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Abstract

Moiré pattern is a common image quality degradation

caused by frequency aliasing between monitors and cam-

eras when taking screen-shot photos. The complex fre-

quency distribution , imbalanced magnitude in colour chan-

nels , and diverse appearance attributes of moiré pattern

make its removal a challenging problem. In this paper, we

propose a Moiré pattern Removal Neural Network (Mop-

Net) to solve this problem. All core components of Mop-

Net are specially designed for unique properties of moiré

patterns, including the multi-scale feature aggregation to

address complex frequency, the channel-wise target edge

predictor to exploit imbalanced magnitude among colour

channels, and the attribute-aware classifiers to characterize

the diverse appearance for better modelling Moiré patterns.

Quantitative and qualitative comparison experiments have

validated the state-of-the-art performance of MopNet.

1. Introduction

With the widespread use of smart phones and the boom-

ing of social media, nowadays the digital images occupy

an indispensable part in our everyday life for capturing and

sharing memorable moments or useful information. How-

ever, when people take a shot of the content in front of

the monitors, there are often occasions when the images

are contaminated by undesired moiré artifacts as shown in

the upper row of Figure 1. Moiré pattern is a kind of arti-

fact caused by frequency aliasing, particularly interference

between overlapping patterns like the grids of display ele-

ments and camera sensors. The appearance of moiré pat-

terns can be rather diverse and complex, shaped in spatially

varying stripes, curves or ripples. Moiré patterns also super-

impose colour variations onto images, drastically degrading

the visual quality of images.

Removing the undesired patterns from a moiré image is

an image restoration problem, but it is not trivial to ana-
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Figure 1: Undesired Moiré patterns are often observed on

an image captured in front of the monitor (upper row).

MopNet is proposed to more cleanly remove such patterns

than state-of-the-art methods (e.g., DMCNN [20]).

lytically write down the moiré image formation model due

to its complex properties: 1) the moiré pattern signal spans

a broad frequency spectrum mixed with natural images, 2)

the imbalanced colour distribution of the colour filter ar-

ray (CFA) makes moiré patterns show different intensities

in RGB colour channels respectively, and 3) the appearance

of moiré patterns, especially the shape, not only varies from

image to image, but also changes locally within the same

image. These complex properties pose unique challenges to

moiré pattern removal problem.

To remove moiré patterns, an anti-aliasing low-pass fil-

ter [17] can be added to the camera, however the optical

filter causes the loss of high-frequency information and re-

sults in over-smoothed images. Post-processing algorithms

for removing moiré artifacts is a more often used solution.

Existing methods [15, 22] mostly resort to signal process-

ing theory and explore low-rank and sparsity constraint, but

they cannot deal with complex moiré patterns other than
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Figure 2: The framework of our proposed method MopNet, consisting of three major functional modules: the multi-scale

feature aggregation to exploit the complex distribution of moiré pattern in a broad frequency range, the channel-wise target

edge predictor to estimate edge map of moiré-free image, and the attribute-aware classifier to classify the moiré pattern with

multiple appearance attribute labels.

those in highly textured images. Recently, a deep neural

network based method [20] has been proposed to implicitly

model the moiré pattern through learning from a large-scale

dataset; though better restored images than non-learning ap-

proaches are produced, the performance significantly drops

for moiré images taken in the wild (with different capture

settings from the training data), as shown in bottom left

of Figure 1, partially due to the lack of specific constraints

addressing unique properties of moiré patterns.

In this paper, to better exploit the properties of moiré pat-

terns and conquer the corresponding challenges, we propose

a Moiré pattern Removal Neural Network named MopNet

to “mop” moiré patterns from images, as shown in Figure 2.

