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Abstract

Re-identifying a person across multiple disjoint cam-

era views is important for intelligent video surveillance,

smart retailing and many other applications. However,

existing person re-identification (ReID) methods are chal-

lenged by the ubiquitous occlusion over persons and suf-

fer from performance degradation. This paper proposes

a novel occlusion-robust and alignment-free model for oc-

cluded person ReID and extends its application to realistic

and crowded scenarios. The proposed model first leverages

the full convolution network (FCN) and pyramid pooling

to extract spatial pyramid features. Then an alignment-

free matching approach, namely Foreground-aware Pyra-

mid Reconstruction (FPR), is developed to accurately com-

pute matching scores between occluded persons, despite

their different scales and sizes. FPR uses the error from

robust reconstruction over spatial pyramid features to mea-

sure similarities between two persons. More importantly,

we design an occlusion-sensitive foreground probability

generator that focuses more on clean human body parts

to refine the similarity computation with less contamina-

tion from occlusion. The FPR is easily embedded into any

end-to-end person ReID models. The effectiveness of the

proposed method is clearly demonstrated by the experi-

mental results (Rank-1 accuracy) on three occluded person

datasets: Partial REID (78.30%), Partial iLIDS (68.08%)

and Occluded REID (81.00%); and three benchmark per-

son datasets: Market1501 (95.42%), DukeMTMC (88.64%)

and CUHK03 (76.08%).

1. Introduction

Person ReID is an important task with wide real-world

applications such as intelligent video surveillance, smart

retailing, etc., aiming at matching person images captured

from non-overlapping cameras. One major issue that chal-

*Zhenan Sun is the corresponding author.
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Camera A Camera B

Figure 1. Illustration of the occluded person ReID problem. Here,

the ReID system aims to recognize the person within the red

bounding box captured by camera A from several person images

of different sizes captured by camera B. Most captured persons by

the surveillance operator are occluded.

lenges this task is the ubiquitous occlusion over the cap-

tured persons. For example, as shown in Fig. 1, people in

an unmanned supermarket are occluded by goods, shelves

or other persons, making it difficult to track their move-

ments. Existing approaches [4, 6, 8, 12] mostly leverage

external cues, e.g. person mask, semantic parsing or pose

estimation, to align the detected persons. However, these

approaches may fail to generate accurate external cues in

heavily occluded cases such as half body of a subject being

occluded. Furthermore, it inevitably incurs more processing

time to infer these external cues. Some other approaches

[15, 21], by using part-based models, have achieved bet-

ter performance via part-to-part matching, but they require

strict person alignment in advance.

In this paper, we propose a novel alignment-free ap-

proach that can re-identify persons accurately without re-

quiring person alignment in advance even in the presence

of heavy occlusion with the help of a foreground-aware
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pyramid reconstruction (FPR) based similarity measure.

In particular, we firstly utilize the fully convolution net-

work (FCN) to generate discriminative spatial feature maps

that contain spatial coordinate information, and then post-

process them via pyramid pooling, to extract spatial pyra-

mid features. We then develop a novel matching score

computation method that can be easily incorporated into

any end-to-end person ReID model. More concretely, the

proposed computation method encourages each spatial fea-

ture in the probe feature map to be linearly reconstructed

from the basis spatial features within the gallery feature

maps, and the average reconstruction error is used as the

final matching score. In this way, the model is indepen-

dent of the size of images and naturally skips the time-

consuming alignment step. We also design a foreground

probability generator to learn foreground probability maps

(FPM) that can guide the spatial reconstruction by assigning

the body parts with larger weights and the occlusion parts

with smaller weights to overcome the occlusion problem.

The proposed approach encourages the reconstruction error

of the spatial feature maps extracted from the same person

to be smaller than that of different identities. We conduct

extensive experiments to validate the effectiveness of our

proposed approach, and the results have clearly proved it

can achieve accurate person ReID performance even in the

presence of heavy occlusion.

To sum up, this work makes the following contributions:

• We introduce a novel end-to-end spatial pyramid fea-

tures learning architecture that can process input per-

sons of different sizes and scales, and generate dis-

criminative features.

