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Abstract

We report competitive results on object detection and in-

stance segmentation on the COCO dataset using standard

models trained from random initialization. The results

are no worse than their ImageNet pre-training counterparts

even when using the hyper-parameters of the baseline sys-

tem (Mask R-CNN) that were optimized for fine-tuning pre-

trained models, with the sole exception of increasing the

number of training iterations so the randomly initialized

models may converge. Training from random initialization

is surprisingly robust; our results hold even when: (i) us-

ing only 10% of the training data, (ii) for deeper and wider

models, and (iii) for multiple tasks and metrics. Experi-

ments show that ImageNet pre-training speeds up conver-

gence early in training, but does not necessarily provide

regularization or improve final target task accuracy. To

push the envelope we demonstrate 50.9 AP on COCO ob-

ject detection without using any external data—a result on

par with the top COCO 2017 competition results that used

ImageNet pre-training. These observations challenge the

conventional wisdom of ImageNet pre-training for depen-

dent tasks and we expect these discoveries will encourage

people to rethink the current de facto paradigm of ‘pre-

training and fine-tuning’ in computer vision.

1. Introduction

Deep convolutional neural networks [21, 23] revolution-

ized computer vision arguably due to the discovery that fea-

ture representations learned on a pre-training task can trans-

fer useful information to target tasks [9, 6, 50]. In recent

years, a well-established paradigm has been to pre-train

models using large-scale data (e.g., ImageNet [39]) and then

to fine-tune the models on target tasks that often have less

training data. Pre-training has enabled state-of-the-art re-

sults on many tasks, including object detection [9, 8, 36],

image segmentation [29, 13], and action recognition [42, 4].

A path to ‘solving’ computer vision then appears to be

paved by pre-training a ‘universal’ feature representation

on ImageNet-like data at massive scale [44, 30]. Attempts

along this path have pushed the frontier to up to 3000×

[30] the size of ImageNet. However, the success of these

experiments is mixed: although improvements have been
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Figure 1. We train Mask R-CNN [13] with a ResNet-50 FPN [26]

and GroupNorm [48] backbone on the COCO train2017 set

and evaluate bounding box AP on the val2017 set, initializing

the model by random weights or ImageNet pre-training. We ex-

plore different training schedules by varying the iterations at which

the learning rate is reduced (where the accuracy leaps). The model

trained from random initialization needs more iterations to con-

verge, but converges to a solution that is no worse than the fine-

tuning counterpart. Table 1 shows the resulting AP numbers.

observed, for object detection in particular they are small

and scale poorly with the pre-training dataset size. That this

path will ‘solve’ computer vision is open to doubt.

This paper questions the paradigm of pre-training even

further by exploring the opposite regime: we report that

competitive object detection and instance segmentation ac-

curacy is achievable when training on COCO from random

initialization (‘from scratch’), without any pre-training.

More surprisingly, we can achieve these results by using

baseline systems [8, 36, 26, 13] and their hyper-parameters

that were optimized for fine-tuning pre-trained models. We

find that there is no fundamental obstacle preventing us

from training from scratch, if: (i) we use normalization

techniques appropriately for optimization, and (ii) we train

the models sufficiently long to compensate for the lack of

pre-training (Figure 1).

We show that training from random initialization on

COCO can be on par with its ImageNet pre-training coun-
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terparts for a variety of baselines that cover Average Preci-

sion (AP, in percentage) from 40 to over 50. Further, we find

that such comparability holds even if we train with as little

as 10% COCO training data. We also find that we can train

large models from scratch—up to 4× larger than a ResNet-

101 [17]—without overfitting. Based on these experiments

and others, we observe the following:

(i) ImageNet pre-training speeds up convergence, espe-

cially early on in training, but training from random ini-

tialization can catch up after training for a duration that is

roughly comparable to the total ImageNet pre-training plus

fine-tuning computation—it has to learn the low-/mid-level

features (such as edges, textures) that are otherwise given

by pre-training. As the time/resource overhead of ImageNet

pre-training is often ignored when studying the target task,

‘controlled’ comparisons with a short training schedule can

veil the true behavior of training from random initialization.

