

(CNN). Afterwards, SAML “selects” the semantically rel-

evant local region pairs and reweighs them according to

the relevance by employing the attention technique. The

relevance-reweighted RM is then processed by a multi-layer

perceptron (MLP) to calculate a similarity score in order

to determine whether the query image is from the support

class.

Theoretical analysis evaluates the generalization abil-

ity of SAML and provides an O(1/
√
N) generalization

bound with no explicit dependence on the parameter sizes

of the embedding network and MLP (N is the number of

episodes in the training sample set). Extensive experiments

on two standard benchmark datasets CUB [40] and miniIm-

ageNet [34, 31] demonstrate that SAML significantly out-

performs the state-of-the-art methods.

2. Related Works

Existing works for few-shot learning are mainly from the

following four categories: metric learning, meta-learning,

hallucination, and attention-based.

Metric learning: Metric learning-based approaches

share the same paradigm: (1) map all images (including

both support and query ones) into a representation space

by embedding networks and compute the representation of

each support category; (2) calculate the distances of each

query image to all support classes; and (3) assign each query

instance to the support class with the closest distance to it-

self.

Existing approaches mainly focus on one of the first two

steps, since the third step is relatively well-developed: (1)

the design of embedding networks has evolved from early

siamese neural networks [19] to rapid adaptation with con-

ditionally shifted neurons [27] and memory matching net-

works [5]. Recently, to better capture Geometrical informa-

tion, 3D tensors are introduced by [48, 37]. The computa-

tion of class representations can be dated back to [16] which

uses the mean of embedding deep features for each support

category as its representation. Recently, Qiao et al. present

to predict the representation of each novel support class

from the activations in a pre-trained neural network [33];

and (2) the design of distance metrics to perform classifi-

cation stems from cosine distance [31] and Euclidean dis-

tance [16] to more advanced distance measurements, such

as the one calculated by Graph Neural Networks [39].

A significant problem for most existing works is that the

distances are obtained by calculating straight according to

the element indices [48, 37] and often introduce severe am-

biguity that compares semantically irrelevant parts.

Meta-learning: Meta-learning-based methods learn the

learning algorithm itself. Ravi et al. present an LSTM-

based meta-learner, which learns the exact optimization

algorithm in order to train a neural network classifier in

the few-shot regime [34]. Finn et al. design MAML to

train a meta-learner that provides good parameter initial-

ization such that only a small number of updates can lead

to fast learning on novel tasks [8]. Meta-SGD adjusts

the update direction and the learning rate for fast adap-

tion to new tasks [22]. Nevertheless, these methods often

need costly higher-order gradients which may lead to fail-
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Figure 3. Flowchart of the proposed method SAML.

ure when scales to deeper network architectures as shown

in [26]. Correspondingly, Mishra et al. combine tempo-

ral convolutions and soft attention to propose generic meta-

learner architectures that scale to deeper network architec-

tures [26]. In addition, first-order optimization [29] and

latent embedding optimization [36] techniques have been

proposed to solve the issues.

Hallucination: Hallucination-based methods tackle

few-shot learning by increasing the number of labeled in-

stances in each novel category via two different direc-

tions. An early work by Bharath et al. applies category-

independent transformations to generate as many new in-

stances for each novel category as possible [13]. Its sub-

sequent development [43] exploits recent progress in meta-

learning that jointly optimizes a meta-learner and a halluci-

nator to produce high-quality training instances. Zhang et

al. propose MetaGAN to generate samples indistinguish-

able from the true data sampled from a specific task [47]

and Akshay et al. regard the generated fake instances as a

strong regularizer [24].