• We propose an occlusion-sensitive alignment-free ap-

proach, i.e. foreground-aware pyramid reconstruction

(FPR), that utilizes the foreground probability gener-

ator to guide the pyramid reconstruction for occluded

person ReID. Unlike previous methods, it does not re-

quire any external cues during the testing phase.

• Experimental results demonstrate that the proposed

approach achieves impressive results on multiple oc-

clusion datasets including Partial REID [21], Partial

iLIDS [20], and Occluded REID [3]. It exceeds some

occluded ReID approaches by more than 30% in terms

of Rank 1 accuracy. Additionally, FPR achieves com-

petitive results on multiple benchmark person datasets

including Market1501 [19], DukeMTMC [23] and

CUHK03 [22].

2. Related Work

Occluded person ReID has attracted increasing attention

due to its practical importance. Generally, previous meth-

Table 1. The comparison of occluded person ReID approaches

along with the proposed FPR.

Approach
Alignment External cues

requirement requirement

Mask-guided Require Require

Pose-guided Require Require

Part-based Require Do not require

FPR (ours) Alignment-free Do not require

ods for addressing this problem leverage external cues such

as mask and pose, or adopt part-to-part matching.

Approaches with External Cues. Mask-guided models

[4, 8, 12] use person masks that contain body shape in-

formation to help remove the background clutters at pixel-

level for person re-identification. For example, Kalayeh et

al. [4] proposed a model that integrates human semantic

parsing in person re-identification. It is similar to [4], Qi

et al. [8] combined source images with person masks as

the inputs to remove the appearance variations (illumina-

tion, pose, occlusion, etc.). Pose-guided models [6, 13, 14]

utilize the skeleton as an external cue to effectively relieve

the part misalignment problem by locating each part using

person landmarks. For instance, Su et al. [13] proposed a

Pose-driven Deep Convolutional (PDC) model to learn im-

proved feature extractors and matching models in an end-

to-end manner. The PDC can explicitly leverage the human

part cues to alleviate the identification difficulties caused

by pose variations. Suh et al. [14] proposed a two-stream

network, which consists of an appearance map extraction

stream and a body part map extraction stream. Following

the two streams, a part-aligned feature map was obtained

by a bilinear mapping of the corresponding local appear-

ance and body part descriptors. Although these approaches

can indeed address occlusion problem, they heavily depend

on accurate pedestrian segmentation, and costs much time

to infer the external cues.

Part-based models [15, 16, 18] employ a part-to-part

matching strategy to handle occlusion and mostly target

at the cases where the person of interest is partially out

of the camera’s view. Zheng et al. [21] proposed a lo-

cal patch-level matching model called Ambiguity-sensitive

Matching Classifier (AMC) based on dictionary learning

with explicit patch ambiguity modeling, and introduced a

global part-based matching model called Sliding Window

Matching (SWM), which can provide complementary spa-

tial layout information. However, the computation cost of

AMC+SWM is rather expensive as features are calculated

repeatedly without further acceleration. Sun et al. [15] pro-

posed a Part-based Convolutional Baseline (PCB) network

that outputs a convolutional feature consisting of several

part-level features. PCB focuses on the content consistency

within each part to address the occlusion problem. How-

ever, all these methods cannot skip the alignment step as

well. He et al. [2] proposed to reconstruct the feature map
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Figure 2. Architecture of the proposed foreground-aware pyramid reconstruction approach. It consists of three components: 1. a Fully

Convolutional Network (FCN), 2. a Pyramid Pooling and 3. a Foreground Probability Generator. This structure can produce spatial pyramid

features of inputs of different sizes and foreground probability maps h. The second part is foreground-aware pyramid reconstruction for

measuring the similarity between two person images. Given a probe x, the foreground probability vector H and spatial features X are

obtained through foreground probability generator and FCN with Pyramid pooling respectively. Given gallery y, spatial features Y can be

also obtained. Then we use linear reconstruction process to get the reconstruction error ℓ2(E). Finally we perform weighted sum operation

over ℓ2(E) and H to obtain the similarity score between the probe x and the gallery y.

of holistic pedestrian from the visible parts by lasso regres-

sion for addressing partial person ReID.

