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Abstract

How to aggregate multi-view representations of a 3D ob-

ject into an informative and discriminative one remains a

key challenge for multi-view 3D object retrieval. Existing

methods either use view-wise pooling strategies which ne-

glect the spatial information across different views or em-

ploy recurrent neural networks which may face the effi-

ciency problem. To address these issues, we propose an

effective and efficient framework called View N-gram Net-

work (VNN). Inspired by n-gram models in natural lan-

guage processing, VNN divides the view sequence into a

set of visual n-grams, which involve overlapping consecu-

tive view sub-sequences. By doing so, spatial information

across multiple views is captured, which helps to learn a

discriminative global embedding for each 3D object. Ex-

periments on 3D shape retrieval benchmarks, including

ModelNet10, ModelNet40 and ShapeNetCore55 datasets,

demonstrate the superiority of our proposed method.

1. Introduction

3D object retrieval is an important topic in computer

vision and has received a surge of research attention ow-

ing to its close relationship with various geometry re-

lated applications, e.g., VR/AR [20, 26, 48], medical imag-

ing [25, 6, 56] and 3D printing [49]. With the development

of 3D model acquisition technology, large amounts of 3D

models are available for free, e.g., the large-scale reposi-

tory ShapeNet [8]. Thanks to the advances of data-driven

based deep learning techniques, dramatic progresses have

been achieved in this field. Nowadays, research trend has

shifted from designing hand-crafted features [5, 10, 16, 24]

to learn 3D shape representations directly via deep architec-

tures [46, 37, 34, 23, 3].

In general, learning deep 3D shape representation can be

coarsely divided into two mainstreams, i.e., model-based

∗indicates equal contributions.
†corresponding author.

and view-based methods. Model-based methods [37, 39,

53, 34, 54] learn 3D shape representations directly from the

raw representation (e.g., point cloud, voxel) of 3D shapes.

View-based methods [46, 2, 51, 44, 55] usually first repre-

sent a 3D object with a set of 2D view images, then extract

features of each view image, and finally aggregate them into

a compact 3D shape descriptor. Comparing with model-

based methods, view-based methods are more flexible and

can benefit from recent developments in 2D image analysis,

for instance, well-established architectures. Besides, in the

real-world scenario, view images for 3D objects are easier

to obtain, hence more efficient.

However, for multi-view based methods, one challenge

is how to effectively aggregate the multiple view cues. To

this end, existing works can be mainly categorized into

two representative branches, i.e., view-wise pooling strate-

gies [46, 51] (see Fig. 1(a)) and recurrent neural networks

(RNN) based strategies [12, 17] (see Fig. 1(b)). Although

great progresses have been achieved, these methods have

certain limitations and cannot fully leverage the latent view

embeddings. For instance, view-wise pooling strategies

lose the spatial information across different views, while re-

current neural networks suffer from inefficiency due to the

sequential working mechanism which requires much more

computational resources [50, 32].

Considering these limitations, we propose an effec-

tive and efficient framework called View N-gram Network

(VNN) based on the concept of n-gram (see Fig. 1(c)) in

natural language processing. In a typical n-gram model, a

sentence is first decomposed into a sequence of n-grams,

each of which has n consecutive words. Due to its capability

of capturing word order in short context and its simplicity,

n-gram has been widely used for various NLP tasks like lan-

guage modeling [40], text classification [27], and machine

translation [33]. Though its success has been demonstrated

on learning text features, its effectiveness on learning 3D

shape representations is unexplored.

However, n-gram also has intrinsic advantages for learn-

ing multi-view 3D shape representation. Specifically, for a

3D shape, we regard each view image as a “word” and di-
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(a) Pooling

(b) RNN

(c) Our n-gram

View 1 View 2 View 3 View 4 View 5 View 6

…

( n=3 )

Figure 1. Illustration of different aggregation strategies for mul-

tiple view images, including (a) view-wise pooling, (b) recurrent

neural networks, and (c) the proposed visual n-grams.

vide the sequence of all the views into a set of overlapping

consecutive sub-sequences which we call visual n-grams.

To this end, VNN utilizes an n-Gram Learning Unit (n-

GLU) for efficient n-gram partitioning and intra-gram fea-

ture learning, thus the local spatial information among mul-

tiple views is well exploited. Compared with the RNN-

based aggregation which works in a sequential manner, n-

GLU is computationally more efficient as each visual n-

gram only involves several consecutive views and can be

fed in parallel to the network. Another merit of VNN is

that the learned shape representation is rotation-invariant to

a certain degree since the local adjacent relationship cap-

tured by visual n-grams is robust to rotation. Considering

that visual n-grams of different sizes capture different scales

of spatial information in the view sequence, we propose to

combine the multi-scale representations learned with differ-

ent n-gram sizes. Moreover, we further propose a param-

eterless attention model to selectively pack the partitioned

n-gram features into a compact and global shape represen-

tation.

To summarize, our main contributions are as follows:

1. We present a novel framework named VNN to effec-

tively model spatial information across the local context

of the view sequence of each 3D shape. The proposed

VNN firstly treats the rendered view sequence as a set of

visual n-grams, and then computes rich n-gram features

based on them, which produces more discriminative rep-

resentations that are robust to rotation for 3D shape re-

trieval.

