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Abstract

Generally, we human follow the roughly common aging

trends, e.g., the wrinkles only tend to be more, longer or

deeper. However, the aging process of each individual is

more dominated by his/her personalized factors, including

the invariant factors such as identity and mole, as well as

the personalized aging patterns, e.g., one may age by gray-

ing hair while another may age by receding hairline. Fol-

lowing this biological principle, in this work, we propose

an effective and efficient method to simulate natural aging.

Specifically, a personalized aging basis is established for

each individual to depict his/her own aging factors. Then

different ages share this basis, being derived through age-

specific transforms. The age-specific transforms represent

the aging trends which are shared among all individuals.

The proposed method can achieve continuous face aging

with favorable aging accuracy, identity preservation, and

fidelity. Furthermore, befitted from the effective design, a

unique model is capable of all ages and the prediction time

is significantly saved.

1. Introduction
Face aging/rejuvenation aims to predict the future/past

faces of a given face image as shown in Fig. 1(a), which is

not only interesting for entertainment but also valuable for

applications such as cross-age face recognition, finding lost

children or wanted fugitives. Although face aging has been

studied for decades and witnessed various breakthroughs,

it is still a challenging task even for human itself because

the natural human aging is affected by many factors such

as genes, physical damage, disease and living environment,

which are indeterministic and quite complicated to be mod-

eled. Besides, it is difficult or even impossible to collect

age data for each individual over a long period, and most

available datasets are limited to short age span for the same

person. Therefore, discontinuous data distribution makes

the modeling of long period aging even more challenging.

Generally, traditional face aging approaches can be

grouped into two main categories, i.e., the physical model

approaches and the prototype approaches. The physical

model approaches [38, 28] simulate the aging process by

exploiting prior knowledge about the biological structure

and aging mechanism. These physical model approaches

only consider the overall aging characteristics, but do not

specially investigate the personality in the aging process.

The prototype approaches [37, 15] divide continuous ages

into discrete age groups, and define the average face or low-

rank face as the prototype of each age group, then the tran-

sition pattern between a pair of age groups is represented by

the difference between their corresponding prototypes. Be-

cause of averaging, however, the personalized information

is eliminated in the prototypes, and therefore the transition

pattern is also an average pattern without personality. Shu

et al. [32] try to introduce personality by establishing aging

coupled dictionaries for each age group, and the personality

is represented by the sparse coding coefficients. However,

this method produces severe ghost artifacts.

Recently, generative adversarial networks (GANs) [9]

and its variants are adopted for face aging with promising

results [17, 40, 42]. These methods, powered by deep neu-

ral networks and adversarial training, usually train a trans-

formation network to convert an input image to a target

age group. Besides, an identity preservation network is

often adopted in GAN based methods to keep the identity

unchanged during the aging process. Although the iden-

tity is kept, as for age, these methods only consider the

population-to-population transition between age groups, in-

stead of explicitly considering the personalized transition

pattern for each individual between different ages. As a so-

lution, Liu et al. [18] propose a transition pattern discrimi-

nator to drive the aging network to capture the personalized

transition pattern for each individual.

Without proper consideration of personality may result

in missing details. Therefore, in this work, in considera-
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Figure 1. (a) Simulation of face aging and rejuvenation. (b) On the one hand, Hawke and Marsters have their own aging basis/factors

respectively, and all their ages are derived from their own basis. On the other hand, both Hawke and Marsters use the same age-specific

transform for the same age.

tion of both the personalized aging factors and the com-

mon aging trends, we suggest a novel approach for effec-

tive and efficient face aging, named as S2GAN. On the

one hand, the personalized aging factors include identity,

mole, and even the personalized aging patterns (e.g., one

may age by graying hair while another may age by reced-

ing hairline). These personalized factors almost remain un-

changed through one’s whole life, because they are most

probably encoded in genes which would not change across

ages. Accordingly, to simulate these personalized effects,

our approach employs a deep encoder to establish the per-

sonalized aging basis for each individual depicting his/her

own aging factors, while such basis is shared across differ-

ent ages. On the other hand, given the personalized aging

basis, different ages of each individual can be derived from

his/her own basis through age-specific transforms, which

are shared among all individuals to capture those common

aging trends (e.g., the wrinkles only tend to be more, longer

or deeper if a person ages by wrinkles).