Table 1 compares the state-of-the-art algorithms to our

approach about alignment and external cues requirement. It

is noted that external cues based approaches are mainstream

for occluded person ReID. However, accurate and stable ex-

ternal cues used for person alignment are hard to acquire

in the application phase when half body is occluded. Dif-

ferent from previous approaches, our proposed method is

alignment-free and more effective when it comes the ReID

problem of occluded persons. It does not rely on any exter-

nal cues while still achieves higher accuracy.

3. Proposed Approach

In this section, we elaborate on the proposed alignment-

free occluded person re-identification approach. We first

introduce the network architecture. After that, we introduce

the foreground-aware pyramid reconstruction for comput-

ing matching scores between two persons with occlusion.

Then we explain the training strategy of our model.

3.1. Architecture of the Proposed Model

The architecture of the proposed ReID model is shown

in Fig. 2. Structurally, it consists of a Full Convolutional

Network (FCN), a Pyramid Pooling layer and a Foreground

Probability Generator. We now explain them one by one.

FCN. Conventional CNNs involving fully connected lay-

ers require a fixed-size input images as inputs. In fact,

the requirement comes from fully-connected layers that

demand fix-length vectors as inputs. Convolutional lay-

ers operate in a sliding-window manner and generate

correspondingly-size spatial outputs. To handle an differ-

ent sizes of person images, we discard all fully-connected

layers to implement Fully Convolutional Network (FCN)

that only convolution and pooling layers remain. Therefore,

full convolutional network still retains spatial coordinate in-

formation, which is capable of extracting spatial features

from different sizes of person images. The proposed FCN

is based on ResNet-50 [1], it only contains 1 convolutional

layer and 4 Resblocks layers, and the last Resblock outputs

the spatial feature map.

Pyramid Pooling. The detected persons for re-

identification may have different scales, which makes

it difficult to align their spatial features and brings errors to

their similarity measure. To obtain robust spatial features

regardless of scale variation, the features from FCN are

further processed by a pyramid pooling layer to generate

spatial pyramid features. The pyramid pooling layer

consists of multiple max-pooling layers of different kernel

sizes so that it has more comprehensive receptive fields

over the input images. As shown in Fig. 2, the output

spatial features from the pooling layers of small kernel

size capture the appearance information of a small local

region. The output spatial features from the pooling layers

of large kernel size capture the appearance information

from relatively large regions in the image. Finally, we

concatenate the spatial pyramid features to obtain the final

spatial feature that contains multi-scale information of

the input thus the scale variation problem has been well

addressed.

Foreground Probability Generator. The target person to

be re-identified is provided with person detection bounding
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boxes. The detected person bounding boxes are coarse, of-

ten containing background and occlusion. Therefore, the

output spatial features are contaminated by the occlusion

and background. To guarantee the following spatial feature

matching with less contamination from occlusion, we de-

sign a foreground probability generator to obtain the fore-

ground probability maps (FPM). Such FPM would differen-

tiate foreground from background and guide the following

pyramid reconstruction for robust matching score compu-

tation. We will explain this module in detail in the next

subsection. As shown in Fig. 2, the foreground probability

map generator consists of a 1 × 1 convolution layer and a

softmax layer.

3.2. Foreground­aware Pyramid Reconstruction

Our proposed model performs foreground-aware pyra-

mid reconstruction (FPR) to compute matching scores for

input persons without requiring to align them in advance.

Fig. 2 illustrates the workflow of FPR.