We observe three key properties of moire patterns by inves-

tigating their frequency distribution, edge intensities, and

appearance categories, and integrate these properties to de-

sign learning modules for MopNet. Thanks to the property

oriented designs, MopNet provides a cleaner removal for

moiré contaminated images as shown in bottom right of Fig-

ure 1. Our contributions can be summarized as follows:

• We propose a property oriented learning framework

for moiré pattern removal. With discovered properties

of moiré patterns from multiple aspects including fre-

quency distribution, edge information and appearance

attributes, our framework contributes to the compre-

hensive modelling of moiré patterns.

• We propose specific learning schemes to resolve these

useful properties. Particularly, we come up with

the multi-scale feature aggregation, channel-wise edge

predictor, and attribute-aware classifier, to deal with

issues of the complex frequency distribution, imbal-

anced edge intensities among colour channels, as well

as appearance diversity of moiré patterns, respectively.

• We have achieved cleaner moiré removal in the

benchmark datasets including those challenging low-

frequency moiré patterns. Our approach may better

preserve the structure of target images, which outper-

forms state-of-the-art methods in terms of numerical

metrics and subjective visual quality. Moreover, we

make additional annotation of attributes over bench-

mark datasets, which is useful to improve the perfor-

mance via the property oriented learning framework.

2. Related Work

Moiré pattern removal. Moiré pattern is a common degra-

dation to digital images due to frequency aliasing of sam-

pling in image formation and greatly degrades the image,

however the research of moiré pattern removal has been

mainly limited to physics and optical field, with analysis

of display devices on hardware level [18]. A few compu-

tational methods have also been proposed on demoiréing

in the past decade. Conventional signal processing based

techniques [15, 22] have been adopted like low-rank con-

strained and sparse matrix decomposition in frequency do-

main. Though those methods achieve good results in moiré

pattern removal for highly-textured images, they often fail

to handle screen-shot images. Layer decomposition method

[23] is also proposed to remove screen-shot moiré pattern,

but the process is time-consuming with limited success.

Recently, with the revolution in low-level vision led
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Figure 3: Frequency spectrum of images of Gaussian noise,

rain streak, moiré pattern, and a natural scene.

by deep learning, convolutional neural networks based

demoiréing method has also emerged. Kim et al. [7] pro-

posed an adversarial and content-aware learning framework

to implement de-screening only for the net-shaped moiré

patterns in scanned images. Sun et al. [20] proposed a

multi-scale CNN to learn the mapping to moiré-free images,

with a benchmark dataset captured on LCD screens of var-

ious models. Liu et al. [13] presented a similar work with

GAN framework and a synthesized dataset simulating the

camera imaging process. These works do not explicitly ex-

plore specific properties of moiré artifacts, and sometimes

over smooth the images due to the lack of exploitation on

subtle edge structures.

Learning based image restoration. Image restoration has

been a classical research field with many branches for var-

ious image degradations. The problem of moiré pattern re-

moval is also one of them, with some common characteris-

tics, yet poses many unique challenges as well. In the recent

deep learning era, numerous image restoration works show

impressive results benefited from the learning scheme. To

handle a wide range of different noises, multiple designs

such as multi-layer perceptron [2] and residual learning

based convolutional neural networks [28, 10] are adopted.

Recently many works focus on the removal of rain streaks

in images, utilizing the advantage of generative adversarial

network [26] and specifically exploiting the density infor-

mation of rain streak patterns [25] to recover clean images.

Besides, other distortions such as haze [24] and blur [16]

are also investigated for image restoration, with specific

physics models introduced [24]. Also, general degrada-

tion oriented universal learning framework has been inves-

tigated, with prior of degradation kernel [28] or exploitation

of self-similarity through non-local operation [14]. Yet for

the common contamination of moiré patterns in images, less

research has been made, especially those taking advantage

of deep learning. Existing image restoration methods might

not be effective for handling moiré patterns due to the di-

versity in shape and complexity in colour and frequency.

3. Methodology

In this section, we will describe the details of the pro-

posed MopNet, the methodology for networks designs, and

the details for training. As illustrated in Figure 2, MopNet

consists of three major functional modules which will be in-

troduced in details in Sections 3.1, 3.2, and 3.3. The overall

pipeline and the training details are provided in Section 3.4

and Section 3.5 respectively.