2. To capture different scales of the local spatial informa-

tion across the view sequence, we propose to combine

the learning of distinct visual n-gram sizes, which can

lead to further improvements.

3. We design a parameterless attention model that effi-

ciently and effectively aggregates learned visual n-gram

features, which proves to be a better aggregation method

than max-pooling for view-based 3D object retrieval

task.

4. Extensive experiments are conducted on both aligned

and unaligned 3D shape benchmarks, and significant im-

provements are achieved over state-of-the-art methods.

The rest of the paper is organized as follows. We briefly

review related works in Section 2. Then, we elaborate the

proposed VNN in Section 3 and present the experimental

evaluation in Section 4. Conclusions are given in Section 5.

2. Related work

3D object retrieval has received increasing attention and

great efforts have been devoted to constructing discrimina-

tive 3D shape descriptors. Early works mainly focus on de-

signing handcrafted features to represent 3D shapes. Vari-

ous types of 3D shape descriptors have been proposed, e.g.,

Light Field Descriptor (LFD) [10], Spherical Harmonic de-

scriptor [24], and Heat Kernel Signatures [7]. With the re-

cent development of deep learning techniques, learning 3D

shape representations by deep neural networks has become

a hot topic in the 3D object retrieval field. Generally speak-

ing, existing methods can be coarsely divided into two cate-

gories, i.e. model-based methods and view-based methods.

Model-based methods [54, 13] deal with the raw repre-

sentations of 3D shapes directly, i.e., voxel, point cloud, and

polygon mesh. Wu et al. [53] propose 3D ShapeNets which

uses a Convolutional Deep Belief Network (CDBN) to learn

representations directly on the voxelized 3D objects. Sim-

ilarly, Maturana and Scherer propose VoxNet [34], which

employs a 3D convolutional neural network and deals with

3D volumetric representations directly. Meanwhile, Qi et

al. [38] propose Multi-Orientation Volumetric CNN (MO-

VCNN) which aims at fusing the learned representations

of 3D voxels from various orientations. However, methods

based on the sparse volumetric representations are limited

to the resolution of only 323 due to the cubically increasing

computational complexity and memory overhead. To ad-

dress this problem, Wang et al. [52] propose O-CNN, which

is built upon a memory-efficient data structure named octree

for the 3D object. Their method can process 3D shapes in

the resolutions up to 2563. As for the representation of point

clouds, PointNet [37] is a pioneering work, which uses fully

connected layers to embed the 3D coordinates into higher

dimensional space and fuses them using max-pooling oper-

ation. Qi et al. [39] further propose PointNet++ to extract

local features with increasing contextual scales followed by

a hierarchical aggregation mechanism. Klokov et al. [29]

propose Kd-Networks, which carry out computation based

on the subdivision of point clouds using kd-trees. Overall,

model-based methods are capable of exploiting the geomet-

ric information of 3D objects.
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View-based methods usually first project the raw 3D

shapes to a panoramic view [44, 43] or a set of 2D view

images [46, 51, 24, 9, 55]. We mainly review the works

which attempt to make rational use of multiple view im-

ages since they have a closer relation to our method. Bai et

al. [2] propose a real-time 3D shape search engine based

on the projective images. Su et al. [46] propose multi-

view CNN, which uses a max-pooling operation to aggre-

gate the multi-view representations outputted by a shared

CNN. Dai et al. [12] propose a siamese CNN-BiLSTM for

3D shape representation learning, where they use BiLSTM

to capture features across different views of a 3D shape.

In addition, Han et al. [17] propose to use an RNN with

attention to aggregate sequential views of each 3D object

and promising results on several 3D shape retrieval bench-

marks are obtained. Leng et al. [31] propose a score gener-

ation unit to evaluate the quality of the projected image and

weight the view image features.

Our proposed View N-gram Network (VNN) borrows

the idea of n-gram to aggregate multi-view representations.

The idea of n-gram has been widely applied to language

models [28, 22] and witnesses its success in text recogni-

tion [21, 36]. For a given sequence, it can be sliced into a

set of overlapping sub-sequences consisting of n consecu-

tive words or characters, which are of great importance for

exploring the pattern of sequences. However, there is no at-

tempt to adapt the spirit of n-gram for 3D shape related tasks

in the literature. In this paper, we divide the multi-view im-

ages into a set of small overlapping subgroups (hence we

name it view N-gram), and perform view feature enhance-

ment based on each subgroup. Finally, an attention mecha-

nism is adopted to aggregate the enhanced features. We will

detail our method in the following section.

3. View n-gram network

Given a 3D object H , we first render it into a set of 2D

greyscale images VH = {v1, v2, ..., v|V |}, where vj denotes

the j-th view image and |V | represents the number of view

images. Our goal is to learn a robust and discriminative

representation for H under the multi-view setting.

As Fig. 2 shows, the pipeline of the proposed View N-

gram Network can be divided into 3 stages, i.e., feature

extraction stage, n-gram feature learning and aggregation

stage, and recognition stage. The first stage uses a shared

convolutional neural network (CNN) that extracts features

for each view, which is detailed in subsection 3.1. The

second stage is the core part of our framework, which is

a multi-branch network with each branch consisting of an

n-Gram Learning Unit (n-GLU) (see subsection 3.2) and

a parameterless attentional feature aggregator (see subsec-

tion 3.3) to learn and aggregate n-gram features for partic-

ular visual n-gram size. The recognition stage and other

supplementary details are given in subsection 3.4.