Suppose there is a pair of person images x (probe: an oc-

cluded person image) and y (gallery: an unoccluded person

image), which may have different sizes. Denote the spa-

tial pyramid maps of x from FCN as x = [xk]
K
k=1

, where

x consists of multi-scale feature maps generated from K
max-pooling layers in the pyramid pooling layer. While

xk is a vectorized wk
x × hk

x × d tensor, and wk
x, hk

x and

d is the width, the height and the channel of the tensor. As

shown in Fig. 2, a total of N spatial features from N loca-

tions are aggregated into a matrix X = [xn]
N
n=1

∈ R
d×N ,

where N =
∑K

k=1
wk

x × hk
x. Likewise, we construct

the gallery feature matrix Y = [ym]Mm=1
∈ R

d×M , and

M =
∑K

k=1
wk

y ×hk
y . Then, xn that denotes a local feature

of a person part should be represented by a linear combi-

nation of Y. In other words, some spatial features in Y

should be able to linearly reconstruct xn and the similar-

ity between them can be computed as the reconstruction

residual. Therefore, we first try to obtain the linear rep-

resentation coefficients wn of xn with respect to Y, where

wn ∈ R
N . With an ℓ2-norm regularization over wn, the

linear representation formulation is

min
wn

||xn −Ywn||
2

2
+ β||wn||2. (1)

For N spatial features in X, the Eq. (1) can be rewritten

as
min
W

||X−YW||2
2
+ β||W||F , (2)

where W = {w1, . . . ,wN} ∈ R
M×N , and β controls the

smoothness of the coding vector W.

We use the least square algorithm to solve W, i.e. W =
(YTY+β · I)−1YTX. Then the reconstruction probe spa-

tial features can be represented as

X̂ = Y(YTY + β · I)−1YTX. (3)

Algorithm 1 Foreground-aware Pyramid Reconstruction

(FPR)

Input: A probe person image x; a gallery person image y.

Output: Reconstruction error FPR.

1: Extract probe multi-scale spatial features X, multi-

scale heatmaps H and gallery multi-scale spatial fea-

tures Y.

2: Solve Eq. (2) to obtain reconstruction coefficient W.

3: According to Eq. (3) to calculate the reconstruction

probe map X̂ to further to obtain residual map E.

4: Solve Eq. (5) to obtain the final FPR distance.

Let the residual spatial features E = {En}
N
n=1

= X − X̂.

Then average reconstruction error is computed as

distance =

N∑

i=1

ℓ2(E)/N, (4)

where ℓ2(E) = {en}
N
n=1

∈ R
1×N , and en is the spatial

reconstruction error of the n-th spatial feature. The average

reconstruction can be regarded as the distance between two

person images.

With the above score computation, the alignment step in

previous methods can be favourably avoided. However, it

suffers from an obvious limitation: since the background

and occlusion spatial features are all pooled into X, the re-

construction error of background or occlusion spatial fea-

tures is very large. As a consequence, the average recon-

struction error increases, resulting in unreliable similarity

scores and leads to mismatching. To address this problem,

we propose to reduce the influence of background by as-

signing it small weights, while enhance the effect of fore-

ground by assigning these regions large weights adaptively.

Therefore, we consider using spatial foreground probabil-

ity maps to guide spatial pyramid reconstruction to further

obtain the FPR model.

Specifically, given the probe person image, the fore-

ground probability generator as introduced above outputs

spatial probability maps h. Then the foreground probability

vector H = [hn]
N
n=1

∈ R
N can be obtained, which reveals

the different contributions of the spatial features from the

probe image to spatial reconstruction. For the foreground

spatial features, the output values in the FPM are relatively

large, while for the background spatial features, the output

values in the FPM are relatively small. Therefore, the ReID

model can leverage the spatial vector H to guide the spatial

reconstruction. We perform weighted sum operation over

the reconstruction error ℓ2(E) and the foreground probabil-

ity vector H. Then the FPR distance of two person images

can be defined as

distance = ℓ2(E) ∗H. (5)

The overall FPR is outlined in Algorithm 1.
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Figure 3. Model training. Our network consists of a batch of an

input layer and a ReID model, in which FPR is embedded after

the ReID network and followed by the triplet loss during train-

ing. Then the foreground probability generator loss learns the

foreground probability map (FPM).