3.1. Multi­scale feature aggregation

Moiré patterns are complex in terms of the distribution in

frequency domain. As can be observed in the Fourier spec-

trum in Figure 3, the moiré pattern within a single image

tends to cover a broad range of frequency bands. In addi-

tion, we find that compared with the spectrum of Gaussian

noise, the frequency of moiré pattern is more concentrated

at the low frequency band, making moiré patterns indistin-

guishable from ordinary moiré-free images. Besides, the

spectrum of moiré patterns shows variation in more diverse

directions than those of rain streak images, with multiple

response peaks in frequency domain. Therefore exploring

complex properties of moiré patterns in frequency domain

is necessary for efficient removing. Accordingly, we pro-

pose to aggregate multi-scale features in networks to fully

consider the frequency characteristic of moiré patterns, as

shown in the first row of Figure 2.

We propose to extract the multi-scale features from the

bottleneck blocks similar to the ones in [5], with receptive

field of different sizes. Then the features are fused by a con-

catenation and squeeze-and-excitation (SE) block [4]. SE

block computes normalized weights for each channel, and

feature maps are re-weighted by multiplying the weights

learned by SE block. The aggregated feature produced from

this module can be presented mathematically as follows:

Fm = SE (Cat [NU1 (F1) , NU2 (F2) , . . . , NUn (Fn)]) , (1)

where SE stands for the operations of the SE block, Cat in-

dicates concatenation, Fi denotes feature maps of different

frequency bands obtained from multi-scale extractor gm,

and NUi is a non-linear upsampling used to convert feature

maps to the same spatial size.

Note that our multi-scale feature aggregation scheme dif-

fers from the parallel branches design with inputs of differ-

ent resolutions in [20]. We utilize the SE block to concate-

nate the convolutional features instead of the linear super-

position of the results from different scales. This imple-

mentation helps to extensively exploit the pattern features

within a broader range of frequency, and selectively empha-

size the features from the scales corresponding to dominant

frequency bands with SE block.
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Figure 4: Edge maps for a grayscale image1and RGB chan-

nels. The region highlighted by the yellow box shows the

different magnitudes of moiré effects in each edge map.

3.2. Channel­wise target edge predictor

The majority of moiré patterns are shaped in curves and

stripes with significant edge magnitude. To address such an

edge sensitive task, the edge cue is a common choice, which

is proved to be effective in various layer separation prob-

lems [11, 12]. Particularly, we find that for a typical Bayer

color filter array (CFA) [1], the sampling frequency of R, B

channels is half that of G channel, which makes R, B chan-

nels tend to be more aliased according to the Nyquist the-

orem. Such imbalance in colour channels is more obvious

on moiré patterns than natural images, which is reflected as

stronger edge intensities in R, B channels as shown in Fig-

ure 4. We, therefore, assume moiré pattern edges are more

likely to be separated when edge magnitude in colour chan-

nels are more imbalanced. So we propose to separate the

edge maps of target contents and those of moiré patterns

through a channel-wise target edge predictor, whose inputs

are the contaminated images and their channel-wise edge

maps (as shown in the second row of Figure 2).

We apply a network to predict the channel-wise edge

map Ep for the moiré-free target image It, with a given

source image Is. Considering the imbalance of edge on

RGB channels, we augment the source image Is with its

separate edge maps of each colour channel Esr, Esg, Esb

convoluted from Sobel kernels, instead of the grayscale

edge map. Our edge predictor maps such an augmented

input to the target edge map Ep:

Ep = Cat(Epr, Epg, Epb) = ge (Is, Esr, Esg, Esb) , (2)

where ge denotes the proposed channel-wise edge predic-

tor, and Epr, Epg, Epb stand for predicted edge maps for R,

G, B channels. Furthermore, non-local blocks [21] are in-

troduced to assist the predictor in capturing semantic edges

with weaker gradient. For each position in a feature map,

the non-local block computes correlation weights between

1The grayscale image is converted from an RGB input by R ∗ 0.299+

G ∗ 0.587 +B ∗ 0.114.