Overall, as shown in Fig. 1(b) the personalized basis is

distinct for each individual but shared across ages, while

the age-specific transform is distinct for different ages but

shared among all individuals. Such sharing forms a con-

cise S2-module, embedded in the GAN framework, further

forms the proposed S2GAN approach. Compared to the ex-

isting GAN based methods, the main contributions of this

work include:

• A new perspective for the natural aging process, i.e.,

faces at different ages of a specific person are derived

from a same personalized aging basis, while the age-

specific transforms from the aging basis to the target

aged faces are shared among all individuals.

• Lower computational cost. A unique model is capable

of all target ages, and thus the prediction time is sig-

nificantly saved benefited from the sharing mechanism

(S2-module).

• Favorable continuous aging, which can be achieved

by interpolating the aging transforms of adjacent age

groups, superior to the existing discrete group-wise

age synthesis methods [1, 17, 40, 42, 19].

• The S2-module is orthogonal to the existing methods,

therefore can be used as a plug-in module in many

recent methods with a transformation network such

as [17, 42, 19], to reduce their computational con-

sumption as well as enable the continuous aging, while

still keeping their own advantages.

2. Related Work

2.1. Face Aging

Researchers have made great efforts to face aging with

effective and inspirational approaches, and please refer

to [29, 8, 7] for a comprehensive survey of face aging.

Generally, the face aging approaches can be divided into

three groups, i.e., physical model approaches, prototype ap-

proaches and deep learning approaches.

Physical model approaches model the aging factors

based on biological and physical mechanism, e.g., craniofa-

cial growth [38, 27], skin and wrinkles [41, 3, 2, 28], muscle

structure [28, 34] and facial components [35, 36]. Although

these mechanical models are dedicatedly designed, they are

heavily biased to the imperfect human knowledge of aging

mechanism while often computationally expensive.

In the prototype approaches, continuous ages are divided

into discrete age groups and the average face [4, 31, 37] or a

low-rank subspace [15] of each group is defined as its pro-

totype, then the transition pattern between age groups are

modeled as the difference between their prototypes. Due

to the average, missing personality in the learned transi-

tion pattern becomes the main problem of these methods.

To remedy the lack of personality, Shu et al. [32] build age

coupled dictionaries for each age group, and the sparse cod-

ing coefficients of the input image express its personalized

transition patterns.
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(a) Training with discrete age groups. The personalized aging basis is inferred by a deep encoder from an input face, after which different age-

specific aging transforms (linear combination coefficients here) are applied on this basis to generate the corresponding age representations.

Then these age representations are decoded by the same decoder network to generate corresponding aged faces. The whole model is learned
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(b) Testing with continuous age-specific transforms. By using the interpolations between transforms (coefficients) of any pair of adjacent

age groups, naturally, we achieve favorable continuous face aging.

Figure 2. Overview of the proposed S2GAN with (a) discrete training, and (b) continuous testing.

Recently, deep learning approaches become the state-

of-the-arts credited to the powerful non-linearity of the

deep networks. Temporal deep models [39, 24, 23] are

adopted to model the transition pattern between the ad-

jacent age groups with impressive aging results. After-

wards, the visual fidelity of face aging is largely improved

by [1, 45, 18, 17, 40, 42, 19] based on the generative ad-

versarial network (GAN) [9] and its variants. Specifically,

Zhang et al. [45] propose a conditional adversarial autoen-

coder to project the images onto a manifold with an aging

axis. However, the aging results tend to be blurry probably

because the manifold is constrained as a simple prior distri-

bution (e.g., uniform). Liu et al. [18] propose a transition

pattern discriminator to drive the aging network to capture

the transition patterns between age groups. Li et al. [17] use

three local generators, which are responsible for forehead,

eyes, and mouth respectively, cooperating with a global

generator to enhance the age generation. Wang et al. [40]

adopt identity-preserved conditional GAN achieving con-

vincing identity preservation. Yang et al. [42] propose a

pyramid architecture discriminator accepting the high-level

age-specific features for finer supervision on the aging de-

tails achieving promising results. Commonly, most of these

GAN based approaches adopt an identity preservation net-

work [17, 40, 42, 19] to keep the identity during the aging

process. As for accurate age generation, [17, 40] apply the

age group classification loss, while [42, 19] adopt the ad-

versarial training between a pair of age groups.