3.1. View feature extraction

To extract the view features, a shared CNN is used.

For each view image vi ∈ VH , the output of CNN is

a D-dimensional feature fi ∈ R
D. Then, each 3D ob-

ject can be represented as the multi-view embedding ma-

trix F = [f1, f2, f3, ..., f|V |]
T ∈ R

|V |×D by concatenating fi
(1 ≤ i ≤ |V |) according to the rendered order.

Note that any off-the-shelf convolutional neural network

(e.g., AlexNet [30], GoogLeNet [47], ResNet [18]) can be

used as the view feature extractor. In our work, we em-

ploy VGG-11 (also named VGG-A) with batch normaliza-

tion [45] pre-trained on ImageNet [41] as our backbone.

The original VGG-A has 11 layers, which consists of 8 con-

volutional layers (conv 1-8) and 3 fully connected layers (fc

9-11). In our experiments, we pre-train it and construct the

feature extractor by removing the last two fully connected

layers of the VGG-A. In this case, D is 4096.

3.2. N-gram learning unit

N-gram is a basic concept in natural language process-

ing, and it has been widely used for language modeling. Let

S = (w1, w2, ..., wm) be a sentence composed of m words.

An n-gram is defined as a substring consisting of n con-

secutive words (wi, wi+1, ..., wi+n−1) from S. N-gram can

adaptively model the temporal dependency of the n consec-

utive words [32].

As suggested in [17], the spatial relationships among the

view images play an important role in multi-view 3D shape

analysis. Therefore, we propose to model the spatial depen-

dency of view images in the form of n-gram inspired by its

success in modeling temporal dependency. We regard each

view image of a 3D object as one “word”, then a sequence

of |V | rendered view images can be analogized to a sentence

of |V | words. Similarly, we can further decompose the view

sequence into a set of |V | + 1 − n n-grams, each of which

is composed of n consecutive view images (we call it visual

n-gram). Each visual n-gram depicts a certain pattern of its

corresponding 3D shape. Intuitively, 3D shapes from the

same category should share similar n-gram patterns while

those from different categories should differ in their n-gram

patterns. Therefore, it would be beneficial for understand-

ing a 3D shape to learn the n-gram patterns by capturing

the local spatial dependency among consecutive view im-

ages. To this end, we propose a novel module named n-

Gram Learning Unit (n-GLU). And the mechanism works

as follows.

Recall that the multi-view representation for a 3D shape

is denoted as an embedding matrix F ∈ R
|V |×D arranged

in the rendering order. Similar to an n-gram based sen-

tence classification network [27], we adopt a sliding win-

dow strategy of size n × D over F for the partition of n-

grams as illustrated in Fig. 3. In particular, for each visual

n-gram which corresponds to local consecutive n images of
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Figure 2. The pipeline of View N-gram Network. A shared CNN is used to extract features for each view images of the 3D object. The raw

feature sequence is enhanced by modeling the dependency of consecutive view features in a convolutional manner by our GLU module and

then aggregated into a global descriptor. Three parallel branches are employed to exploit spatial information in different scales, resulting

in a more discriminative representation for the 3D shape.

the sequence, we compute the enhanced visual n-gram fea-

tures by using 2D convolution filter of size D′×D×n×1,

where D′ is the dimension of the output features enhanced

by the visual n-gram. It is straightforward that the enhanced

D′-dimensional representation has encoded the local spa-

tial information of the corresponding visual n-grams. Since

there are |V | − n + 1 visual n-grams for each 3D object,

therefore, the final enhanced compact representation G is

of size (|V | −n+1)×D′ for each 3D shape. In our exper-

iments, D′ is set to 512.

N-gram learning unit possesses two desirable advantages

for robust 3D representations. First, n-GLU can adaptively

learn typical patterns for 3D shapes by exploring the spa-

tial relation of several local consecutive views. Different

from RNN which aims at modeling the long-range depen-

dency among all the views, the proposed method can better

capture local and fine-grained patterns. Second, our frame-

work is endowed with the rotational invariance to some ex-

tent since the local adjacent relation of views is quite robust

to rotation transformation. This holds for both aligned and

unaligned 3D shapes. However, RNN based methods may

be sensitive to the predefined viewpoints and thus cannot

ensure the rotational invariance of the learned features, as

suggested in [11].

3.3. Attentional feature aggregation

N-gram learning unit outputs a new sequence of visual

n-gram features with local spatial information incorporated.

And for the downstream retrieval task, we need to aggregate

them into a compact and discriminative representation.

Max-pooling is a simple yet effective strategy. However,

it may lead to sub-optimal performance as much informa-

tion is lost by only keeping the maximum value. For better

view 1

view 2

view 3

view 4

…

Conv-Filter

… …

Figure 3. A diagram of the GLU model used in our method.