3.3. Model Training

We now explain the training strategy of the foreground

probability generator together with the whole model. Two

loss functions, the triplet loss Ltri and the foreground prob-

ability generator loss Lfpg as shown in Fig. 3, are used to

optimize the whole ReID model.

Triplet Loss The Ltri is the hard example triplet loss func-

tion, which ensures that an image of a specific person is

closer to all other images of the same person than any other

images of a different person.

The goal of triplet embedding learning is to learn a func-

tion fθ(x). Here, we want to make an image xa
i (anchor)

of a specific person closer to all other images xp
i (positive)

of the same person than to any image xn
i (negative) of any

other person in the image embedding space. Thus, we want

D(xa
i , x

p
i )+m < D(xa

i , x
n
i ), where D(:, :) is FPR measure

between a pair of person images. Then the Triplet Loss with

N samples is defined as
∑N

i=1
[m+D(gai , g

p
i )−D(gai , g

n
i )],

where m is a margin that is enforced between a pair of pos-

itive and negative. To effectively select triple samples, the

batch hard triplet loss modified by the triplet loss is adopted.

The core idea is to form batches by randomly sampling P
subjects, followed by randomly sampling K images of each

subject, thus resulting in a batch of PK images. Now, for

each anchor sample in the batch, we can select the hardest

positive and hardest negative samples within the batch when

forming the triplets for computing the loss, which is called

the Batch Hard Triplet Loss:

Ltri(θ) =

all anchors
︷ ︸︸ ︷

P∑

i=1

K∑

a=1

[m+

hardest positive
︷ ︸︸ ︷

max
p=1,...,K

D(gai , g
p
i )

− min
n=1,...,K

D(gai , g
n
i )

︸ ︷︷ ︸

hardest negative

]

(6)
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Figure 4. Foreground probability maps of occluded person images

produced by foreground probability generator.

Foreground Probability Generator Loss The Lfpg is

the spatial background-foreground classifier, which aims

to classify the background/occlusion part and the person

part. We treat this problem as a binary classification prob-

lem. Given a person image, corresponding spatial features

X = {xn}
N
n=1

are extracted. The label of xn is determined

by the person mask obtained by the semantic segmentation

model [7]. The spatial feature xn corresponds to the mask

region Pn. We calculate the average pixel value of Pn to

obtain its mask-label mn:

mn =

∑W

w=1

∑H

h=1
Pw,h
i

W ×H
, (7)

where W,H are the width and the height of the mask patch

Pn. Then we set a label threshold τ (0 ≤ τ ≤ 1) to

obtain the labels of spatial features. The spatial back-

ground/foreground label can be defined as

yn =

{
0, mn ≤ τ
1, mn > τ,

(8)

where τ is the label threshold and 0 ≤ τ ≤ 1. The fore-

ground probability generator loss function is then given by

Lfpg =

N∑

n=1

[yn log(fθ(xn)) + (1− yn)log(1− fθ(xn))],

(9)

where yn = 0 and yn = 1 respectively indicate the back-

ground and foreground spatial feature labels.

Fig. 4 shows some FPM of occluded person images that

are generated by the softmax layer. We can see that the spa-

tial background-foreground classifier can accurately detect

the person parts.
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Table 2. Databases used in the occluded person ReID experiments.

Market1501 dataset is used for training the ReID model, and the

three occluded person datasets used for testing.

Database
Training Testing (#id/#imgs)

(#id/#imgs) Gallery Probe

Partial REID - 60/300 60/300

Partial iLIDS - 119/238 119/238

Occluded REID - 200/1,000 200/1,000

(a)                                             (b)                                            (c)                        

Figure 5. Examples of occluded persons in (a) Partial REID, (b)

Partial iLIDS, and (c) Occluded REID datasets.

The final total loss function is defined as

Ltotal = Ltri + αLfpg, (10)

where α controls the importance of the spatial foreground

probability generator loss function.

4. Experiments

In this section we first verify the effectiveness of

our proposed approach for the task of occluded person

re-identification, and then experiment on non-occluded

datasets to test its generalizability. Also, we perform pa-

rameter analysis to investigate the influence of weight α and

threshold τ in training and testing phases.