2.2. Generative Adversarial Networks

Generative adversarial network (GAN) [9] is a special

generative model with adversarial training as its core idea,

where a discriminator tries to distinguish the real and fake

samples while a generator tries to deceive the discrimina-

tor. Theoretically, when the adversarial training attains the

Nash equilibrium, the fake distribution is identical to the

real one. As extensions, cGAN [21] and AC-GAN [25]

accept conditional signals and generate samples satisfying

the conditions, e.g., to generate digits specifying a num-

ber. GAN and its variants can generate visually realistic

images and have shown superiority on many image synthe-

sis tasks [13, 14, 44, 46, 6, 11]. Therefore, most recent face

aging methods also adopt GAN for high generation fidelity,

as mentioned in Sec. 2.1.
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3. S2GAN

The proposed S2GAN mainly consists of three parts, i.e.,

1) establishing the personalized aging basis, 2) transform-

ing the basis to the age representations, and 3) decoding the

representations to the aged faces, with an overview shown in

Fig. 2(a). Firstly, the personalized aging basis is inferred by

a deep encoder. Then, age-specific transforms are applied

on this basis to obtain the age representations for different

age groups. Finally, aged faces within different age groups

are obtained by decoding the corresponding age representa-

tions. The whole architecture is optimized end-to-end with

three objectives, i.e., the age group classification loss for ac-

curate aging, the L1 reconstruction loss for identity preser-

vation and the adversarial loss for fidelity. At the testing

phase as shown in Fig. 2(b), for a target age group, an aged

face of the input can be obtained by decoding the corre-

sponding age representation which is derived from the aging

basis by the corresponding age-specific transform. More

favorably, continuous aging can be naturally achieved with

interpolations between adjacent age-specific transforms.

We first introduce the key notations before illustrating

the details. Let (xi, yi) denote the ith sample where xi is

the input image and yi ∈ {1, 2, 3, 4, 5} is the ground truth

age group of xi, e.g., yi = 1 denotes that the age of xi falls

in [11, 20], while yi = 5 denotes that the age of xi falls

in 51+. Bi denotes the personalized basis inferred from

xi, and wk denotes the coefficients of the kth age-specific

transforms corresponding to the kth age group.

3.1. Formulation

Personalized Aging Basis As mentioned in Sec. 1, the

aging process of each individual is dominated by his/her

personalized aging factors, which can be depicted by a

personalized basis. Here, we use a neural network en-

coder E to map an input image xi to its personalized ba-

sis Bi = [bi1, bi2, · · · , bim] with m basis vectors.

Formally, the personalized basis is obtained as follows,

Bi = E(xi). (1)

Such personalized basis is unique for each individual, try-

ing to capture those personalized aging factors encoded in

genes such as identity and aging by graying hair or reced-

ing hairline. These personalized factors generally remain

unchanged in one’s whole life; therefore one’s personalized

basis can be shared by all his/her ages.

Age-Specific Transforms Given the aging basis Bi, we

can obtain the age-specific representation for an age group

by applying the corresponding age-specific transform. This

is formulated as a linear combination of the aging basis

as follows,

r
k
i =

m∑

j=1

wkjbij = Biwk, (2)

where wk = [wk1, wk2, · · · , wkm]⊤ is the aging transform

corresponding to the kth age group, and thus rki denotes the

age representation for the kth age group of the ith face im-

age. Here, wk characterizes the aging trends for the kth age

group. Since the aging basis Bi has already captured the

personalized aging factors, the age-specific transform wk

can be shared among all individuals to simulate the common

aging/rejuvenation trends, e.g., w5 may increase mustache

or thins the lips while w1 may decrease the wrinkles.