Attention-based: Recently, the attention mechanism

has been introduced into the few-shot regime. For exam-

ple, Yan et al. [44] utilize the spatial attention to localize

relevant object regions and the task attention to select sim-

ilar training data for label prediction, and thus present a

dual-attention network based on the two attention mecha-

nisms. Ren et al. [35] propose to regularize the learning

of novel classes by an Attention Attractor Networks. Hu

et al. [15] propose an Attention-based Multi-Context Guid-

ing (A-MCG) network, which integrates multi-scale con-

text features between support and query branches, enforc-

ing better guidance from the support set. By contrast, we

adopt the attention mechanism to “select” semantically rel-

evant regions.

3. Semantic Alignment Metric Learning

This section presents our proposed method SAML. We

start by reviewing the problem definition for few-shot learn-

ing, before describing the image embedding. Then, we de-

scribe the “collect-and-select” for the semantic alignment.

Finally, two instantiations of metrics are provided.

3.1. Problem Definition

In this work, we focus on the M -way K-shot problem,

where M is the number of categories and K is the number

of the examples in each categorise (K is usually a small

integer, such as 1 or 5).

Few-shot learning datasets are constituted by three parts:

training set, validation set, and test set, whose label spaces

are disjoint with each other (e.g., a category seen dur-

ing training is not seen during validation or test). Gen-

erally, every set contains abundant categories and exam-

ples that are significantly larger than M and K. Since

proposed by [31], the three sets are usually divided into

many episodes, each of which contains a support set S =
{(xi, yi)|i = 1 . . .MK, yi ∈ {1, . . . ,M}} and a query set

Q = {(x̃j , x̃j)|j = 1 . . .MT, yj ∈ {1, . . . ,M}}. Both the

support set and the query set are randomly drawn from the

training/validation/test set. Additionally, S and Q are dis-

joint (S ∩Q = ∅), while share the same label space.

To simulate the real-world scenarios of few-shot learn-

ing, all training, validation, and test procedures are imple-

mented on episodes. For example, in each training iteration,

an episode is randomly sampled from the training set to up-
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date the learnable parameters. This procedure repeats many

times until the model converges to a stable state. The vali-

dation and test on episodes are similar.

3.2. Image Embedding

By convolving each image xi through a neural network,

we can obtain a 3D tensor fΘ(xi) ∈ Ω ⊂ R
C×H×W to

represent this image, where fΘ is the hypothesis function

learned by the neural network, Θ is the parameter of the

neural network, Ω is the representation space formed by all

3D tensors, and C, H , and W are respectively the lengths of

the three dimensions of the tensor. By this way, we embed

all images to a representation space. There are H × W
C-dimensional cells in each 3D tensor, each of which is a

local region feature (LRF) of a region in the corresponding

image (it is also the receptive field). Compared with 1D [16,

31] or features with other dimensions, 3D tensors can better

capture geometrical information, and thus a common choice

in metric learning-based few-shot learning methods. Image

embedding can be realized through many neural networks.

For the details of our embedding network, please refer to

Section 5.1.

There are K images from each support class in an

episode. When K > 1, an important task is to calculate

a representation for the support class from the 3D tensors of

the K single images. In this paper, we utilize the empirical

mean of the K 3D tensors to be the representation of the

corresponding support class:

cm =
1

|Sm|
∑

(xi,yi)∈Sm

fΘ(xi), (3.1)

where cm is the class representation of the m-th support

class, Sm is the support set of class m in the episode, and

|Sm| is the number of examples in Sm. The support class

representation cm also locates in the representation space

Ω: cm ∈ Ω ⊂ R
C×H×W . Similar with the representations

of single images, each class representation cm is also con-

stituted by H ×W C-dimensional features as LRFs.

For the convenience of explanations, the H×W LRFs of

the representation cm is denoted as
{

o1m, . . . , oHW
m

}

. Sim-

ilarly, the LRFs of the 3D representation fΘ (x̃n) of each

query image x̃n are
{

ô1, . . . , ôHW
}

.