4.1. Experiment Settings

Implementation Details. Our implementation is based on

the publicly available code of PyTorch. All models are

trained and tested on Linux with GTX TITAN X GPUs.

During training, all training samples are all re-scaled to

384 × 128. No data augmentation is used. Besides, we

empirically set α = 0.02 in Eq. (10), τ = 0.35 in Eq. (8)

and β = 0.01 in Eq. (2). For the batch hard triplet loss

function, one batch consists of 16 subjects, and each sub-

ject has 4 different images. Therefore, each batch returns

64 groups of hard triples. The proposed model is trained

with 200 epochs.

Evaluation Protocol. For performance evaluation, we em-

ploy the standard metrics as in most person ReID literature,

namely the cumulative matching cure (CMC) and the mean

Average Precision (mAP). To evaluate our method, we re-

implement the evaluation code provided by [19] in Python.

4.2. Evaluation on Occluded Person Datasets

Datasets. Partial REID [21] is a specially designed par-

tial person dataset that includes 600 images from 60 people,

Table 3. Performance comparison on Partial REID, Partial-iLIDS

and Occluded REID datasets. R1: rank-1. mAP: mean Accuracy

Precision.
Occluded REID

R1 mAP

MaskReID [8] 26.80 25.00

PCB [15] 41.30 38.90

AMC+SWM [21] 31.12 27.33

DSR [2] 72.80 62.83

Baseline 42.12 37.24

FPR (ours) 78.30 68.00

Partial REID Partial iLIDS

R1 mAP R1 mAP

MaskReID [8] 28.70 32.20 33.00 30.40

PCB [15] 56.30 54.70 46.80 40.20

AMC+SWM [21] 34.27 31.33 38.67 31.33

DSR [2] 73.67 68.07 64.29 58.12

Baseline 53.33 50.20 52.94 43.53

FPR (ours) 81.00 76.60 68.08 61.78

with 5 full-body images and 5 occluded images per person.

These images were collected on a university campus by 6

cameras from different viewpoints, backgrounds and differ-

ent types of occlusion. The examples of partial persons in

the Partial REID dataset are shown in Fig. 5(a). We follow

the evaluation protocols in [19] where 300 full-body images

of 60 identities are used as the gallery set and 300 occluded-

body images of the same 60 identities are used as the probe

set. Partial iLIDS [2] contains a total of 476 images of 119

people captured by 4 non-overlapping cameras. Some im-

ages contain people occluded by other individuals or lug-

gage. Fig. 5(b) shows some examples of individual images

from the iLIDS dataset. For the gallery set, 238 images of

119 individuals captured by 1st, 2nd cameras are used as

the gallery set and 238 images of 119 individuals captured

3rd, 4th cameras are used as a probe set. Occluded REID

[3] is an occluded person dataset captured by mobile cam-

eras, consisting of 2,000 images of 200 occluded persons

(see Fig. 5(c)). Each identity has 5 full-body person images

and 5 occluded person images with different types of occlu-

sion. All images with different viewpoints and backgrounds

are resized to 384× 128. The details of the training set and

testing set are shown in Table 2.

Benchmark Algorithms. Several existing partial per-

son ReID methods are used for comparison, including

Ambiguity-sensitive Matching (AMC) with Sliding Win-

dow Matching (SWM) [21] (AMC + SWM), PCB [15] and

DSR [2], which are two part-based matching methods; and

the mask-guided ReID model MaskReID [8]. For AMC +

SWM, features are extracted from 32× 32 supporting areas

which are densely sampled with an overlap of half of the

height/width of the supporting area in both horizontal and
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Table 4. Performance comparison on Market1501, CHUK03 and DukeMTMC datasets. R1: rank-1. mAP: mean Accuracy Precision.