As can be seen from Eq. (2), in our method the per-

sonalized aging factors are distinct for different individu-

als but shared across ages, while the common aging trends

are shared among individuals but distinct for different ages.

This concise design well fits our biological insight and ob-

servations about natural aging as analyzed in Sec. 1.

Finally, by decoding the representation for a certain age

group via a lightweight decoder G, we can obtain the aged

image within that age group, i.e.,

x̂
k
i = G(rki ). (3)

3.2. Objective

With expectation, the aged face in Eq. (3), i.e., x̂
k
i ,

should belong to the target age group, preserve the identity,

as well as be with high fidelity. Accordingly, three types of

loss are designed to ensure these objectives.

Age Loss for Accurate Aging To ensure that the generated

aged face correctly falls into the target age group, a well

trained and fixed age group classifier C is used to guide

the generation, which follows the AC-GAN [25] spirit for

conditional generation. The age loss is formulated as below,

l
age
i = −

∑

k

log(Ck(x̂
k
i )), (4)

where Ck(·) denotes the probability that a sample falls into

the kth age group, predicted by the classifier C. Therefore,

this loss tries to make x̂
k
i more likely to be in the expected

kth age group for each k.

L1 Loss for Identity Preservation Besides accurate ag-

ing, identity should not be changed during the aging pro-

cess. Therefore, L1 reconstruction loss is applied for iden-

tity preservation. Specifically, if an input face is in the age

group of [31,40], then the generated face within the same

age group should be as close as possible to the input. Ac-

cordingly, the L1 loss is formulated as follows,

lL1
i =

∑

k

δ(yi = k)‖xi − x̂
k
i ‖1, (5)

where δ(yi = k) is 1 if yi = k is valid else 0. Identity

feature reconstruction is another choice for identity preser-

vation [17, 40, 42, 19]; however, it needs an extra deep iden-

tity network. Therefore, the L1 reconstruction loss, which
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is directly applied to the images without effort to tune an

extra identity network, is more convenient and favorable.

Our elaborate framework makes the L1 reconstruction loss

feasible for identity preservation, thus is more flexible than

methods such as [17, 40, 42, 19] which can only adopt the

identity feature reconstruction.

Adversarial Loss for Fidelity The conditional adversarial

training [21] is applied for the fidelity of the aging results.

Following [22], the hinge loss is used as the adversarial loss,

formulated as

ladv-d
i = max(1−D(xi, yi), 0) +

∑

k

max(1 +D(x̂k
i , k), 0),

(6)

l
adv-g
i =

∑

k

−D(x̂k
i , k), (7)

where D is the discriminator (real/fake predictor) regular-

ized by the spectral normalization [22]. ladv-d
i in Eq. (6) de-

notes the discriminator loss trying to distinguish the real and

fake samples, by learning to predict the real pair (xi, yi)
as ≥ 1 and the fake pair (x̂k

i , k) as ≤ −1. As the adver-

sary against the discriminator, the generator loss l
adv-g
i in

Eq. (7) tries to push the prediction of the fake pair (x̂k
i , k)

to be greater than 0 as far as possible, making the fake sam-

ples more likely to be realistic as well as in the expected

age group.

Overall, the objective of the proposed S2GAN is

min
E,G,{wk}

∑

i

λ1l
age
i + λ2l

L1
i + l

adv-g
i , (8)

min
D

∑

i

ladv-d
i , (9)

where λ1 and λ2 are the hyper-parameters for balancing the

losses, and these two objectives are optimized iteratively.

3.3. Discussion

Continuous Aging In the proposed S2GAN, multiple lin-

ear transforms on the unique aging basis are used to gener-

ate age representations for each age group, so naturally they

can be interpolated, resulting in continuous aging faces, i.e.,

x̂
kα = G(B(αwk + (1− α)wk+1)), α ∈ [0, 1]. (10)

Compared to the existing methods which can only gener-

ate images with discrete age groups [1, 17, 40, 42, 19], the

proposed S2GAN with continuous aging is more favorable

and practical.