(ii) ImageNet pre-training does not automatically give

better regularization. When training with fewer im-

ages (down to 10% of COCO), we find that new hyper-

parameters must be selected for fine-tuning (from pre-

training) to avoid overfitting. Then, when training from

random initialization using these same hyper-parameters,

the model can match the pre-training accuracy without any

extra regularization, even with only 10% COCO data.

(iii) ImageNet pre-training shows no benefit when the

target tasks/metrics are more sensitive to spatially well-

localized predictions. We observe a noticeable AP improve-

ment for high box overlap thresholds when training from

scratch; we also find that keypoint AP, which requires fine

spatial localization, converges relatively faster from scratch.

Intuitively, the task gap between the classification-based,

ImageNet-like pre-training and localization-sensitive target

tasks may limit the benefits of pre-training.

Given the current literature, these results are surprising

and challenge our understanding of the effects of ImageNet

pre-training. These observations hint that ImageNet pre-

training is a historical workaround (and will likely be so for

some time) for when the community does not have enough

target data or computational resources to make training on

the target task doable. In addition, ImageNet has been

largely thought of as a ‘free’ resource, thanks to the readily

conducted annotation efforts and wide availability of pre-

trained models. But looking forward, when the community

will proceed with more data and faster computation, our

study suggests that collecting data and training on the tar-

get tasks is a solution worth considering, especially when

there is a significant gap between the source pre-training

task and the target task. This paper provides new experi-

mental evidence and discussions for people to rethink the

ImageNet-like pre-training paradigm in computer vision.

2. Related Work

Pre-training and fine-tuning. The initial breakthrough of

applying deep learning to object detection (e.g., R-CNN

[9] and OverFeat [40]) were achieved by fine-tuning net-

works that were pre-trained for ImageNet classification.

Following these results, most modern object detectors and

many other computer vision algorithms employ the ‘pre-

training and fine-tuning’ paradigm. Recent work pushes

this paradigm further by pre-training on datasets that are

6× (ImageNet-5k [14]), 300× (JFT [44]), and even 3000×

(Instagram [30]) larger than ImageNet. While this body of

work demonstrates significant improvements on image clas-

sification transfer learning tasks, the improvements on ob-

ject detection are relatively small (on the scale of +1.5 AP

on COCO with 3000× larger pre-training data [30]). The

marginal benefit from the kind of large-scale pre-training

data used to date diminishes rapidly.

Detection from scratch. Before the prevalence of the ‘pre-

training and fine-tuning’ paradigm, object detectors were

trained with no pre-training (e.g., [31, 38, 45])—a fact that

is somewhat overlooked today. In fact, it should not be sur-

prising that object detectors can be trained from scratch.

Given the success of pre-training in the R-CNN paper

[9], later analysis [1] found that pre-training plays an impor-

tant role in detector accuracy when training data is limited,

but also illustrated that training from scratch on more detec-

tion data is possible and can achieve 90% of the fine-tuning

accuracy, foreshadowing our results.

As modern object detectors [9, 15, 8, 36, 35, 28, 26, 13]

evolved under the pre-training paradigm, the belief that

training from scratch is non-trivial became conventional

wisdom. Shen et al. [41] argued for a set of new design

principles to obtain a detector that is optimized for the ac-

curacy when trained from scratch. They designed a special-

ized detector driven by deeply supervised networks [24] and

dense connections [18]. DetNet [25] and CornerNet [22]

also present results when training detectors from scratch.

Similar to [41], these works [25, 22] focus on designing

detection-specific architectures. However, in [41, 25, 22]

there is little evidence that these specialized architectures

are required for models to be trained from scratch.

Unlike these papers, our focus is on understanding the

role of ImageNet pre-training on unspecialized architec-

tures (i.e., models that were originally designed without the

consideration for training from scratch). Our work demon-

strates that it is often possible to match fine-tuning accuracy

when training from scratch even without making any archi-

tectural specializations. Our study is on the comparison be-

tween ‘with vs. without pre-training’, under controlled set-

tings in which the architectures are not tailored.
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3. Methodology

Our goal is to ablate the role of ImageNet pre-

training via controlled experiments that can be done without

ImageNet pre-training. Given this goal, architectural im-

provements are not our purpose; actually, to better under-

stand what impact ImageNet pre-training can make, it is

desired to enable typical architectures to be trained from

scratch under minimal modifications. We describe the only

two modifications that we find to be necessary, related to

model normalization and training length, discussed next.