Figure 5: Different types of moiré patterns. L: Low fre-

quency, H: High frequency; S: Straight, C: Curve; MC:

Multiple Colours, SC: Single Colour.
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Figure 6: The distribution of different labels in our training

set. We can find that the attribute distributions in each class

are approximately equal.

features at that position and the rest, then obtain the re-

sponse as a weighted sum of the features at all positions.

The correlation matrix for a point on a weak edge captures

long-distance dependencies, which assists the weak edge

to obtain a stronger response by strengthening features at

strong edges in weighted summation.

The acquisition of target edge map Et is essential for

the restoration because it helps to guide the reconstruction

of the target image It while preserving its subtle structures

from potential over-smoothing. The channel-wise consider-

ation guides the target edge predictor to better distinguish

the edges of moiré patterns from the mixed edges.

3.3. Attributes­aware moiré pattern classifier

The moiré patterns show great diversity in pattern ap-

pearance, as shown in Figure 5, which also makes the mod-

elling of moiré patterns from learning and removing var-

ious patterns using a single type of network challenging.

However we have observed that the diverse patterns show

certain obvious attributes that can be categorized, such as

different frequencies, shapes, and colours. Therefore we

assume extra explicit descriptions of the patterns will guide

the learning process, and propose a multi-label classifier ca
to better depict the diversity of moiré patterns by charac-

terizing three appearance attributes including the dominant

frequency, colour, and shape of the pattern (as shown in the

third row in Figure 2).

We indicate the moiré images by three attribute labels
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through multi-label classification, the examples of classi-

fied images are illustrated in Figure 5. The attribute labels

for the dominant frequency, colour, and shape are binary for

easy implementation, and due to the generally balanced data

distribution observed on each attribute as shown in Figure 6.

By concatenating the three up-sampled label maps, we ob-

tain the pattern attribute information of the input image as:

C = Cat[u(C0), u(C1), u(C2)], (3)

where C0, C1, and C2 denote the predicted scalars for domi-

nant frequency, shape, and colour; u stands for up-sampling

operation which generates a label map filled with corre-

sponding scalar. Then this prediction of pattern attribute

is fed into the inference of the target output to provide aux-

iliary guidance on the pattern appearance.

The frequency label helps to specially deal with the low

frequency moiré patterns whose energy is mixed with the

image content to avoid over-smoothing the target image

when incorrectly treated as high frequency patterns. The

colour label emphasizes moiré patterns consisting of more

than one colour, which are more complicated for removal

by mingling with the original colour of the target image

than single colour ones. The shape label draws attention

to curved moiré patterns which have more complex curva-

tures than straight stripes. Hence, these three categorized

descriptions of pattern attributes would benefit learning of

diverse patterns, which are expected to improve the capabil-

ity of generalization to patterns unseen in training data.

3.4. Overall pipeline and objective function

As shown in Figure 2, MopNet takes a single image with

moiré artifacts as input, then passes it through the three

modules to extract the corresponding property features. The

features of estimated target edge map Fe are concatenated

to the features of input image F0. And the features are fur-

ther aggregated through our multi-scale feature aggregation

module to obtain Fm, after which the predicted labels C are

also aggregated for the final inference. The moiré-free out-

put is reconstructed by feeding the features of original input

F0, along with the aforementioned aggregated features into

the refinement block gr. The process can be described as

the following formulation:

Io = gr(Cat[Fm, C], F0), (4)

where Io denotes the output of the proposed network, gr is

the non-linear refinement which consists of SE block and

cascaded convolution layers.