Here we choose the view n-gram size to be 3 for illustration pur-

pose, i.e., 3-GLU. In essence, GLU is a 2D convolutional filter,

which convolves with the multi-view feature embedding matrix

and produces visual n-gram features.

utilization of different n-gram view features and the reduc-

tion of information loss, we further propose to use atten-

tional feature aggregation mechanism, which can be seen as

a variant of self-attention module [50]. The main difference

is that we estimate the correlation between the global fea-

ture and each n-gram feature instead of all pairs of n-gram

features. Besides, our attention module is free of param-

eters. The pipeline of our attention feature aggregation is

presented in Fig. 4, which can be formulated as

βj =
exp(φj(Gj,gp))∑|V |+1−n

i=1
exp(φi(Gi,gp))

(1)

φj =
Gj ∗ gp√

D′
(2)

ga =

|V |+1−n∑

j=1

βjGj (3)

where gp and ga denote the global representation for the

sequence (via max pooling operation over G) and the at-

tentional output, respectively. Gj represents the j-th row

of matrix G (i.e., j-th visual n-gram feature) and βj is the
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Figure 4. The detailed structure of our proposed attention aggrega-

tor. Here VP represents view-pooling operation (i.e. max-pooling),

which outputs global n-gram feature. The attention aggregator as-

signs weights to different n-gram features according to their simi-

larities to the proxy global n-gram feature. A compact descriptor is

obtained by combining all the n-gram features in a weighted sum

manner.

corresponding attention score. φ denotes the inner product

with scale normalization to avoid extremely small gradients

when the result is in large magnitude as suggested in [50].

We elaborate the details of our attention aggregation mech-

anism below, which includes three main steps.

Estimation of attention score. We first adopt max-pooling

operation over the set of the visual n-gram features G to ob-

tain a global descriptor gp. We then assign attention scores

to different n-gram features by estimating their correlations

to the global descriptor gp in an inner product manner, as

formulated in Eq. (1) and Eq. (2).

View aggregation. With the estimated attention scores, the

n-gram view features are aggregated into a compact repre-

sentation ga in a weighted sum fashion (see Eq. (3)). In this

way, different n-gram views, which contain different local

spatial information, are effectively combined.

Residual connection. Similar to self-attention [50], we fur-

ther introduce a residual connection to add the global de-

scriptor gp back to the aggregated feature ga to reduce in-

formation loss, which is then normalized by a layer normal-

ization operation [1].

Note that the full pipeline of our attentional feature ag-

gregation does not involve any learnable parameters. There-

fore, it is very efficient.

3.4. Remarks

Multi-scale n-gram feature fusion. Varying the n-gram

size, n-GLU module can capture the spatial information

in different scales (or the number of consecutive view im-

ages) and learn discriminative patterns of 3D shapes in dis-

tinct granularities. Therefore, we propose to employ mul-

tiple parallel branches for comprehensively characterizing

the 3D shape from different scales. Each branch performs

n-gram feature learning and attentional aggregation sepa-

rately with different n-gram sizes. We then combine the ag-

gregated features from all the branches in a concatenation

manner. In this way, spatial information among the view

images is better exploited. As presented in Fig. 2, we use

three n-gram branches with n-gram sizes of 3, 5 and 7 in

our VNN framework.

Training details. For the final recognition stage, we em-

ploy a simple network which is composed of only two fully

connected layers. The first layer takes the combined fea-

ture as input and maps it into a lower-dimensional vector

gr ∈ R
512. The last layer predicts the category distribution

based on gr. In our experiments, we adopt softmax loss as

the training objective.

4. Experiments

4.1. Datasets

In our experiments, we evaluate the proposed method

on three public 3D shape retrieval datasets, i.e., Model-

Net40 [53], ModelNet10 [53] and ShapeNetCore55 [8].

ModelNet40 and ModelNet10 datasets are two subsets of

the Princeton ModelNet dataset which contains 151,128 3D

shapes divided into 660 categories. The ShapeNetCore55

dataset is a large-scale dataset from ShapeNet.

The ModelNet40 contains 12,311 shapes from 40 com-

mon categories. In our experiments, we use the same

training/test splits as popular MVCNN [46] and 3D

ShapeNets [53]. The ModelNet10 dataset consists of 4,899

3D models in total from 10 classes. The training and testing

sets contain 3,991 and 908 models, respectively.

The ShapeNetCore55 dataset is introduced in the SHape

REtrieval Contest (SHREC) 2016 competition track. It is a

large-scale dataset, which is composed of 51,190 3D shapes

from 55 shape categories. Each model in the dataset is

also attached with a fine-grained subcategory from 204 sub-

categories in addition to the label from the 55 categories.

Among these 3D shape data, 35,765 3D shapes (70%) are

provided for training and another 5,159 3D shapes (10%)

are for validation. The remaining 10,266 shapes (20%) form

the testing set. The dataset has two versions, i.e., “normal”

and “perturbed” versions. For the “normal” version, the 3D

shapes are aligned. For the “perturbed” version, each 3D

shape is arbitrarily oriented. Hence, the latter version is

more challenging. To test the robustness of our method, we

conduct experiments on both versions.

4.2. Evaluation metrics

In our experiments, we adopt five common metrics to

evaluate the retrieval performance of our method against

state-of-the-art methods, which are defined as follows:

• Precision-Recall (PR) curve is used to visualize the re-

trieval performance.