Lower Computational Cost As seen from Fig. 2, the

proposed S2GAN needs only one model for all target ages.

Compared to the existing methods such as [42, 19] which

need n(n − 1) models for n age groups, the proposed

method saves much storage and memory consumption. Be-

sides, since the personalized basis is shared across ages, it

takes much less time than most existing models [17, 40, 42,

19] to generate images of all n age groups. The compu-

tational consumption of different methods is shown in Ta-

ble 1. Furthermore, the S2-module in Fig. 2(a) is orthogo-

nal to these methods, and therefore it can be inserted into

the generators of these methods, to reduce their computa-

tional consumption and enable the continuous aging, while

preserving their own advantages.

Method # Models Prediction Time

Li et al. [17] 1

nte + ntd
Wang et al. [40] 1
Yang et al. [42] n(n+ 1)
Liu et al. [19] n(n+ 1)

Ours 1 te + ntd
Table 1. Computational consumption for n age groups. te and td

denote the prediction time of encoder and decoder respectively.

4. Experiments

Datasets We adopt MORPH [30] and CACD [5] datasets

to evaluate the proposed S2GAN. MORPH contains 55,349

color images of 13,672 subjects with age annotations rang-

ing from 16 to 77 years old. CACD contains 163,446 color

images of 2,000 celebrities with age annotations ranging

from 14 to 62 years old. For both MORPH and CACD, we

randomly select 80% of the images as the training set and

the rest 20% as the testing set. Following [40, 42] which

divide ages into groups by every 10 years, for MORPH, we

separate the images into 5 groups according to the age: 11-

20, 21-30, 31-40, 41-50, and 50+. For CACD, since the

images within 11-20 is significantly less than the other age

groups, we separate the images into 4 groups: 11-30, 31-40,

41-50 and 50+.

Competitors For fair comparisons, the recent state-of-the-

arts including CAAE [45] and IPCGAN [40] are trained by

their official codes under the same protocol as the proposed

method. We also make the comparison with CONGRE [34],

HFA [43], GLCA-GAN [17], Yang et al. [42] and Liu et

al. [19] by directly referring to their results in the papers,

since these methods have no released codes and are hard to

be reproduced with fair accuracy.

Implementation Details CycleGAN [46] architecture

is adapted for the age generator. Specifically, with an

256×256 input, an architecture with 2 stride-2 convolutions

followed by 6 residual blocks and 1 1×1 convolution are

used as the encoder. Feature maps are extracted by the en-

coder, then they are equally divided into 256 feature blocks

along the channel axis, with each representing a basis vec-

tor. An architecture with 3 residual blocks followed by

2 stride- 1
2

convolutions is used as the age representation

decoder. For the age group classifier, we train a ResNet-

50 [10] and a VGG16 [33], then fix and ensemble them for

stronger age supervision. For the discriminators, an archi-
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Figure 3. Comparisons on MORPH [30] among CAAE [45], IPCGAN [40] and our S2GAN. The input images are wrapped in red boxes.

Figure 4. Comparisons on CACD [5] among CAAE [45], IPCGAN [40] and our S2GAN. The input images are wrapped in red boxes.
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Figure 5. Comparisons with CONGRE [34], HFA [43], GLCA-GAN [17], Yang et al. [42] and Liu et al. [19].

Figure 6. Continuous face aging of the proposed S2GAN.
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Figure 7. Face aging details of the proposed S2GAN.

Method 11-20 21-30 31-40 41-50 51+

CAAE [45] 57.7%/22.0/4.8 53.9%/26.1/4.9 58.7%/30.1/4.0 6.0%/34.6/4.4 5.6%/40.6/5.5

IPCGAN [40] 63.1%/21.4/5.2 48.9%/28.7/5.6 75.7%/35.9/4.7 79.0%/44.8/4.1 56.4%/51.1/4.6

Ours 95.1%/18.2/1.4 93.3%/25.8/2.7 92.3%/35.4/2.8 95.0%/45.2/2.5 89.3%/53.6/2.7
Table 2. Aging accuracy/mean age of generations/std. on MORPH [30].