The classifier is trained with binary cross entropy loss

for each attribute. And considering that the CNN feature

based perceptual loss helps improve the visual quality of

estimated image [26] and enhance semantic edge informa-

tion [9], we combine weighted pixel-wise Euclidean loss

and the feature-based loss as our objective for training the

network. It can be summarized as following:

L = α ∗ LE,e + LE,o + LF , (5)

where LE,e and LE,o represent the per-pixel Euclidean loss

function to reconstruct target edge map and ground truth

image respectively, α controls the weight of the loss derived

from edge map prediction. And LF is the feature based loss

for the moiré-free image, defined as:

LF =
1

CWH
‖φ(Io)− φ(It)‖

2

2
, (6)

where φ represents a non-linear CNN transformation to ex-

tract high-level feature map, and C,W , and H denote the

channel number, width and height of the feature map.

3.5. Training details and data preparation

We implement MopNet2 using PyTorch framework on a

PC with a Intel i7-7700 3.60GHz CPU and NVIDIA 1080

Ti GPU. And we apply a two-stage training strategy. To

guarantee a stable initialization of the training procedure,

we first train the edge prediction network and classifier in-

dependently for 50 and 20 epochs respectively until con-

verge. Then we fix the classifier network and train the en-

tire network end-to-end for 150 epochs. During training for

both stages, a 256 × 256 input is randomly cropped from

the input image with the scale 286× 286. We use Adam [8]

as optimization algorithm with a mini-batch size of 2. The

learning rate is initially set to 0.0002 and is linearly de-

creased with training proceeding. We use a weight decay

of 0.0001 and a momentum of 0.9. We set α = 0.1 when

fine-tuning the entire network, and compute the feature loss

from the layer relu1 2 extracted from the VGG-16 model.

The training and testing dataset we adopt is the bench-

mark dataset proposed by [20], which consists of 135,000

screen-shot images with moiré artifacts. The dataset is col-

lected from the ImageNet dataset [3], with the original im-

age as the ground truth for moiré-free image, and the moiré

images are captured under various imaging conditions.

Besides, to train the desired classifiers for pattern at-

tributes, we randomly sample a subset with 12000 pairs

of images, and supplement the subset with multiple pat-

tern attribute labels, including frequency, colour and pattern

shape. Then we train MopNet on this supplemented subset,

and pre-trained VGG-16 networks are fine-tuned with such

attribute labels as the classifiers.

4. Experiments

In this section, we first quantitatively compare the per-

formance of our proposed method against the state-of-

the-art learning based moiré pattern removal method DM-

CNN [20], traditional signal processing based method [23]

2Detailed network architecture can be found in the supplementary.
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Figure 7: Visual quality comparison among MopNet, DMCNN [20], Yang et al. [23], and Descreen plugin for Photoshop.

Table 1: Quantitative results evaluated in terms of average

PSNR (dB) and SSIM.

Input DnCNN VDSR U-Net DMCNN Ours

PSNR 20.30 24.54 24.68 26.49 26.77 27.75

SSIM 0.738 0.834 0.837 0.864 0.871 0.895

and the related Sattva Descreen plugin3 in image process-

ing software Adobe Photoshop. We further demonstrate

whether the moiré artifacts can be effectively handled by

other image restoration methods such as DnCNN [27],

VDSD [6], and U-Net [19]. To further evaluate the capa-

bility of improving image quality visually, we also make a

qualitative comparison among those methods. At last, we

conduct ablation study for different functional modules for

verifying the effectiveness of our proposed network designs.