• Mean Average Precision (mAP) of the PR curve is used

to give a quantitative evaluation.
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• Area Under Curve (AUC) is the mean area under the

PR curve.

• F-Measure is the harmonic mean of recall and preci-

sion.

• Normalized Discounted Cumulative Gain (NDCG) is

a measure that assigns more weights to the relevant re-

sults at the top of the ranked list.

Among these metrics, we use the PR curve, mAP, AUC

on ModelNet40 and mAP, AUC on ModelNet10 to evaluate

the retrieval performance. For ShapeNetCore55 dataset, F-

Measure, mAP, and NDCG are adopted.

4.3. Implementation details

We render a set of 2D greyscale images of size

224 × 224 for each 3D object, following the same

rendering protocol as MVCNN [46]. For the aligned

datasets, i.e., ModelNet40, ModelNet10 and ShapeNet-

Core55 “normal” datasets, we place virtual cameras around

the 3D object every 30 degrees, obtaining 12 view images.

For the unaligned ShapeNetCore55 “perturbed” dataset, 80

view images are rendered by placing virtual cameras at 20

vertices of the icosahedron and taking 4 views per camera

using 0, 90, 180, and 270 degrees in-plane rotations.

During training, we adopt stochastic gradient descent

(SGD) for optimization with momentum of 0.9 and weight

decay of 0.0001. The learning rate is set to 0.001. We

clip the gradients into the range [-0.01, 0.01] for training

stability. And we train the model for 150 epochs with a

mini-batch size of 8. In the inference time, we extract the

output of the penultimate layer of our network, which is

512-dimensional, as the descriptor for each 3D object.

We implement our method using PyTorch [35], and

all the experiments are conducted on a server with eight

NVIDIA Titan-X GPUs, an Intel i7 CPU and 64GB RAM.

4.4. Comparison with state-of-the-art methods

To validate the effectiveness of our method, we first

conduct experiments on two common 3D shape datasets-

ModelNet40 and ModelNet10, in which 3D objects are as-

sumed to be aligned. We then further conduct experiments

on the more challenging ShapeNetCore55 dataset, which in-

cludes two versions, i.e., the “normal” version with aligned

3D objects and the “perturbed” version where the orienta-

tions of 3D shapes remain unknown.

Comparison on ModelNet40. The comparison with state-

of-the-art methods is listed in Table 1. We present the re-

sults of three representative model-based methods including

SPH [24], 3DShapeNet [53] and DLAN [15], and the re-

sults of several representative view-based methods includ-

ing LFD [10], DeepPano [44], GIFT [2], MVCNN [46],

GVCNN [14], RED [4], TCL [19] and SeqViews [17] for

extensive comparison. Moreover, we also re-implement

Methods
ModelNet40 ModelNet10

AUC mAP AUC mAP

SPH [24] 34.5 33.3 46.0 44.1

3DShapeNet [53] 49.9 49.2 69.3 68.3

DLAN [15] - 85.0 - 90.6

LFD [10] 42.0 40.9 51.7 49.8

DeepPano [44] 77.6 76.8 85.5 84.2

GIFT [2]V-S 83.1 81.9 92.4 91.1

MVCNN [46]V-M - 70.1 - -

MVCNN* [46]V-M - 80.2 - -

RED [4]R-50 87.0 86.3 93.2 92.2

GVCNN [14]G - 85.7 - -

TCL [19]V-A 89.0 88.0 - -

SeqViews [17]V-19 - 89.1 - 91.4

MVCNN†V-A 73.7 72.9 80.8 80.1

OursV-A 89.6 88.9 93.5 92.8

OursV-19 90.2 89.3 - -

Table 1. The comparison with state-of-the-art methods on Mod-

elNet40 and ModelNet10. On the top are results of model-based

methods. Results of view-based methods are listed in the mid-

dle. * means employing metric learning. † represents reproduced

MVCNN result which is conducted under the same setting (back-

bone network and pooling position) of the proposed method as

the baseline. V-S, V-M, V-A, V-19, G and R-50 represent using

VGG-S, VGG-M, VGG-A, VGG-19, GoogLeNet and ResNet-50

architectures, respectively.

MVCNN by inserting max-pooling operation at the fc-9

layer of VGG-A with batch normalization, as our baseline.

It can be observed that our method achieves very compet-

itive performance, reaching 89.6% in AUC and 88.9% in

mAP, outperforming most existing methods. Concretely,

our method surpasses the best model-based method DLAN

by 3.9% in terms of mAP. And when compared with other

view-based methods, VNN outperforms GIFT, GVCNN,

and TCL by 7.0%, 3.2%, and 0.9% in mAP, respectively.

It should be noted that GVCNN employs a stronger back-

bone GoogLeNet. Compared with RED, which is a sophis-

ticated similarity fusion method, we outperform it by 2.6%

in mAP. Besides, our method achieves comparable perfor-

mance with SeqViews for mAP (88.9% vs. 89.1%) while

SeqViews leverages a stronger backbone VGG-19 for view

feature extraction. To make a fair comparison, we further

use VGG-19 for the experiment and achieve slightly better

performance (89.3% vs. 89.1% in mAP). When compared

with our baseline, VNN obtains significant improvements,

e.g., 89.6% vs. 73.7% for AUC and 88.9% vs. 72.9% for

mAP. The consistent gains over the baseline and state-of-

the-art methods demonstrate the superiority of our method.