3.1. Normalization

Image classifier training requires normalization to help

optimization. Successful forms of normalization include

normalized parameter initialization [11, 16] and activation

normalization layers [20, 2, 46, 48]. When training object

detectors from scratch, they face issues similar to training

image classifiers from scratch [11, 16, 20]. Overlooking the

role of normalization can give the misperception that detec-

tors are hard to train from scratch.

Batch Normalization (BN) [20], the popular normaliza-

tion method used to train modern networks, partially makes

training detectors from scratch difficult. Object detectors

are typically trained with high resolution inputs, unlike im-

age classifiers. This reduces batch sizes as constrained by

memory, and small batch sizes severely degrade the accu-

racy of BN [19, 34, 48]. This issue can be circumvented if

pre-training is used, because fine-tuning can adopt the pre-

training batch statistics as fixed parameters [17]; however,

freezing BN is invalid when training from scratch.

We investigate two normalization strategies in recent

works that help relieve the small batch issue:

(i) Group Normalization (GN) [48]: as a recently pro-

posed alternative to BN, GN performs computation

that is independent of the batch dimension. GN’s ac-

curacy is insensitive to batch sizes [48].

(ii) Synchronized Batch Normalization (SyncBN) [34, 27]:

this is an implementation of BN [20] with batch statis-

tics computed across multiple devices (GPUs). This

increases the effective batch size for BN when using

many GPUs, which avoids small batches.

Our experiments show that both GN and SyncBN can en-

able detection models to train from scratch.

We also report that using appropriately normalized ini-

tialization [16], we can train object detectors with VGG

nets [43] from random initialization without BN or GN.

3.2. Convergence

It is unrealistic and unfair to expect models trained from

random initialization to converge similarly fast as those ini-

tialized from ImageNet pre-training. Overlooking this fact
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Figure 2. Total numbers of images, instances, and pixels seen dur-

ing all training iterations, for pre-training + fine-tuning (green

bars) vs. from random initialization (purple bars). We consider

that pre-training takes 100 epochs in ImageNet, and fine-tuning

adopts the 2× schedule (∼24 epochs over COCO) and random ini-

tialization adopts the 6× schedule (∼72 epochs over COCO). We

count instances in ImageNet as 1 per image (vs. ∼7 in COCO), and

pixels in ImageNet as 224×224 and COCO as 800×1333.

one can draw incomplete or incorrect conclusions about the

true capability of models that are trained from scratch.

Typical ImageNet pre-training involves over one million

images iterated for one hundred epochs. In addition to any

semantic information learned from this large-scale data, the

pre-training model has also learned low-level features (e.g.,

edges, textures) that do not need to be re-learned during

fine-tuning.1 On the other hand, when training from scratch

the model has to learn low- and high-level semantics, so

more iterations may be necessary for it to converge well.

With this motivation, we argue that models trained from

scratch must be trained for longer than typical fine-tuning

schedules. Actually, this is a fairer comparison in term of

the number of training samples provided. We consider three

rough definitions of ‘samples’—the number of images, in-

stances, and pixels that have been seen during all training

iterations (e.g., one image for 100 epochs is counted as 100

image-level samples). We plot the comparisons on the num-

bers of samples in Figure 2.

Figure 2 shows a from-scratch case trained for 3 times

more iterations than its fine-tuning counterpart on COCO.

Despite using more iterations on COCO, if counting image-

level samples, the from-scratch case still sees considerably

fewer samples than its fine-tuning counterpart—the 1.28

million ImageNet images for 100 epochs dominate. Actu-

ally, the sample numbers only get closer if we count pixel-

level samples (Figure 2, bottom)—a consequence of object

detectors using higher-resolution images. Our experiments

show that under the schedules in Figure 2, the from-scratch

detectors can catch up with their fine-tuning counterparts.

This suggests that a sufficiently large number of total sam-

ples (arguably in terms of pixels) are required for the models

trained from random initialization to converge well.