Method
Market1501 CUHK03 DukeMTMC

R1 mAP R1 mAP R1 mAP

Part-based

PCB (ECCV18) [15] 92.30 77.40 61.30 54.20 81.80 66.10

PCB+RPP (ECCV18) [15] 93.80 81.60 63.70 57.50 83.30 69.20

DSR (CVPR18) [2] 94.71 85.78 75.24 71.15 88.14 77.07

Mask-guided

SPReID (CVPR18) [4] 92.54 81.34 - - -

MGCAM (CVPR18) [12] 83.79 74.33 50.14 50.21 46.71 46.87

MaskReID (Arxiv18) [8] 90.02 75.30 - - - -

Pose-guided

PDC (ICCV17) [13] 84.14 63.41 - - - -

PABR (Arxiv18) [14] 90.20 76.00 - - - -

Pose-transfer (CVPR18) [6] 87.65 68.92 33.80 30.50 30.10 28.20

PSE (CVPR18) [10] 87.70 69.00 - - 27.30 30.20

Attention-based

DuATM (CVPR18) [11] 91.42 76.62 - - - -

HA-CNN (CVPR18) [5] 91.20 75.70 44.40 41.00 41.70 38.60

AACN (CVPR18) [17] 85.90 66.87 - - - -

Baseline 94.06 84.62 73.57 69.35 87.30 76.18

FPR (ours) 95.42 86.58 76.08 72.31 88.64 78.42
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Figure 6. Occluded person retrieval of DSR and FPR. The red

bounding indicates the correct retrieval result, we find that FPR

can address the case where DSR cannot get the correct result with

smaller reconstruction error.

vertical directions. Each region is represented following

[21]. Besides, the weights of AMC and SWM are 0.7 and

0.3, respectively. For PCB and MaskReID, we follow their

original parameter settings. Our ReID model is trained with

Market1501. We follow the standard training protocols in

[19], where 751 identities are used for training. Therefore,

it is also a cross-domain setting.

Results. Table 3 shows the experimental results. We find

the results on Partial REID, Partial iLIDS and occluded

REID are similar. The proposed method FPR outperforms

MaskReID, PCB, AMC-SWM and DSR with R1 76.33%,

68.07% and 76.30% and mAP 76.60%, 61.78%, 68.00% re-

spectively on the three occluded person datasets. Note that

the gap between FPR and DSR is significant. Our method

FPR increases R1 Accuracy from 73.67% to 81.00%, from

64.29% to 68.07%, and from 72.80% to 78.30% on the

three occluded person datasets, respectively. This is be-

cause background and occlusion largely affect reconstruc-

tion error, thus lead to larger average error. Remarkably,

FPR effectively reduces the influence of background and

Table 5. Databases used in the unoccluded person ReID experi-

ments.

Database
Training Testing (#id/#imgs)

(#id/#imgs) Gallery Probe

Market1501 751/12,936 750/15,913 750/3,368

DukeMTMC 702/16,522 1,110/17,661 702/2,228

CUHK03 767/7,365 700/5,332 700/1,400

occlusion by assigning them small weights. For these com-

parison approaches, PCB is unable to relieve the influ-

ence of occlusion and background since it fuses both oc-

clusion/background part feature and human part feature to

the final feature. Although MaskReID is well suited for

addressing person occlusion problem, it depends on exter-

nal cues such as masks during the inference. The proposed

FPR is an alignment-free approach thus it does not depend

on external cues to align the person images. The retrieval

results are shown in Fig. 6. Experiments are conducted

using the cross-domain setting and no images in the three

partial datasets are used for training (Market1501 training

set is used to obtain the ReID model). The FPR achieves

good cross-domain performance in comparison to other ap-

proaches.

4.3. Evaluation on Non­occluded Person Datasets

We also experiment on non-occluded person datasets to

test the generalizability of our proposed approach.