We present several retrieval examples on the Model-

Net40 dataset in Fig. 5. It can be seen that our method can

retrieve highly relevant 3D objects for the queries. Note

that the retrieved false positives also share similar shapes

with the query, e.g., the vase in the last row.
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ShapeNetCore55 Methods
microALL macroALL microALL + macroALL

F1 mAP NDCG F1 mAP NDCG F1 mAP NDCG

normal

Wang [42] 39.1 82.3 88.6 28.6 66.1 82.0 33.8 74.2 85.3

Li [42] 58.2 82.9 90.4 20.1 71.1 84.6 39.2 77.0 87.5

MVCNN [46]V-M 76.4 87.3 89.9 57.5 81.7 88.0 66.9 84.5 89.0

GIFT [2]V-S 68.9 82.5 89.6 45.4 74.0 85.0 57.2 78.3 87.3

Kd-network [29] 74.3 85.0 90.5 51.9 74.6 86.4 63.1 79.8 88.5

OursV-A 78.9 90.3 92.8 61.4 85.2 91.7 70.2 87.8 92.3

perturbed

Wang [42] 24.6 60.0 77.6 16.3 47.8 69.5 20.5 53.9 73.6

Li [42] 53.4 74.9 86.5 18.2 57.9 76.7 35.8 66.4 81.6

MVCNN [46]V-M 61.2 73.4 84.3 41.6 66.2 79.3 51.4 69.8 81.8

GIFT [2]V-S 66.1 81.1 88.9 42.3 73.0 84.3 54.2 77.0 86.6

Kd-network [29] 45.1 61.7 81.4 24.1 48.4 72.6 34.6 55.1 77.0

TCL [19]V-A 67.9 84.0 89.5 43.9 78.3 86.9 55.9 81.2 88.2

OursV-A 71.3 84.3 89.7 50.1 78.0 86.8 60.7 81.2 88.3

Table 2. The performance (%) comparison on the ShapeNetCore55 dataset. On the top is the performance comparison on the “normal”

version dataset, while comparison results on “perturbed” version are listed in the bottom rows.

Top 10 retrieved 3D shapes Query

Figure 5. Illustration of the retrieval examples on the ModelNet40

dataset. The query shapes are put on the first left column, and the

top 10 retrieved shapes are on the right side. The retrieved false

positives are highlighted by red boxes.

Comparison on ModelNet10. We present the results on

the Modelnet10 dataset in Table 1. As shown, our method

yields an AUC of 93.5% and an mAP of 92.8%, consid-

erably outperforming state-of-the-art methods. Compar-

ing with DLAN [15], which is a superior model-based

method utilizing rich rotation-invariant 3D local features,

we achieve an improvement of 2.2% in terms of mAP. In

addition, VNN outperforms DeepPano [44], GIFT [2] and

RED [4] by 8.6%, 1.7%, and 0.6% in terms of mAP, re-

spectively. The comparison with SeqViews [17] is espe-

cially valuable since SeqView leverages a stronger back-

bone network for view feature extraction. Nevertheless, the

proposed method surpasses it by 1.4% in terms of mAP.

We also provide the reproduced result of MVCNN under

the same settings with VNN as a baseline. We can ob-

serve that VNN significantly boosts the mAP of MCNNN

by 12.7%, suggesting the importance of local spatial rela-

tion for 3D object retrieval and the effectiveness of the pro-

posed method.

Comparison on ShapeNetCore55 dataset. We conduct

experiments on both the “normal” and the “perturbed” ver-

sions of the ShapeNetCore55 dataset. For the convenience

of comparison with other methods, we provide the aver-

age value for the two kinds of evaluation metrics (i.e., mi-

croALL and macroALL). The comparison for both versions

is listed in Table 2. As shown, significant improvements

over state-of-the-art methods are achieved on both versions

of the dataset. In particular, on the “normal” version,

when compared with Kd-network [29], which is model-

based, we improve the mAP by 9%. And compared with

MVCNN [46], improvements of over 3% in terms of all the

evaluation metrics are obtained. At the same time, the com-

parison results on the more challenging “perturbed” version

also prove the effectiveness of our method. When compared

with TCL [19], which adopts an end-to-end metric learning

loss function, we achieve comparable performance in terms

of both mAP and NDCG. However, for F1, nearly 5% im-

provements are obtained. It demonstrates that the proposed

method can be naturally extended to the cases where orien-

tations of 3D shapes are agnostic.

4.5. Ablation study

In this section, we present ablation experiments of the

proposed method on the ModelNet40 dataset. Concretely,

we will study the effects of n-gram size, combinations of

different n-gram sizes, attentional aggregation mechanism

and its complementarity with metric learning methods.

Effect of n-gram size. we first explore the effect of n-

gram size on the model performance. The n-gram size is a
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N-gram size
Max-Pooling With Attention

AUC mAP AUC mAP

1 80.3 79.5 81.5 80.7

3 84.0 83.2 85.6 84.9

5 85.5 84.7 88.0 87.3

7 85.1 84.3 86.6 85.9

3+5 88.3 87.6 88.7 88.0

3+7 87.8 87.0 88.3 87.5

5+7 87.9 87.1 88.9 88.1

3+5+7 88.9 88.2 89.6 88.9

Table 3. Ablation analysis on the ModelNet40 dataset.
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Figure 6. PR curves on the ModelNet40 dataset for different set-

tings of n-gram size.

very important hyper-parameter because it affects the con-

text window for computing the n-gram features. We set the

n-gram size to be 1, 3, 5, 7 and study their impacts on Mod-

elNet40. The comparison results are reported in Table 3.