1In fact, it is common practice [8, 36] to freeze the convolutional filters

in the first few layers when fine-tuning.
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4. Experimental Settings

We pursue minimal changes made to baseline systems

for pinpointing the keys to enabling training from scratch.

Overall, our baselines and hyper-parameters follow Mask

R-CNN [13] in the publicly available code of Detectron

[10], except we use normalization and vary the number of

training iterations. The implementation is as follows.

Architecture. We investigate Mask R-CNN [13] with

ResNet [17] or ResNeXt [49] plus Feature Pyramid Net-

work (FPN) [26] backbones. We adopt the end-to-end

fashion [37] of training Region Proposal Networks (RPN)

jointly with Mask R-CNN. GN/SyncBN is used to replace

all ‘frozen BN’ (channel-wise affine) layers. For fair com-

parisons, in this paper the fine-tuned models (with pre-

training) are also tuned with GN or SyncBN, rather than

freezing them. They have higher accuracy than the frozen

ones [34, 27, 48].

Learning rate scheduling. Original Mask R-CNN mod-

els in Detectron [10] were fine-tuned with 90k iterations

(namely, ‘1× schedule’) or 180k iterations (‘2× schedule’).

For models in this paper, we investigate longer training and

we use similar terminology, e.g., a so-called ‘6× schedule’

has 540k iterations. Following the strategy in the 2× sched-

ule, we always reduce the learning rate by 10× in the last

60k and last 20k iterations respectively, no matter how many

total iterations (i.e., the reduced learning rates are always

run for the same number of iterations). We find that training

longer for the first (large) learning rate is useful, but training

for longer on small learning rates often leads to overfitting.

Hyper-parameters. All other hyper-parameters follow

those in Detectron [10]. Specially, the initial learning rate

is 0.02 (with a linear warm-up [12]). The weight decay is

0.0001 and momentum is 0.9. All models are trained in 8

GPUs using synchronized SGD, with a mini-batch size of 2

images per GPU.

By default Mask R-CNN in Detectron uses no data aug-

mentation for testing, and only horizontal flipping augmen-

tation for training. We use the same settings. Also, unless

noted, the image scale is 800 pixels for the shorter side.

5. Results and Analysis

5.1. Training from scratch to match accuracy

Our first surprising discovery is that when only using the

COCO data, models trained from scratch can catch up in

accuracy with ones that are fine-tuned.

In this subsection, we train the models on the COCO

train2017 split that has ∼118k (118,287) images, and

evaluate in the 5k COCO val2017 split. We evaluate

bounding box (bbox) Average Precision (AP) for object de-

tection and mask AP for instance segmentation.
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Figure 3. Learning curves of APbbox on COCO val2017 using

Mask R-CNN with R101-FPN and GN. Table 1 shows the result-

ing AP numbers.
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Figure 4. Learning curves of APbbox on COCO val2017 using

Mask R-CNN with R50-FPN and SyncBN [34, 27] (that synchro-

nizes batch statistics across GPUs). The results of the 6× schedule

are 39.3 (random initialization) and 39.0 (pre-training).

Baselines with GN and SyncBN. The validation bbox AP

curves are shown in Figures 1 and 3 when using GN for

ResNet-50 (R50) and ResNet-101 (R101) backbones and in

Figure 4 when using SyncBN for R50. For each figure, we

compare the curves between models trained from random

initialization vs. fine-tuned with ImageNet pre-training.

We study five different schedules for each case, namely,

2× to 6× iterations (Sec. 4). Note that we overlay the five

schedules of one model in the same plot. The leaps in the

AP curves are a consequence of reducing learning rates, il-

lustrating the results of different schedules.
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schedule 2× 3× 4× 5× 6×

R50
random init 36.8 39.5 40.6 40.7 41.3

w/ pre-train 40.3 40.8 40.9 40.9 41.1

R101
random init 38.2 41.0 41.8 42.2 42.7

w/ pre-train 41.8 42.3 42.3 41.9 42.2

Table 1. Object detection APbbox on COCO val2017 of training

schedules from 2× (180k iterations) to 6× (540k iterations). The

model is Mask R-CNN with FPN and GN (Figures 1 and 3).