3.3. Collect and Select for Semantic Alignment

The local regions in an image that determine its class

can locate anywhere. For example, for dog images, the de-

terminant local regions that contain dogs may locate in the

top right corner in one image and in the central area in an-

other. Therefore, directly calculating the distance between

them according to the location indices may pair semanti-

cally irrelevant local regions and may lead to severe ambi-

guity [48, 37] (see Figure 1). Thus semantically aligning

the representations is an important task to calculate the dis-

tances.

To address this issue, we propose a “collect-and-select”

strategy to realize the semantic alignment. Specifically, we

calculate the metric distances of all LRF pairs constituted

by one LRF from the query image and one from the support

class. All distance values are collected in a relation matrix

(RM) and are located according to the spatial indices. For

example, the (i, j)-element rij of the RM R is the distance

defined by some metric g between the i-th LRF ôi of the

query image x̃n and the j-th LRF ojm of the support class

representation:

rij = g(ôi, ojm) ∈ R,

∀i, j ∈ {1, . . . , HW}, (3.2)

where rij is a scalar reflecting the similarity of two LRFs.

The metric can vary according to various scenarios. Dis-

cussions regarding the instances of the metric is provided

in Section 3.4. The RM carries all information of the sim-

ilarity between the query image and the support class. The

process of obtaining the RM is called the “collect” phase of

the strategy.

The RM contains the distances of semantically irrelevant

local regions. The attention technique strengthens key ob-

jects, while suppresses the background [46, 4, 17]. By em-

ploying the attention technique, we can pay more attention

to semantically relevant LRF pairs. In this paper, we chose

the activation-based attention [46], where the norm of each

LRF is defined as the attention value a:

a(ôi) = ‖ôi‖, a(ojm) = ‖ojm‖,
∀i, j ∈ {1, . . . , HW}. (3.3)

We reweight the distance rij by

r′ij = a(ôi)a(ojm)rij . (3.4)

By this way, the distances of semantically irrelevant local

regions are suppressed; meanwhile, the distances of seman-

tically relevant local regions are enhanced. Thus, we realize

the semantic alignment. The process of adopting the atten-

tion technique to find the semantically relevant local regions

is called the “select” phase of the strategy. Afterwards, the

reweighted RM R′ is fed to an MLP to calculate a similarity

score (a factor) to perform further classification:

sm = MLPΦ(R
′), (3.5)

where Φ represents the learnable parameters of the MLP.

For each query instance, there are M similarity score sm
that respectively express the similarity of the query instance

with all support class. Link all M similarity score to consti-

tute a vector, we form a discriminative function. To perform

the final classification, we employ the softmax function to
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calculate probability pm of the test example x̃n assigned to

the m-th class:

pm =
esm

∑M
i=1 e

si
. (3.6)

Based on the probabilities, we further define the loss func-

tion:

L =
−1

MT

MT
∑

n=1

M
∑

m=1

I(ỹn = m)ln(pm), (3.7)

where I(·) is the indicator function that equals one if its

arguments is true and zero otherwise, ỹn is the label of x̃n,

and T is the number of the instances in each query set.

3.4. Instantiations of Metrics

The metric function in the previous subsection has many

choices. This paper implements experiments with two sim-

ple metrics: cosine metric and Gaussian metric. The ex-

periments show that simple metrics are enough to perform

well.

Cosine metric: Cosine distance is defined as the cosine

of the angle between two features:

g(ôi, ojm) = cos(θij) =
< ôi, ojm >

‖ôi‖ · ‖ojm‖
,

(3.8)

∀i, j ∈ {1, . . . , HW}, (3.9)

where θij is the angle between ôi and ojm, < ·, · > is the

inner product, and ‖ · ‖ is the norm. It is effective for the

face verification [41] and image classification [12].