Method 11-30 31-40 41-50 51+

CAAE [45] 61.8%/29.6/7.3 43.8%/33.6/7.3 37.9%/37.9/7.3 11.0%/41.9/7.5

IPCGAN [40] 81.9%/27.4/5.1 70.7%/36.2/5.1 74.5%/44.7/4.4 75.6%/52.5/3.9

Ours 97.2%/24.0/3.2 94.9%/36.0/2.5 97.2%/45.7/2.2 95.2%/55.3/2.5
Table 3. Aging accuracy/mean age of generations/std. on CACD [5].

tecture with 7 convolutions with strides of 2, 1, 2, 2, 1, 2, 2

respectively followed by 2 fully connected layers is adopted

as the global discriminator, while another architecture with

6 convolutions with strides of 2, 1, 2, 2, 1, 2 respectively,

is adopted as the local discriminator. Besides, the features

from the VGG16 classifier are inserted into the discrimina-

tors to enhance the supervision on aging details [42]. Please

refer to the supplementary material for more details about

the network architectures.

The coefficients in Eq. (8) and (9) are set as λ1 =
(1 for MORPH and 10 for CACD) and λ2 = 5 at the first

10 epochs, and then λ2 is reduced to 1.25 at the next 15

epochs. The networks are trained by Adam solver (β1 =
0.5, β2 = 0.999) [16] with the batch size of 3 and the learn-

ing rate of 0.0002.

4.1. Qualitative Analysis

Face Aging/Rejuvenation The aging results of CAAE [45],

IPCGAN [40] and the proposed S2GAN are shown in Fig. 3

and Fig. 4. As seen, CAAE tends to generate blurry images

probably because its latent manifold is constrained as a sim-

ple distribution (e.g., uniform). IPCGAN achieves a better

result on fidelity and identity preservation. However, IPC-

GAN produces artifacts in several cases such as the rejuve-

nation to 11-20 of the last object in Fig. 3. The proposed

S2GAN generate the aging faces with best visual quality,

i.e., correct age, well preserved identity and high fidelity.

Moreover in Fig. 5, we compare the proposed S2GAN to

some other methods including CONGRE [34], HFA [43],

GLCA-GAN [17], Yang et al. [42] and Liu et al. [19]. As

can be seen, compared to the traditional approaches CON-

GRE and HFA, our approach generates better and clearer

facial details. Compared to the deep approaches such as

Yang et al. [42] and Liu et al. [19], which need n(n + 1)
models for n age groups, our approaches achieve compara-

ble performance with a unique model.

Continuous Face Aging As mentioned in Sec. 3.3, the

proposed S2GAN is naturally applicable for continuous face

aging with interpolated aging transforms. The continuous

aging results are shown in Fig. 6, from which we can see

the proposed S2GAN generates continuously aging images

with satisfying visual effect, such as the laugh lines shown

in Fig. 6(a), mustache in Fig. 6(b), wrinkles in Fig. 6(c), and

hair in Fig. 6(a).

Aging Details The aging details of different facial parts

are shown in Fig. 7. As can be seen, the proposed method

generates smooth aging changes with high fidelity for dif-

ferent parts such as gradually getting more and deeper fore-

head wrinkles, longer and deeper laugh lines, or thinner lip,

while well keeping the invariant facial details such as scars.

4.2. Quantitative Analysis

Besides the visual results, we also compare all methods

in terms of quantitative evaluation for aging accuracy, iden-

tity preservation, and fidelity.

Aging Accuracy A well trained continuous age predic-

tor with ResNet-101 [10] architecture by mean-variance

loss [26] is adopted to predict the ages of the generated face

image. An aging image is considered correct only if its pre-
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Method Average of All Pairs Hardest Pair Easiest Pair

CAAE [45] 79.61% (test,51+): 28.47% (11-20,21-30): 100%

IPCGAN [40] 98.95% (11-20,51+): 86.80% (11-20,21-30): 100%

Ours 99.69% (11-20,51+): 96.08% (11-20,21-30): 100%
Table 4. Evaluation of identity preservation in terms of face verification rates on MORPH [30].