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

R50

random init 41.3 61.8 45.6 36.6 59.0 38.9

w/ pre-train 41.1 61.7 44.6 36.4 58.5 38.7

△ +0.2 +0.1 +1.0 +0.2 +0.5 +0.2

R101

random init 42.7 62.9 47.0 37.6 59.9 39.7

w/ pre-train 42.3 62.6 46.2 37.2 59.7 39.7

△ +0.4 +0.3 +0.8 +0.4 +0.2 0.0

Table 2. Training from random initialization vs. with ImageNet

pre-training (Mask R-CNN with FPN and GN, Figures 1, 3), eval-

uated on COCO val2017. For each model, we show its results

corresponding to the schedule (2 to 6×) that gives the best APbbox.

Similar phenomena, summarized below, are consistently

present in Figures 1, 3, and 4:

(i) Typical fine-tuning schedules (2×) work well for the

models with pre-training to converge to near optimum (see

also Table 1, ‘w/ pre-train’). But these schedules are not

enough for models trained from scratch, and they appear to

be inferior if they are only trained for a short period.

(ii) Models trained from scratch can catch up with their

fine-tuning counterparts, if a 5× or 6× schedule is used—

actually, when they converge to an optimum, their detection

AP is no worse than their fine-tuning counterparts.

In the standard COCO training set, ImageNet pre-

training mainly helps to speed up convergence on the target

task early on in training, but shows little or no evidence of

improving the final detection accuracy.

Multiple detection metrics. In Table 2 we further com-

pare different detection metrics between models trained

from scratch and with pre-training, including box-level

and segmentation-level AP of Mask R-CNN, under

Intersection-over-Union (IoU) thresholds of 0.5 (AP50) and

0.75 (AP75).

Table 2 reveals that models trained from scratch and with

pre-training have similar AP metrics under various criteria,

suggesting that the models trained from scratch catch up not

only by chance for a single metric.

Moreover, for the APbbox
75

metric (using a high overlap

threshold), training from scratch is better than fine-tuning

by noticeable margins (1.0 or 0.8 AP).
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Figure 5. Comparisons between from random initialization vs.

with pre-training on various systems using Mask R-CNN, includ-

ing: (i) baselines using FPN and GN, (ii) baselines with training-

time multi-scale augmentation, (iii) baselines with Cascade R-

CNN [3] and training-time augmentation, and (iv) plus test-time

multi-scale augmentation. Top: R50; Bottom: R101.

Enhanced baselines. The phenomenon that training with

and without pre-training can be comparable is also observed

in various enhanced baselines, as compared in Figure 5. We

ablate the experiments as follows:

– Training-time scale augmentation: Thus far all mod-

els are trained with no data augmentation except horizontal

flipping. Next we use the simple training-time scale aug-

mentation implemented in Detectron: the shorter side of im-

ages is randomly sampled from [640, 800] pixels. Stronger

data augmentation requires more iterations to converge, so

we increase the schedule to 9× when training from scratch,

and to 6× when from ImageNet pre-training.

Figure 5 (‘train aug’) shows that in this case models

trained with and without ImageNet pre-training are still

comparable. Actually, stronger data augmentation relieves

the problem of insufficient data, so we may expect that mod-

els with pre-training have less of an advantage in this case.

– Cascade R-CNN [3]: as a method focusing on improv-

ing localization accuracy, Cascade R-CNN appends two ex-
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tra stages to the standard two-stage Faster R-CNN system.

We implement its Mask R-CNN version by simply adding

a mask head to the last stage. To save running time for the

from-scratch models, we train Mask R-CNN from scratch

without cascade, and switch to cascade in the final 270k it-

erations, noting that this does not alter the fact that the final

model uses no ImageNet pre-training. We train Cascade R-

CNN under the scale augmentation setting.

Figure 5 (‘cascade + train aug’) again shows that

Cascade R-CNN models have similar AP numbers with

and without ImageNet pre-training. Supervision about

localization is mainly provided by the target dataset and

is not explicitly available from the classification-based

ImageNet pre-training. Thus we do not expect ImageNet

pre-training to provide additional benefits in this setting.

– Test-time augmentation: thus far we have used no test-

time augmentation. Next we further perform test-time aug-

mentation by combining the predictions from multiple scal-

ing transformations, as implemented in Detectron [10].