Gaussian metric: Gaussian function can also be taken

as a choice of g:

g(ôi, ojm) = eô
i·ojm ,

∀i, j ∈ {1, . . . , HW}. (3.10)

4. Theoretical Analysis

This section studies the generalization abilities of our

method in term of the size of the training samples from

the theoretical perspective. We first present an upper bound

for the covering number (covering bound) of the proposed

model. The covering bound controls the magnitude of the

complexity of the hypothesis space induced by our pro-

posed method. We then obtain an upper bound on the

generalization error (generalization bound) of the proposed

method. The generalization bound provides a theoretical

guarantee for our method.

Few-shot learning can be modelled as a binary classifi-

cation problem. Specifically, each episode is an example;

the query and support images are instances and the label

is whether they are from the same class. In this section,

Embedding Network

Image

Conv(3, 64), BN, ReLU

MaxPool(2, 2)

Conv(3, 64), BN, ReLU

MaxPool(2, 2)

Conv(3, 64), BN, ReLU

Conv(3, 64), BN, ReLU

AvgPool

MLP

FC(HxW, 256), ReLU

FC(256, 256), ReLU

FC(256, 64), ReLU

FC(64, 1)

Figure 4. The network architectures of the embedding network and

the MLP.

we use theories for the binary classification to evaluate our

method. Thereby, we give a theoretical guarantee that how

many episodes in the training sample set is enough.

As shown in Figure 4, our model involves two neural net-

works, the embedding network and the MLP. They are con-

nected by a fixed operation which does not influence the hy-

pothesis complexity. Specifically, the operation calculated

the representation of each support class and calculate the re-

lation matrix induced from the query instance and the class

representation. Suppose the input to the proposed model

is X . The embedding network is constituted by four con-

volutional layers, two max-pooling layers, and an average

pooling layer. We denote them respectively by weight ma-

trices A1, A2, A3, and A4 and nonlinearities σ1, σ2, σ3, and

σ′
4. Correspondingly, the output of the embedding network

can be expressed as

FE(X) = σ′
4 (A4σ3 (A3σ2 (A2σ1 (A1X)))) . (4.1)

The collection of relation matrix and the attention technique

is a fixed nonlinear operation. Here, we denote it as σf .

Additionally, we express the MLP by weight matrices A5,

A6, A7, and A8 and nonlinearities σ5, σ6, and σ7. The final

output of our proposed algorithm is thus:

F (X) = A8σ7

(

A7σ6

(

A6σ5

(

A5OfF
E(X)

)))

. (4.2)

For the brevity in the following theorem, we define σ4 =
σfσ

′
4. Suppose the hypothesis space of the output classi-

fiers of our model is H. Then, we can obtain the following

theorem.

Theorem 1 (Covering bound). Suppose the Lipschitz con-

stant of the i-th nonlinearity σi is ρi and the Lipschitz con-

stant of the operation σf is ρf . Suppose the spectral norm of
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each weight matrix is bounded: ‖Ai‖σ ≤ si, i = 1, . . . , 8.

Also, suppose each weight matrix Ai has a reference matrix

Mi, which is satisfied that ‖Ai −Mi‖σ ≤ bi, i = 1, . . . , 8.

Then, the ε-covering number satisfies that

logN (N , ε, ‖ · ‖2)

≤ log
(

2W 2
)

‖X‖22
ε2

(

s8

7
∏

i=1

siρi

)2( 8
∑

i=1

b
2/3
i

s
2/3
i

)3

. (4.3)

and W is the largest dimension of the feature maps through-

out the algorithm.

A detailed proof is omitted here and given in the Ap-

pendix. Based on the covering bound, we can obtain the

following theorem. For the brevity, we denote the right-

hand-side (RHS) of Eq. (4.3) as R2

ε2 . Also, we define the

expected risk and empirical risk respectively as

R(F ) = EX,Y l(F (X), Y ), (4.4)

R̂(F ) =
1

N

N
∑

n=1

l(F (Xn), Yn), (4.5)

where (X,Y ) is a feature-label pair, N is the training sam-

ple size, and l is the loss function.