4.1. Quantitative evaluation

We adopt the widely-used metric for image quality eval-

uation PSNR and SSIM, and demonstrate the quantitative

comparison in Table 14. As exhibited in Table 1, the PSNR

and SSIM of the inputs are at a low level, due to the contam-

ination of moiré patterns. We can also observe that the gen-

eral denoising method DnCNN [27] and super-resolution

method [6] have obtained limited image quality improve-

ment compared to moiré-specific methods. That is mainly

because they are not designed specifically for the problem

of moiré pattern removal, and the flat network structure

they adopt cannot effectively handle moiré artifacts with

3http://www.descreen.net/eng/soft/descreen/descreen.htm
4We do not provide the quantitative results for the descreen plugin and

yang et al. [23] due to that the former requests excessive manual operation

of tuning parameters and the latter coasts prohibitively long running time

(about half an hour per image) for benchmarking, respectively.

complex frequency distribution. The state-of-the-art DM-

CNN [20] delivers better performance, however the multi-

resolution scheme it proposed cannot sufficiently exploit the

properties of moiré patterns including edges and appear-

ance attributes. Thus its performance on PSNR and SSIM is

not evidently better than the U-Net [19] which involves fea-

ture links for decoder on different resolutions. As shown in

Table 1, MopNet surpasses all other methods, outperform-

ing the existing state-of-the-art method by 0.98dB gain in

PSNR. MopNet also provides results that are visually simi-

lar to the moiré-free images with a SSIM value of 0.895.

4.2. Qualitative evaluation

The examples of qualitative comparison are shown

in Figure 75, where we can observe that the input images

are severely moiré-contaminated, with obvious colour de-

viation and patterns shaped in curves or stripes superim-

posed on the ground truth clean image. We show a visual

quality comparison with Descreen plugin for Photoshop,

non-learning based [23] and learning based [20] moiré pat-

tern removal methods. Specifically, the first to the third

row in Figure 7 show cases of moiré patterns with different

dominant frequency bands, corresponding to low frequency,

mixed frequency, and high frequency pattern, respectively.

The descreen plugin shows limited effectiveness, because it

tends to blur the image, however still leaves the coloured

moiré patterns visible. Yang et al. [23] cannot effectively

deal with the low frequency patterns, as shown in the first

and fourth row in Figure 7. DMCNN [20] achieves much

better removal results for moiré artifacts. However its capa-

bility to erase the low frequency moiré pattern is restricted,

5More results can be found in the supplementary, based on which we

conduct a perceptual study.
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Figure 8: Visual quality comparison of different variants of our method. B: Basemodel, M: Multi-scale feature aggregation,

C: classifier, E: Edge predictor. The yellow boxes mark regions contain slight differences need a close check.

Table 2: Quantitative results of variants of MopNet.

PSNR SSIM

Baseline model 25.377 0.862

Baseline + Multi-scale (MS) 26.617 0.882

Baseline + MS + Classification 27.076 0.884

Baseline + MS + Edge 27.440 0.890

Full model 27.753 0.895

Figure 9: Edge prediction results with different inputs and

network architecture. (a) Input image, (b) channel-wise

edge map with non-local block, (c) gray image edge map

+ non-local block, (d) channel-wise edge without non-local

block, and (e) ground truth. Please zoom-in for details.

which may leave unexpected coloured spots or stripes on

the output image, as shown in the first row of Figure 7.

In contrast, our proposed method more effectively elimi-

nates the low frequency patterns, benefiting from our im-

proved multi-scale feature aggregation scheme. In addi-

tion, from the highlighted region of images in the third row

of Figure 7, we can find that the edges on the wall existing

in reference image are over-smoothed in the procedure of

DMCNN [20] restoration, on the contrary our method more

faithfully preserves such subtle structure of the original im-

age with the help of the prediction of target edges.

4.3. Ablation study

To validate the effectiveness of our specific network de-

signs for moiré pattern removal, we conduct ablation ex-

periments on models without such functional modules or

learning schemes for comparison. The numerical quality of

restored moiré-free images is shown in Table 2. Based on

the controlled experiments, it can be seen that the proposed

designs all contribute to the performance gain of the PSNR

and SSIM of restored images.