Again, the models trained from scratch are no worse than

their pre-training counterparts. Actually, models trained

from scratch are even slightly better in this case—for ex-

ample, mask AP is 41.6 (from scratch) vs. 40.9 for R50,

and 42.5 vs. 41.9 for R101.

Large models trained from scratch. We have also trained

a significantly larger Mask R-CNN model from scratch us-

ing a ResNeXt-152 8×32d [49] (in short ‘X152’) backbone

with GN. The results are in Table 3.

This backbone has ∼4× more FLOPs than R101. De-

spite being substantially larger, this model shows no notice-

able overfitting. It achieves good results of 50.9 bbox AP

and 43.2 mask AP in val2017 when trained from random

initialization. We submitted this model to COCO 2018

competition, and it has 51.3 bbox AP and 43.6 mask AP

in the test-challenge set. Our bbox AP is at the level

of the COCO 2017 winners (50.5 bbox AP, [34]), and is by

far the highest number of its kind (single model, without

ImageNet pre-training).

We have trained the same model with ImageNet pre-

training. It has bbox/mask AP of 50.3/42.5 in val2017

(vs. from-scratch’s 50.9/43.2). Interestingly, even for this

large model, pre-training does not improve results.

vs. previous from-scratch results. DSOD [41] reported

29.3 bbox AP by using an architecture specially tailored for

results of training from scratch. A recent work of CornerNet

[22] reported 42.1 bbox AP (w/ multi-scale augmentation)

using no ImageNet pre-training. Our results, of various ver-

sions, are higher than previous ones. Again, we emphasize

that previous works [41, 22] reported no evidence that mod-

els without ImageNet pre-training can be comparably good

as their ImageNet pre-training counterparts.

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

R101 w/ train aug 45.0 65.7 49.3 39.5 62.5 42.1

X152 w/ train aug 46.4 67.1 51.1 40.5 63.9 43.4

+ cascade 48.6 66.8 52.9 41.4 64.2 44.6

+ test aug 50.9 68.7 55.4 43.2 66.1 46.8

Table 3. Mask R-CNN with ResNeXt-152 trained from random

initialization (w/ FPN and GN), evaluated on COCO val2017.
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Figure 6. Keypoint detection on

COCO using Mask R-CNN with

R50-FPN and GN. We show key-

point AP on COCO val2017.

ImageNet pre-training has little

benefit, and training from random

initialization can quickly catch up

without increasing training itera-

tions. We only need to use 2× and

3× schedules, unlike the object de-

tection case. The result is 65.6 vs.

65.5 (random initialization vs. pre-

training) with 2× schedules.

Keypoint detection. We also train Mask R-CNN for the

COCO human keypoint detection task. The results are in

Figure 6. In this case, the model trained from scratch can

catch up more quickly, and even when not increasing train-

ing iterations, it is comparable with its counterpart that uses

ImageNet pre-training. Keypoint detection is a task more

sensitive to fine spatial localization. Our experiment sug-

gests that ImageNet pre-training, which has little explicit

localization information, does not help keypoint detection.

Models without BN/GN — VGG nets. Thus far all of our

experiments involve ResNet-based models, which require

some form of activation normalization (e.g., BN or GN).

Shallower models like VGG-16 [43] can be trained from

scratch without activation normalization as long as a proper

initialization normalization is used [16]. Our next experi-

ment tests the generality of our observations by exploring

the behavior of training Faster R-CNN from scratch using

VGG-16 as the backbone.

We implement the model following the original Faster

R-CNN paper [37] and its VGG-16 architecture; no FPN is

used. We adopt standard hyper-parameters with a learning

rate of 0.02, learning rate decay factor of 0.1, and weight

decay of 0.0001. We use scale augmentation during train-

ing. Following previous experiments, we use the exact

same hyper-parameters when fine-tuning and training from

scratch. When randomly initializing the model, we use the

same MSRA initialization [16] for ImageNet pre-training

and for COCO from scratch.