Theorem 2 (Generalization Bound). For any real δ ∈
(0, 1), with probability at least 1− δ, the following inequal-

ity holds for any hypothesis Fθ ∈ N :

R(Fθ) ≤R̂(Fθ) +
24R

N

[

1 + log

(

N

3R

)]

+ 3

√

log 2
δ

2N
, (4.6)

where N is the training sample size.

Theorem 2 can be directly obtained by applying Theo-

rem 1 to two classic results in learning theory which are

omitted here but provided in the Appendix. A detailed

proof is also provided in the Appendix. Eq. (4.6) gives an

O
(

1√
N

)

generalization bound for our proposed algorithm.

It provides a theoretical guarantee for our proposed method.

5. Experiments

This section introduces the experimental settings, abla-

tion studies, and comparisons with the state-of-the-art meth-

ods.

5.1. Experimental Settings

Datasets: The miniImageNet dataset is a subset of Ima-

geNet [7] comprised of 100 categories, each of which con-

tains 600 labeled instances. We adopt the common split to

Models Image Size 5way-1shot 5way-5shot

RelationNet

[37]

84× 84 50.44% 65.32%

224× 224 50.16% 65.98%

SAML

(ours)

84× 84 52.22% 66.49%

224× 224 56.68% 71.34%

Table 1. The effect of image size on the performance of few-shot

classification. Experiments are conducted on miniImageNet.

Metric Functions 5way-1shot 5way-5shot

Gaussian 52.35±0.40% 68.54±0.46%

Cosine 49.52±0.42% 62.82±0.45%

Guassian + Attention 56.40±0.48% 71.28±0.39%

Cosine + Attention 56.68±0.40% 71.34±0.41%

Table 2. The effect of different metric functions on the few-shot

classification accuracies. Experiments are conducted on miniIma-

geNet.

get 64, 16, and 20 categories for training, validation and

test, respectively. The CUB dataset was initially designed

for fine-grained classification and is comprised of 11, 788
instances of birds over 200 species. We randomly split the

dataset into 100 training, 50 validation, and 50 test cate-

gories. For both miniImageNet and CUB, the images are re-

sized to 224× 224, and no data augmentations are adopted.

For a more intuitive understanding of the two datasets, some

images are shown in the Appendix.

Networks: The details of our embedding network and

MLP are illustrated in Figure 4. Since the embedding net-

work is our focus and to perform fair comparisons, our

embedding network shares a similar backbone to [31, 37],

while is still with some minor changes to obtain enough

LRFs. For example, only the first two max pooling layers

are preserved, and the last max pooling layer is replaced by

the average pooling layer. The stride of the average pooling

layer for miniImageNet and CUB is set to 5, resulting in

100 LRFs. In addition, the similarity score is often limited

within the range 0 to 1, which is realized by adding the sig-

moid function after the last fully connected layer. Here, we

omit the commonly used sigmoid function for the MLP.

Implementation details: We take the cosine metric

as an example to introduce the implementation details of

SAML. The overall flowchart is shown in Figure 3. Af-

ter embedding all the support images and query images, we

merge their spatial dimensions. SAML can be directly im-

plemented by performing matrix product on the reshaped

LRFs, as shown in Figure 8 in the Appendix. All experi-

ments are conducted under the PyTorch framework [1]. We

use Adam [18] with an initial learning rate of 10−3, which

is halved every 2, 000 episodes. The total number of train-

ing episodes is 20, 000. Note that, T = 15 query images

per class are tested in every test episode.
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Figure 5. The effect of the number of LRFs on the performance of

few-shot classification on miniImageNet.

5.2. Ablation Study

We study the impacts of metric functions, the number of

LRFs, image size, and attention method. Also, time com-

plexity is discussed. Experiments are conducted on mini-

ImageNet.

Impact of image size: To better control the number of

LRFs, we adopt a larger image size of 224× 224 instead of

84 × 84. For the fair comparison, we evaluate the impact

of image size on few-shot classification performance, and

the results are shown in Table 1. We also conduct similar

comparison using RelationNet [37]. Our approach bene-

fits more from the increase in image size than RelationNet.