Datasets. Three person re-identification datasets Mar-

ket1501 [19], CUHK03 [22] and DukeMTMC-reID [23] are

used. Market1501 has 12,936 training and 19,732 testing

images with 1,501 identities in total from 6 cameras. De-

formable Part Model (DPM) is used as the person detec-

tor. We follow the standard training and evaluation proto-
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cols in [19] where 751 identities are used for training and

the remaining 750 identities for testing. CUHK03 consists

of 13,164 images of 1,467 subjects captured by 2 cameras

on CUHK campus. Both manually labelled and DFM de-

tected person bounding boxes are provided. We adopt the

new training/testing protocol [22] proposed since it defines

a more realistic and challenging ReID task. In particular,

767 identities are used for training and the remaining 700

identities are used for testing. DukeMTMC-reID is the sub-

set of Duke Dataset [9], which consists of 16,522 training

images from 702 identities, 2,228 query images and 17,661

gallery images from the other identities. It provides manu-

ally labelled person bounding boxes. Here, we follow the

setup in [23]. The details of training and testing sets are

shown in Table 5.

Results. Comparisons are made between FPR and 10 state-

of-the-art approaches of four categories, including part-

based model: PCB [15], mask-guided models: SPReID [4],

MGCAM [12], MaskReID [8], pose-guided models: PDC

[13], PABR [14], Pose-transfer [6], PSE [10] and attention-

based models: DuATM [11], HA-CNN [5], AACN [17], on

Market1501, CUHK03, DukeMTMC datasets. The results

are shown in Table 4. From the table, it can be seen that

the proposed FPR achieves competitive performance for all

evaluations.

The gaps between FRP and DSR are significant. FPR

increases R1 Accuracy from 94.71% to 95.42%, from

75.24% to 76.08%, from 88.14% to 88.64% on Mar-

ket1501, CUHK03 and DukeMTMC, respectively. FPR

increases mAP from 85.78% to 86.58%, from 71.15% to

72.31%, from 77.07% to 78.42% on Market1501, CUHK03

and DukeMTMC, respectively. These results demonstrate

that the designed foreground probability generator in deep

spatial reconstruction is very useful. Besides, FPR performs

better than part-based model PCB, because part-level fea-

tures cannot eliminate the impact of occlusion and back-

ground. Furthermore, the proposed FPR is superior to some

approaches with external cues. The mask-guided and pose-

guided approaches heavily rely on the external cues for per-

son alignment, but they cannot always infer the accurate ex-

ternal cues in the case of severe occlusion, thus resulting in

mismatching. FPR utilizes foreground probability maps to

guide spatial reconstruction, which naturally avoid align-

ment and can address person images even in presence of

heavy occlusion. Not only do the proposed FPR get good

performance at R1 accuracy, but also it is superior to other

methods at mAP.

4.4. Parameter Analysis

We evaluate two key parameters in our modelling, the la-

bel threshold τ in Eq. (10) and the weight α of spatial fore-

ground probability generator loss in Eq. (8). The two pa-

rameters would influence the performance of the proposed
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Figure 7. Evaluation of different parameters of FPR (Eq.

(8)&(10)) using Rank-1 and mAP accuracy on the three occluded

datasets.

FPR. To explore the influence of α to FPR, we fix τ = 0.35
and set the value of α from 0.01 to 0.04 at the stride of 0.01.

We show the results on the three occluded person datasets

in Fig. 7, we find that the proposed FPR achieves the best

performance when we set α = 0.02. To further explore the

influence of τ to FPR, we fix α = 0.02 and set the value

of τ from 0 to 1 at the stride of 0.1. As shown in Fig. 7,

when τ is approximately 0.35, the proposed FPR achieves

the best performance.

5. Conclusions

We have proposed a novel approach called Foreground-

aware Pyramid Reconstruction (FPR) to occluded person

ReID. The proposed method provides a feasible scheme

where the probe spatial feature can be linearly reconstructed

by gallery spatial features to achieve effective alignment-

free matching. More importantly, spatial foreground proba-

bility used in the reconstruction process can fully solve the

occlusion problem. Furthermore, Our method is an end-to-

end approach, feature representation, and feature matching

are integrated into a unified framework to learn more dis-

criminative features by minimizing the reconstruction er-

ror for an image pair from the same target and maximizing

that of image pair from different targets. Experimental re-

sults on three occluded datasets validate the effectiveness of

FPR. Additionally, the proposed method is also competitive

on the benchmark person datasets.
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