The baseline model with pre-training is able to reach a

maximal bbox AP of 35.6 after an extremely long 9× train-

ing schedule (training for longer leads to a slight degra-

dation in AP). Here we note that even with pre-training,
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Figure 7. Training with fewer COCO images (left/middle: 35k; right: 10k). The model is Mask R-CNN with R50-FPN and GN,

evaluated by bbox AP in val2017. Left: training with 35k COCO images, using the default hyper-parameters that were chosen for

the 118k train2017. It shows overfitting before and after the learning rate changes. Middle: training with 35k COCO images, using

hyper-parameters optimized for ‘w/ pre-train’ (the same hyper-parameters are then applied to the model from random initialization). Right:

training with 10k COCO images, using hyper-parameters optimized for ‘w/ pre-training’.

full convergence for VGG-16 is slow. The model trained

from scratch reaches a similar level of performance with a

maximal bbox AP of 35.2 after an 11× schedule (training

for longer resulted in a lower AP, too). These results indi-

cate that our methodology of ‘making minimal/no changes’

(Sec. 3) but adopting good optimization strategies and train-

ing for longer are sufficient for training comparably perfor-

mant detectors on COCO, compared to the standard ‘pre-

training and fine-tuning’ paradigm.

5.2. Training from scratch with less data

Our second discovery, which is even more surprising,

is that with substantially less data (e.g., ∼1/10 of COCO),

models trained from scratch are no worse than their coun-

terparts that are pre-trained.

35k COCO training images. We start our next investiga-

tion with ∼1/3 of COCO training data (35k images from

train2017, equivalent to the older val35k). We train

models with or without ImageNet pre-training on this set.

Figure 7 (left) is the result using ImageNet pre-training

under the hyper-parameters of Mask R-CNN that were cho-

sen for the 118k COCO set. These hyper-parameters are

not optimal, and the model suffers from overfitting even

with ImageNet pre-training. It suggests that ImageNet pre-

training does not automatically help reduce overfitting.

To obtain a healthy baseline, we redo grid search for

hyper-parameters on the models that are with ImageNet pre-

training.2 The gray curve in Figure 7 (middle) shows the

results. It has optimally 36.3 AP with a 6× schedule.

2Our new recipe changes are: training-time scale augmentation range

of [512, 800] (vs. baseline’s no scale augmentation), a starting learning rate

of 0.04 (vs. 0.02), and a learning rate decay factor of 0.02 (vs. 0.1).

Then we train our model from scratch using the exact

same new hyper-parameters that are chosen for the pre-

training case. This obviously biases results in favor of the

pre-training model. Nevertheless, the model trained from

scratch has 36.3 AP and catches up with its pre-training

counterpart (Figure 7, middle), despite less data.

10k COCO training images. We repeat the same set of

experiments on a smaller training set of 10k COCO images

(i.e., less than 1/10th of the full COCO set). Again, we

perform grid search for hyper-parameters on the models that

use ImageNet pre-training, and apply them to the models

trained from scratch. We shorten the training schedules in

this small training set (noted by x-axis, Figure 7, right).

The model with pre-training reaches 26.0 AP with 60k

iterations, but has a slight degradation when training more.

The counterpart model trained from scratch has 25.9 AP at

220k iterations, which is comparably accurate.

Breakdown regime: 1k COCO training images. That

training from scratch in 10k images is comparably accurate

is surprising. But it is not reasonable to expect this trend

will last for arbitrarily small target data, as we report next.

In Figure 8 we repeat the same set of experiments

using only 1k COCO training images (∼1/100th of full

COCO, again optimizing hyper-parameters for the pre-

training case) and show the training loss. In terms of opti-

mization (i.e., reducing training loss), training from scratch

is still no worse but only converges more slowly, as seen

previously. However, in this case, the training loss does

not translate into a good validation AP: the model with

ImageNet pre-training has 9.9 AP vs. the from scratch

model’s 3.5 AP. For one experiment only we also per-

formed a grid search to optimize the from-scratch case: the

74924



0 1 2 3

iterations (104)

0

0.5

1

1.5

Loss: 1k training images

random init

w/ pre-train

Figure 8. Training with 1k COCO images (shown as the loss

in the training set). The model is Mask R-CNN with R50-FPN

and GN. As before, we use hyper-parameters optimized for the

model with pre-training, and apply the same hyper-parameters to

the model from random initialization. The randomly initialized

model can catch up for the training loss, but has lower validation

accuracy (3.4 AP) than the pre-training counterpart (9.9 AP).

result improves to 5.4 AP, but does not catch up. This is a

sign of strong overfitting due to the severe lack of data.