The larger the image size, the smaller the LRF overlap, and

the more independent the individual LRF is. Intuitively, the

reason why the performance increases with the size of the

image can be attributed to the smaller ratio of the receptive

field to the image size.

Impact of metric functions: We study the choice of

metric function on the performance of few-shot learning,

as shown in Table 2. The cosine and Gaussian without at-

tention perform much worse than their attentional version,

which can be attributed to their equal treatment of the com-

parison result of all LRF pairs. For the same category, the

pair of the same semantic LRFs is obviously more impor-

tant than the pair of the semantically irrelevant LRFs as the

latter can increase the difference. The attentional cosine

and attentional Gaussian suppress the comparisons of the

semantically irrelevant LRFs via the attention method. For

different categories, the key regions show significant differ-

ences, which are also captured by SAML.

Impact of the number of LRFs: The number of LRFs

can be adjusted by setting the stride of the final average

pooling layer of the embedding network. We evaluate the

Support Query

Figure 6. SAML fails when the scale of the dominant object in

the query image (middle) differs greatly from that of the support

image or the key object (right) in the query image is not salient in

a complex background.

impact of the number of LRFs on few-shot learning perfor-

mance, and the results are shown in Figure 5. Both 5-way

1-shot and 5-way 5-shot classification accuracies improve

as the number of LRFs increases, and they reach saturation

when the number of LRFs is 100. Based on this observa-

tion, we set the number of LRFs to 100 in the following

experiments by default, and the setting works well for both

miniImageNet and CUB.

Impact of attention method: We study the impact of

the attention method. Some correctly classified images

and their corresponding attention maps are shown in Fig-

ure 2. The key regions are marked with red rectangles, and

all these regions correspond to the same semantic concept,

namely dog. The effect of attention maps is to strengthen

objects while suppressing backgrounds. The combination

of the attention method and the metric function reduces the

ambiguity introduced by the comparison between the key

object and the semantically irrelevant part. However, our

approach suffers when dominant objects of different scales

exist in a complex background, and some failure examples

are shown in Figure 6. We further optimize our method

to address this issue. Specifically, we introduce an incep-

tion [38] operator ([2× 2 max pooling, 3× 3 convolutions,

5×5 convolutions, 7×7 convolutions]) after the embedding

network (see Figure 4) to extract features for the objects

with different scales. The results are discussed in Section

5.3.

Time complexity: The computations of SAML are ma-

trix multiplications (see Figure 8 in the Appendix), which

have been well optimized in popular deep learning plat-

forms, e.g., PyTorch [1] and TensorFlow [2], and is no

longer a major computing bottleneck. We compared the

time costs of different methods, and the results are shown
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Model
Training / Test (ms/episode)
5way-1shot 5way-5shot

MAML [8] 61.92 / 31.04 72.64 / 38.38

Prototypical Net [16] 14.55 / 4.51 15.46 / 5.22

Matching Net [31] 6.89 / 2.88 19.10 / 6.83

RelationNet [37] 20.78 / 4.13 22.84 / 5.26

SAML(Ours) 16.30 / 3.95 19.59 / 5.17

Table 3. Training/test time costs per episode of different methods

on miniImageNet.

in Table 3. Our method is competitive regarding time cost

(2nd fast for 5way-1shot and 1st for 5way-5shot during test).

5.3. Comparisons with the State­of­the­art

We compare SAML with the state-of-the-art methods.

Here, the cosine metric is employed. More empirical re-

sults, including results with more complex metrics, can be

found in the Appendix.

Results on miniImageNet: To perform fair compar-

isons, two common tasks are conducted by way of evalua-

tion, namely, 5-way 1-shot and 5-way 5-shot classification.