Method Average of All Pairs Hardest Pair Easiest Pair

CAAE [45] 60.88% (test,51+): 2.00% (41-50,51+): 99.97%

IPCGAN [40] 91.40% (11-30,51+): 62.98% (41-50,51+): 99.98%

Ours 98.91% (11-30,41-50): 94.08% (41-50,51+): 99.96%
Table 5. Evaluation of identity preservation in terms of face verification rates on CACD [5].

Method MORPH CACD

CAAE [45] 47.7 44.2

IPCGAN [40] 10.4 9.1

Ours 9.3 8.4
Table 6. Evaluation of fidelity in terms of Fréchet Inception Dis-

tance (FID), lower is better.

Method MORPH CACD

CAAE 1% 1%

IPCGAN 22% 33%

Ours 77% 66%
Table 7. The proportion of being chosen as the best in the

user study.

dicted age falls into the expected age group, and the aging

accuracy is calculated as the percentage of correct aging im-

ages. In Table 2 and Table 3, we show the aging accuracy,

the mean age and the standard deviation of the generated

images for each target age group. As seen, our aging accu-

racies are much better than the competitors, and the mean

age of each group is very close to the group center.

Identity Preservation Face verification is adopted to eval-

uate the identity preservation of aging results. We con-

duct the verifications between the test images and the gen-

erated faces, i.e., (test,11-20), (test,21-30), ..., (test,51+).

We also conduct the verifications between every pair of

aging results, i.e., (11-20,21-30), (11-20,31-40), ..., (41-

50,51+). Following [42], we adopt an online face analy-

sis tool Face++1 to obtain the verification scores and the

threshold is set as 76.5(@FAR=1e-5). The average, the

highest (hardest) and the lowest (easiest) verification rates

are shown in Table 4 and 5. As can be seen, our S2GAN

achieves the best average face verification rate demonstrat-

ing the superior identity preservation of our method. Be-

sides, our method performs very well even on hard pairs,

e.g., in Table 4, (11-20,51+) is the hardest pair of both IPC-

GAN and our S2GAN, while our S2GAN has about 9% im-

provement over IPCGAN.

Generation Fidelity Fidelity is an important aspect of

evaluating any image generation task. We adopt an effec-

1Face++ Research Toolkit. http://www.faceplusplus.com

tive metric - Fréchet Inception Distance (FID) [12, 13, 20]

to evaluate the quality of the aging results. The FIDs of the

competing methods are reported in Table 6 and the lower

FID indicates the better the generation. As can be seen, the

proposed S2GAN method achieves a lower FID, therefore,

the better fidelity than the competitors.

User Study To evaluate our method under the human per-

ception, we asked 20 volunteers to evaluate the aging results

of CAAE [45], IPCGAN [40], and our S2GAN. Specifi-

cally, 400 random images (200 from MORPH and 200 from

CACD) are chosen as input, and the three methods are re-

spectively used to generate aging images of all age groups

for each input. Then, each volunteer is asked to choose the

best aging method for each input by considering the aging

accuracy, identity preservation, and image quality. Table 7

shows the proportion of each method to be chosen as the

best, averaged over all volunteers.

5. Conclusion and Future Works

In this work, we suggest a new perspective of natural ag-

ing process, i.e., faces at different ages of a specific person

are derived from a same personalized basis, while the age-

specific transforms from the aging basis to the target aged

faces are shared among all individuals. Based on this per-

spective, we propose an effective and efficient S2GAN ap-

proach for face aging with favorable aging accuracy, iden-

tity preservation, fidelity and low computational cost, which

is also applicable for continuous face aging. Besides, the

S2-module in our approach can be used as a plug-in module

in many GAN-based approaches to reduce their computa-

tional consumption and enable the continuous aging.

However, the aging factors are extremely complicated,

and then a question is raised: Is a single face image suffi-

cient to infer the whole personalized aging basis/factors? In

future works, therefore, we will investigate how to estab-

lish a complete personalized aging basis through multiple

images for each individual at different ages.
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