As shown, when the n-gram size is 1, which means adopt-

ing uni-gram without considering the context of each view

images, we can only reach an mAP of 80.7%. However,

when we increase the n-gram size to 3, we see an improve-

ment of nearly 4%. It suggests that more discriminative rep-

resentations can be obtained by incorporating local spatial

information via the visual n-grams (n>1). The best result is

obtained when we set the n-gram size to be 5, which reaches

88.0% and 87.3% in terms of AUC and mAP, respectively.

When the n-gram size is greater than 5, we see some degree

of degradation on retrieval performance.

Effect of fusion on different n-grams. We further dis-

cuss how the combinations of different n-gram sizes influ-

ence the retrieval performance. Concretely, we enumerate

all the combinations of three n-gram sizes (i.e., 3-gram, 5-

gram and 7-gram). As shown in Table 3, combining dif-

ferent kinds of gram sizes yields consistent improvements

over only utilizing a single gram size, suggesting different

n-gram modules are complementary to each other and com-

bining them can effectively improve the retrieval perfor-

mance. Besides, it should be noted that different combina-

tions in Table 3 share the same retrieval efficiency since they

output representations of the same dimension (i.e. 512).

The PR curves are shown in Fig. 6, which intuitively

Methods AUC mAP

Ours 89.6 88.9

Ours + TCL [19] 90.5 89.5

Table 4. The performance (%) of our method with and without

TCL on ModelNet40.

demonstrate the retrieval performance based on each n-

gram size and their different combinations.

Effect of the attentional aggregation mechanism. We

compare the attentional aggregation mechanism with the

widely adopted max-pooling operation under different set-

tings for n-gram size. As presented in Table 3, the atten-

tional aggregation mechanism demonstrates consistent im-

provements over max-pooling. It should be noted that our

attentional aggregation mechanism is parameter-free, sug-

gesting it can serve as a more powerful alternative to max-

pooling for better utilization of multi-view features.

Complementary to metric learning. Triplet-Center Loss

(TCL) [18] is an effective metric learning loss and has

achieved superior performance on multiple 3D shape

benchmarks. Hence, we further combine the softmax loss

with the triplet-center loss to validate the complementarity

of our method with metric learning method. As shown in

Table 4, TCL yields an improvement of AUC 0.9% and

mAP of 0.6%, demonstrating the potential of our method

when combined with existing metric learning methods.

5. Conclusion

In this paper, we propose a novel framework named

View N-gram Network (VNN) to model the spatial rela-

tionships of multi-view images for 3D objects, which can

learn discriminative representations for 3D object retrieval

task. The core component of VNN is the n-Gram Learn-

ing Unit (n-GLU), which first divides multiple view images

into a set of visual n-grams efficiently and then learns the

intra-gram feature effectively. In this way, local spatial in-

formation is leveraged. Attentional aggregation mechanism

is adopted over the learned n-gram features. Moreover,

we propose to fuse representations under different n-gram

sizes. Experimental results on multiple 3D shape bench-

marks demonstrate the superiority of the learned 3D shape

representations from the proposed method. In the future, we

would like to explore other alternatives to the concatenation

method for better fusing the multi-scale n-gram features.

Acknowledgements: This work was supported by NSFC

61573160, to Dr. Xiang Bai by the National Program for

Support of Top-notch Young Professionals and the Program

for HUST Academic Frontier Youth Team 2017QYTD08.

7522



References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016. 5

[2] Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and

Longin Jan Latecki. Gift: A real-time and scalable 3d shape

search engine. In CVPR, pages 5023–5032, 2016. 1, 3, 6, 7

[3] Song Bai, Peng Tang, Philip HS Torr, and Longin Jan Late-

cki. Re-ranking via metric fusion for object retrieval and per-

son re-identification. In Proc. CVPR, pages 740–749, 2019.

1

[4] Song Bai, Zhichao Zhou, Jingdong Wang, Xiang Bai, Longin

Jan Latecki, and Qi Tian. Ensemble diffusion for retrieval.

In Proc. ICCV, pages 774–783, 2017. 6, 7

[5] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape con-

text: A new descriptor for shape matching and object recog-

nition. In Proc. NIPS, pages 831–837, 2001. 1

[6] Leila Bergamasco, Karla Lima, Carlos Rochitte, and Fátima

de Lourdes dos Santos Nunes. 3d medical objects retrieval

approach using spharms descriptor and network flow as sim-

ilarity measure. In 2018 31st SIBGRAPI Conference on

Graphics, Patterns and Images (SIBGRAPI), pages 329–336.

IEEE, 2018. 1

[7] Alexander M. Bronstein, Michael M. Bronstein, Leonidas J.