The visual comparison for different variants of our

model is shown in Figure 86. From the first row in Figure 8,

we can find there remain wide light-coloured stripes in the

result of the baseline method in the region marked by the

yellow box. In contrast, the model with multi-scale feature

aggregation scheme can more completely remove such low

frequency moiré stripes. And in the second row of Figure 8,

we can tell that models without edge predictor destroy the

structure of the thin wires marked by the yellow box be-

cause of over-smoothing. In contrast, the exploitation of

edge information offers constraints to better maintain the

subtle structures in original moiré-free image. And from

the last row it can be observed that after adding the appear-

ance classification, the complex curves on the background

marked by the yellow box is cleanly removed.

We also have investigated the effectiveness of the

schemes in edge prediction. Examples of target edge maps

predicted with and without the separate edge maps for RGB

channels and non-local blocks are illustrated in Figure 9.

By observing region marked by yellow boxes, We can find

that when fed with single grayscale edge map of mixture

6More results can be found in supplementary.
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Input Result

Figure 10: Moiré pattern removal results for texture images

using MopNet.

image as input, the predicted target edge map cannot thor-

oughly get rid of the edges of moiré patterns in background,

while the channel-wise edge maps on separate RGB chan-

nel can lead to more accurate target edge prediction with-

out obvious moiré residual. Also we can infer from the re-

gions marked by red boxes that the non-local blocks also

contribute to better target edge prediction.

5. Discussions

Moiré patterns in texture images. Apart from the alias-

ing between monitors and cameras, in the real world there

also exists moiré artifacts caused by the fine repetitive tex-

tures on materials like cloth or tiles. To test the capability

of generalization of MopNet on images that are not included

in our training data, we test our model on textured images

searched from the Internet. As shown in Figure 10, though

there exist no direct moiré-free reference images, it can be

observed that our restored results effectively get rid of the

coloured moiré curves while maintaining its subtle textures

of cloth or bricks. Note that our MopNet is trained with

screen-shot moiré images and have never seen such moiré

images caused by sophisticated texture, it can generalize

well on textured data in the wild.

High resolution moiré images. Due to the limitation of

the resolution of partial data in training dataset and GPU

memory, we train our model on 256× 256 images, which is

the same size as the input in DMCNN [20]. This problem

of limitation in input size can be partially solved through

downsampling the high resolution inputs, and increasing

the resolution of output with pre-trained super-resolution

networks [9]. As shown in Figure 11, the high resolution

output obtained in such a way highly resembles the high

resolution ground truth visually. Still, a direct end-to-end

solution for high resolution moiré images will be included

in our future work.

6. Conclusion

We proposed MopNet, consisting of a multi-scale aggre-

gated, edge-guided, and pattern attribute-aware network to

Figure 11: A case of removal result for high resolution

moiré image. LR, SR, and HR stand for low resolution,

super resolution, and high resolution respectively.

Figure 12: Examples of images containing complex and ir-

regular texture, compared with DMCNN [20]. The regions

highlighted by yellow boxes show the mixture of moiré and

complex texture.

“mop” moiré patterns from images. It exploits and specially

deals with the properties of moiré patterns including com-

plex frequency distribution, imbalanced intensities of edges

among RGB channels and varying appearance attributes.

Quantitative and qualitative experiments demonstrated that

our method has outperformed existing state-of-the-art meth-

ods. In the future, we will attempt to further investigate the

formation mechanism of moiré patterns for cleaner “mop-

ping”, and we believe such a post-processing solution for

this problem will benefit the vast users of smartphones for

capturing and sharing moiré-free moments.

Limitations. Effective as MopNet is, there still remain

several extreme cases when it achieves limited success for

removing moiré patterns. Figure 12 illustrates challenging

scenarios where there exists exceedingly complex and ir-

regular texture such as gravel or pavement surface in the

background, and such erratic background will make the

edge predictor fail to correctly distinguish the edges of

background from moiré gradients, leading to incomplete re-

moval of moiré patterns. However, as shown in Figure 12,

our method still provides better restored results compared

to the state-of-the-art method [20]. We will improve such

cases in our future work.
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