We randomly sample 600 episodes from the miniImageNet

test set, and then report the few-shot classification accura-

cies with 95% confidence intervals. We also repeat the test

process 10 times and report the variance. The results are

shown in Table 4. Our approach achieves much better per-

formance than the-state-of-the-art methods for both 5-way

1-shot and 5-way 5-shot classification, especially on the 5-

way 5-shot task (> 2.4%). The scales of key objects in

miniImageNet vary greatly. When adopting scale-invariant

features, the improvement over naive SAML for 5-way 1-

shot and 5-way 5-shot classification are 1.01% and 1.69%,

respectively.

Results on CUB: CUB is a fine-grained image classifi-

cation dataset comprised of birds of different species. Com-

pared with miniImageNet collected for generic recognition,

CUB is simple, as the dominant objects are always birds

and the backgrounds are relatively clean. However, the

birds still show great variability in position. Two tasks are

conducted on CUB, namely, 5way-1shot and 5way-5shot

classification, and the experimental results are shown in Ta-

ble 5. Our approach performs better than existing meth-

ods. Specifically, the increments on fine-grained 5way-

1shot classification and 5way-5shot classification tasks are

6.88% and 2.22%, respectively, which are surprising and

impressive performance boosts. As we crop all images with

given bounding box for CUB, the scales of dominant ob-

jects in CUB are roughly the same. Thus, adopting scale-

invariant features has little effect on performance.

6. Conclusions

Dominant objects may appear in any part of an im-

age. Thus, directly calculating the distance between the

Model 5way-1shot 5way-5shot

Prototypical Net [16] 49.42±0.78% 68.20±0.66%

Matching Net [31] 43.56±0.84% 55.31±0.73%

M-L LSTM [34] 43.44±0.77% 60.60±0.71%

MAML [8] 48.70±1.84% 63.11±0.92%

RelationNet [37] 50.44±0.82% 65.32±0.70%

Meta-SGD [22] 50.47±1.87% 64.03±0.94%

LLAMA [11] 49.40±1.83% -

REPTILE [29] 49.97±0.32% 65.99±0.58%

MM-Net [5] 53.37±0.48% 66.97±0.35%

PLATIPUS [9] 50.13±1.86% -

SAML (ours) 56.68±0.40% 71.34±0.41%

SAML* (ours) 57.69±0.20% 73.03±0.16%

Table 4. Few-shot classification accuracies on miniImageNet. “-”

means “not reported”. “*” means “adopting inception operator”.

Method 5way-1shot 5way-5shot

Baseline [6] 47.12±0.74% 64.16±0.71%

Baseline++ [6] 60.53±0.83% 79.34±0.61%

Matching Net [31] 61.16±0.89% 72.86±0.70%

Prototypical Net [16] 51.31±0.91% 70.77±0.69%

MAML [8] 55.92±0.95% 72.09±0.76%

RelationNet [37] 62.45±0.98% 76.11±0.69%

SAML (ours) 69.33±0.22% 81.56±0.15%

SAML* (ours) 69.35±0.22% 81.37±0.15%

Table 5. Few-shot classification accuracies on CUB. “*” means

“adopting inception operator”.

features extracted from images according to the indices

may lead to serious ambiguity, because we probably com-

pare semantically irrelevant local regions. To this end, we

present a Semantic Alignment Metric Learning (SAML)

method that aligns the semantically relevant local regions

through the “collect-and-select” strategy. Specifically, we

define a relation matrix (RM) to “collect” all distances

of local regions pair of query instances and support class

means, and then utilize the attention technique to “select”

and pay more attention to semantically relevant local re-

gion pairs. Empirical results demonstrate that the semantic

alignment is achieved. Theoretical analysis of the general-

ization bound proves SAML’s feasibility on unseen data is

guaranteed. Extensive experiments on standard benchmark

datasets demonstrate the superiority of SAML by compar-

ing with the state-of-the-art few-shot learning methods.
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