Guibas, and Maks Ovsjanikov. Shape google: Geometric

words and expressions for invariant shape retrieval. Acm

Transactions on Graphics, 30(1):1–20, 2011. 2

[8] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 1, 5

[9] Dapeng Chen, Dan Xu, Hongsheng Li, Nicu Sebe, and Xi-

aogang Wang. Group consistent similarity learning via deep

crf for person re-identification. In Proc. CVPR, pages 8649–

8658, 2018. 3

[10] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming

Ouhyoung. On visual similarity based 3d model retrieval.

In Comput. Graph. Forum, pages 223–232, 2003. 1, 2, 6

[11] Songle Chen, Lintao Zheng, Yan Zhang, Zhixin Sun, and Kai

Xu. Veram: View-enhanced recurrent attention model for

3d shape classification. IEEE Trans. Vis. Comput. Graphics,

2018. 4

[12] Guoxian Dai, Jin Xie, and Yi Fang. Siamese cnn-bilstm ar-

chitecture for 3d shape representation learning. In Proc. IJ-

CAI, 2018. 1, 3

[13] Yi Fang, Jin Xie, Guoxian Dai, Meng Wang, Fan Zhu,

Tiantian Xu, and Edward Wong. 3d deep shape descriptor.

In Proc. CVPR, pages 2319–2328, 2015. 2

[14] Yifan Feng, Zizhao Zhang, Xibin Zhao, Rongrong Ji, and

Yue Gao. Gvcnn: Group-view convolutional neural networks

for 3d shape recognition. In Proc. CVPR, pages 264–272,

2018. 6

[15] Takahiko Furuya and Ryutarou Ohbuchi. Deep aggregation

of local 3d geometric features for 3d model retrieval. In Proc.

BMVC, 2016. 6, 7

[16] Yue Gao, You Yang, Qionghai Dai, and Naiyao Zhang. 3d

object retrieval with bag-of-region-words. In Proc. ACM Int.

Conf. Multimedia, pages 955–958, 2010. 1

[17] Zhizhong Han, Mingyang Shang, Zhenbao Liu, Chi-Man

Vong, Yu-Shen Liu, Matthias Zwicker, Junwei Han, and

CL Philip Chen. Seqviews2seqlabels: Learning 3d global

features via aggregating sequential views by rnn with atten-

tion. IEEE Trans. Image Process., 28(2):658–672, 2018. 1,

3, 6, 7

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc.

CVPR, pages 770–778, 2016. 3, 8

[19] Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang

Bai. Triplet-center loss for multi-view 3d object retrieval.

Proc. CVPR, 2018. 6, 7, 8

[20] Hiroyasu Ichida, Yuichi Itoh, Yoshifumi Kitamura, and Fu-

mio Kishino. Interactive retrieval of 3d virtual shapes using

physical objects. In IEEE Virtual Reality 2004, pages 231–

232. IEEE, 2004. 1

[21] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and An-

drew Zisserman. Deep structured output learning for uncon-

strained text recognition. arXiv preprint arXiv:1412.5903,

2014. 3

[22] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam

Shazeer, and Yonghui Wu. Exploring the limits of language

modeling. arXiv preprint arXiv:1602.02410, 2016. 3

[23] Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi

Nishida. Rotationnet: Joint object categorization and pose

estimation using multiviews from unsupervised viewpoints.

In Proc. CVPR, pages 5010–5019, 2018. 1

[24] Michael Kazhdan, Thomas Funkhouser, and Szymon

Rusinkiewicz. Rotation invariant spherical harmonic repre-

sentation of 3 d shape descriptors. In Symposium on geom-

etry processing, volume 6, pages 156–164, 2003. 1, 2, 3,

6

[25] Daniel Keysers, Jörg Dahmen, Hermann Ney, Berthold B

Wein, and Thomas Martin Lehmann. Statistical frame-

work for model-based image retrieval in medical applica-

tions. Journal of Electronic Imaging, 12(1):59–69, 2003. 1

[26] Kyungyoon Kim, Rebekah L Lawrence, Nikki Kyllonen,

Paula M Ludewig, Arin M Ellingson, and Daniel F Keefe.

Anatomical 2d/3d shape-matching in virtual reality: A user

interface for quantifying joint kinematics with radiographic

imaging. In 2017 IEEE Symposium on 3D User Interfaces

(3DUI), pages 243–244. IEEE, 2017. 1

[27] Yoon Kim. Convolutional neural networks for sentence clas-

sification. arXiv preprint arXiv:1408.5882, 2014. 1, 3

[28] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M

Rush. Character-aware neural language models. In Proc.

AAAI, 2016. 3

[29] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In Proc. ICCV, pages 863–872, 2017. 2, 7

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Proc. NIPS, pages 1097–1105, 2012. 3

7523



[31] Biao Leng, Cheng Zhang, Xiaochen Zhou, Cheng Xu, and

Kai Xu. Learning discriminative 3d shape representations

by view discerning networks. IEEE transactions on visual-

ization and computer graphics, 2018. 3

[32] Bofang Li, Zhe Zhao, Tao Liu, Puwei Wang, and Xiaoyong

Du. Weighted neural bag-of-n-grams model: New baselines

for text classification. In Proceedings of COLING 2016, the

26th International Conference on Computational Linguis-

tics: Technical Papers, pages 1591–1600, 2016. 1, 3
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