We also do similar experiments using 3.5k COCO train-

ing images. The model that uses pre-training has a peak

of 16.0 bbox AP vs. the trained from scratch counterpart’s

9.3 AP. The breakdown point in the COCO dataset is some-

where between 3.5k to 10k training images.

Breakdown regime: PASCAL VOC. Lastly we report the

comparison in PASCAL VOC object detection [7]. We train

on the set of trainval2007+train2012, and evaluate

on val2012. Using ImageNet pre-training, our Faster R-

CNN baseline (with R101-FPN, GN, and only training-time

augmentation) has 82.7 mAP at 18k iterations. Its counter-

part trained from scratch in VOC has 77.6 mAP at 144k

iterations and does not catch up even training longer.

There are 15k VOC images used for training. But

these images have on average 2.3 instances per image (vs.

COCO’s ∼7) and 20 categories (vs. COCO’s 80). They are

not directly comparable to the same number of COCO im-

ages. We suspect that the fewer instances (and categories)

has a similar negative impact as insufficient training data,

which can explain why training from scratch on VOC is not

able to catch up as observed on COCO.

6. Discussions

We summarize the main observations from our experi-

ments as follows:

- Training from scratch on target tasks is possible

without architectural changes.

- Training from scratch requires more iterations to suffi-

ciently converge.

- Training from scratch can be no worse than its

ImageNet pre-training counterparts under many circum-

stances, down to as few as 10k COCO images.

- ImageNet pre-training speeds up convergence on the

target task.

- ImageNet pre-training does not necessarily help reduce

overfitting unless we enter a very small data regime.

- ImageNet pre-training helps less if the target task is

more sensitive to localization than classification.

Based on these observations, we provide our answers to

a few important questions that may encourage people to re-

think ImageNet pre-training:

Is ImageNet pre-training necessary? No—if we have

enough target data (and computation). Our experiments

show that ImageNet can help speed up convergence, but

does not necessarily improve accuracy unless the target

dataset is too small (e.g., <10k COCO images). It can be

sufficient to directly train on the target data if its dataset

scale is large enough. Looking forward, this suggests

that collecting annotations of target data (instead of pre-

training data) can be more useful for improving the target

task performance.

Is ImageNet helpful? Yes. ImageNet pre-training has

been a important auxiliary task for the computer vision

community to progress. It enabled people to see significant

improvements before larger-scale data was available (e.g.,

in VOC for a long while). It also largely helped to circum-

vent optimization problems in the target data (e.g., under the

lack of normalization/initialization methods). Moreover,

ImageNet pre-training reduces research cycles, leading to

easier access to encouraging results—pre-trained models

are widely and freely available today, pre-training cost does

not need to be wasted repeatedly, and fine-tuning from pre-

trained weights converges faster than from scratch. We be-

lieve that these advantages will still make ImageNet un-

doubtedly helpful for computer vision research.

Is big data helpful? Yes. But a generic large-scale,

classification-level pre-training set is not ideal if we take

into account the extra effort of collecting and cleaning

data—the resource demand of collecting ImageNet has been

largely ignored, but the ‘pre-training’ step in the ‘pre-

training + fine-tuning’ paradigm is in fact not free when

we scale out this paradigm. If the gain of large-scale

classification-level pre-training becomes exponentially di-

minishing [44, 30], it would be more effective to collect

data in the target domain.

Shall we pursuit universal representations? Yes. We

believe learning universal representations is a laudable goal.

Our results do not mean deviating from this goal. Actu-

ally, our study suggests that the community should be more

careful when evaluating pre-trained features (e.g., for self-

supervised learning [5, 47, 33, 32]), as now we learn that

even random initialization could produce excellent results.

In closing, ImageNet and its pre-training role have been

incredibly influential in computer vision, and we hope that

our new experimental evidence about ImageNet and its role

will shed light into potential future directions for the com-

munity to move forward.
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